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The Study of Increasing Environmental Temperature
on the Dynamical Behaviour of a Prey-Predator

System: A Model
O. P. Misra, Preety Kalra

Abstract—It is well recognized that the green house gases such
as Chlorofluoro Carbon (CFC), CH4, CO2 etc. are responsible
directly or indirectly for the increase in the average global tem-
perature of the Earth. The presence of CFC is responsible for
the depletion of ozone concentration in the atmosphere due to
which the heat accompanied with the sun rays are less absorbed
causing increase in the atmospheric temperature of the Earth. The
gases like CH4 and CO2 are also responsible for the increase in
the atmospheric temperature. The increase in the temperature level
directly or indirectly affects the dynamics of interacting species
systems. Therefore, in this paper a mathematical model is proposed
and analysed using stability theory to asses the effects of increasing
temperature due to greenhouse gases on the survival or extinction of
populations in a prey-predator system. A threshold value in terms
of a stress parameter is obtained which determines the extinction or
existence of populations in the underlying system.

Keywords—Equilibria, Green house gases, Model, Populations,
Stability.

I. INTRODUCTION

THE atmospheric concentration of greenhouse gases such
as carbondioxide, chlorofluoro carbon (CFC), methane

and nitrous oxide is increasing due to rapid industrialization,
extensive use of automobiles and burning of fossil fuels, con-
struction of power plants and other anthropogenic activities.
The excess of CFC depletes the ozone layer in the atmosphere
and therefore the heat accompanied with the sun rays are less
absorbed due to which the atmospheric temperature of the
earth is increasing. The greenhouse gases like CH4 and CO2
are directly responsible for the increase in the atmospheric
temperature. In recent years researchers, [2], [3] have predicted
that the greenhouse gases will dramatically change global
weather pattern in the next century and temperature of the
Earth will rise in the years to come. Now, it is evident that
the average global temperature of the Earth is rising due to
increasing greenhouse gases. [4] provide an intriguing example
of how one of the fundamental food-web properties that is
connectance-changes with increasing temperature. In this pa-
per a theoretical model based on assumptions from metabolic
theory and foraging biology has been studied and it has been
shown that the increasing temperature would have large effects
on connectance with further consequences on the stability of
interacting species systems. [5], [6] focus on how climatic
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warming affects the metabolic rate of organisms, that is, the
power required to sustain them and how these changes in
metabolism scale up to ecosystem processes. It has been shown
in the papers of [7] and [8] that the increasing temperature
changes the processes at different levels of biological organiza-
tion. [9] has shown that species higher in the food web like top
predators tend to be more sensitive to temperature change. [10]
has found that top predators moving towards cooler climates
may trigger trophic cascades and coextinctions may also occur.
Thus, it is noticed that the increase in temperature level may
directly or indirectly effect the dynamics of interacting species
systems. Therefore, it is essential to assess mathematically the
effects of increasing CO2, CFC and CH4 on populations
in order to take necessary measures to avoid any adverse
impact on an ecosystem. For understanding the consequences
of the greenhouse effects on ecosystem an investigation of the
interspecific interactions within biotic communities is required.
A very few models to study temperature dependent interacting
species systems exist [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20].
In view of the above, therefore in this paper, a mathematical
model has been proposed and analyzed to study the effects of
increasing temperature due to greenhouse gases on the survival
or extinction of the populations in a prey-predator system. In
the model it is assumed that the temperature increases directly
due to greenhouse gases CH4 and CO2 and indirectly due to
the greenhouse gas CFC (Chlorofluoro carbon) because of
the depletion of the ozone concentration in the atmosphere
by CFC. In the model it is further assumed that the rise
in temperature negatively effects the intrinsic growth rate of
the prey and adversely effects the prey-predator interaction
phenomenon.

II. MATHEMATICAL MODEL

Let N1 denote the density of a prey population which is
growing logistically and N2 denote the density of a predator
population. C denotes the concentration of CFC (Chlorofluoro
carbon). C1 denotes the combined concentration of CH4 and
CO2. Z denotes ozone concentration. We consider here that
T is elevated temperature or average increased temperature of
the surrounding environment where the species live.
For a predator let its searching time per unit prey is d1. Hence,
searching time of the predator population for prey density N1

is d1N1. If the handling time spent per unit prey by a predator
is d2 then, the handling time for prey density N1 is d2N1.
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It is assumed in the model construction that the searching time
is adversely affected by the increasing temperature of the envi-
ronment and therefore d1 is taken to be d1/(1 +B(T − T0)).
Similarly, it is also assumed in the model formulation that
the handling time is also adversely affected by the increasing
temperature of the environment and therefore, d2 is considered
to be d2/(1 + B(T − T0)). Thus, the total searching and
handling time by a predator for prey density N1 is given by

d1N1

1 +B(T − T0)
+

d2N1

1 +B(T − T0)
=

(d1 + d2)N1

1 +B(T − T0)

=
a1N1

1 +B(T − T0)
(1)

where, a1 = d1 + d2.
From the expression (1), we note that when the environment is
at the normal temperature; T0, that is, at T = T0, the predator
behaves naturally and there is no change in their searching and
handling time. We also notice from (1) that the predation rate
will only be affected when temperature T exceeds T0. With
the above notations and assumptions, the mathematical model
of the system under consideration is given by the following
system of nonlinear differential equations:

dN1

dt
= r1(T )N1 − a1N1N2

1 +B(T − T0)
− r10N1

2

K10
, (2)

dN2

dt
= −r20N2 +

a2N1N2

1 +B(T − T0)
, (3)

dC

dt
= P − C

τ
− βCZ, (4)

dC1
dt

= I0 − C1
τ1
, (5)

dZ

dt
= Q0 − α2Z − βZC, (6)

dT

dt
= h(C1 − C10) +

K1

K2 + Z
− α1(T − T0), (7)

with the initial conditions as:
N1(0) > 0, N2(0) > 0, C(0) ≥ 0, C1(0) ≥ 0, Z(0) > 0,
T (0) > 0
In the present analysis we assume the following form of r1(T ):

r1(T ) = r10−r11(T−T0), r1(T ) > 0 ∀T, r1(T0) = r10 (8)

and a2 = γa1 where γ is conversion coefficient. It may be
noted here that at the normal temperature T0, the growth rate
of prey population is r10 which is its intrinsic growth rate.
The system parameters are defined as follows:
r20 is natural death rate of predator population. B is a
constant which measures the stress of temperature on both
searching and handling time. I0 is input rate of C1. C10
is the natural atmospheric concentration of C1. P is input
rate of C. τ is average atmospheric residence time of CFC.
τ1 is average atmospheric residence time of C1(CH4 and
CO2 taken together). β is the depletion rate of ozone due
to CFC. h is proportionality constant. Q0 is the natural
formation rate of ozone concentration in the atmosphere. T0
is average normal temperature of earth surface of the area

occupied by the populations under study. r1(T ) is growth
rate of population N1. K10 is carrying capacity of prey
population N1. α1 is coefficient of surface heat transfer
and α2 is natural depletion rate of ozone concentration.
Here, all the parameters K1, K2, r10, K10, r11, B, a1, a2,
I0, Q0, β, α1, α2, h and r20 are taken to be positive constants.

III. BOUNDEDNESS AND DYNAMICAL BEHAVIOUR

In this section we will establish that the solutions of the
model given by the set of equations (2) to (7) with equation
(8) are bounded in R6+. The boundedness of solutions is given
by the following lemma.
Lemma 3.1: All the solutions of the model will lie in the region
V1 = {(N1, N2, C, C1, Z, T ) ∈ R6+ : 0 < N1 ≤ K10, 0 <
N2 ≤ r10K10/η, 0 < C ≤ CM , 0 < C1 ≤ C1M , 0 < Zm ≤
Z ≤ ZM , 0 < Tm ≤ T ≤ TM}, as t→ ∞, for all positive ini-
tial values (N1(0), N2(0), C(0), C1(0), Z(0), T (0)) ∈ R6+,
where, CM = Pτ , C1M = (I0 +Q0)/η, η = min(1/τ1, α2),

TM = hI0τ1
α1

+ K1
α1(K2+Zm) + T0, Tm =

K1
K2+ZM

−hC10

α1
> 0 if

K1
K2+ZM

> hC10
ZM = Q0/α2 and Zm = Q0/(α2 + βPτ).
(for proof see Appendix A)

We now find all the feasible equilibria of the system (2)
- (7).The system of equations (2) - (7) has three feasible
equilibria Ei(i = 1, 2, 3) as given below:
1. E1(N1

∗, N2
∗, C∗, C1∗, Z∗, T ∗),

where, N1
∗ = 0, N2

∗ = 0,

C∗ =
Pτ

1 + βτZ∗ , (9)

C1
∗ = I0τ1, (10)

Z∗ =
−a2 +

√
a22 − 4a1a3
2a1

, (11)

a1 = α2βτ,
a2 = α2 + βτ(P −Q0),
a3 = −Q0,

T ∗ =
1
α1

[
h(C1∗ − C10) +

K1

K2 + Z∗ + α1T0

]
. (12)

The equilibrium E1 exists if I0τ1 > C10.
2. E2(N1

∗, N2
∗, C∗, C1∗, Z∗, T ∗),

where,

N1
∗ =

r1(T ∗)K10

r10
,

N2
∗ = 0 and

C∗, C1∗,Z∗, T ∗ are given by (9) - (12) respectively.
The equilibrium E2 exists if I0τ1 > C10 and r1(T ∗) > 0.
3. E3(N1

∗, N2
∗, C∗, C1∗, Z∗, T ∗),

where,
N1

∗ =
r20
γa1

(1 +B(T ∗ − T0)),

N2
∗ =

1 +B(T ∗ − T0)
K10γa12

[r1(T ∗)K10γa1−r10r20(1+B(T ∗−T0))]
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Fig. 1. Phase space diagram for concentration of greenhouse gases C1(t)
and temperature T (t).
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Fig. 2. Phase space diagram for temperature T (t) and ozone concentration
Z(t).

and
C∗, C1∗,Z∗, T ∗ are given by (9) - (12) respectively.
The equilibrium E3 exists if I0τ1 > C10, T ∗ > T0 and

r10
K10

>
γa1r11(T ∗ − T0)

γa1K10 − r20(1 +B(T ∗ − T0))
(13)

Remark: From the equilibrium value it is noted that the
environmental temperature increases on account of increasing
CH4 and CO2 concentrations (see Fig.1) and decreasing
ozone concentration in the atmosphere (see Fig.2). Further,
it may be noted that the equilibrium ozone concentration
decreases due to the increase in the equilibrium concentration
of chlorofluoro-carbon (see Fig.3).

Now we discuss the dynamical behaviour of the model
by conducting the local and global stability analysis of the
equilibria of the model.

A. Local Stability

The characteristic equation associated with the variational
matrix about equilibrium E1 is given by
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Fig. 3. Phase space diagram for concentration of chlorofluoro carbon C(t)
and ozone concentration Z(t).

(J1−λ)(J2−λ)(J5−λ)(J8−λ){(J7−λ)(J3−λ)−J4J6} = 0,
(14)

where, J1 = r1(T ∗), J2 = −r20, J3 = −1/τ − βZ∗,
J4 = −βC∗, J5 = −1/τ1, J6 = −βZ∗,
J7 = −(α2 + βC∗), J8 = −α1
From the nature of the roots of the characteristic equation
(14) we observe that the equilibrium point E1 is locally
unstable provided r1(T ∗) > 0.
Remark: If r1(T ∗) < 0, then E1 is locally asymptotically
stable and obviously both prey and predator populations
would die out eventually.
The characteristic equation related to the equilibrium point
E2 is obtained as

(G2−λ)(G5−λ)(G1−λ)(G8−λ){(G3−λ)(G7−λ)−G4G6} = 0,
(15)

where, G1 = r1(T ∗) − 2r10N1
∗/K10 = −r1(T ∗),

G2 = −r20 + a2N1
∗/(1 +B(T ∗ − T0)), G3 = −1/τ − βZ∗,

G4 = −βC∗, G5 = −1/τ1, G6 = −βZ∗,
G7 = −(α2 + βC∗), G8 = −α1
From the characterstic equation (15) we find that the
equilibrium point E2 is linearly asymptotically stable under
the condition given by:

r10
K10

<
γa1r11(T ∗ − T0)

γa1K10 − r20(1 +B(T ∗ − T0))
and T ∗ > T0 (16)

The characteristic equation associated with the variational
matrix about equilibrium E3 is given by

(P7 − λ)(α1 + λ){P6P8 − (P5 − λ)(P9 − λ)}
×{(P1 − λ)(P4 − λ) − P2P3} = 0, (17)

where, P1 = r1(T ∗)− a1N2
∗

1+B(T∗−T0)
− 2r10N1

∗
K10

= − r10r20
K10γa1

(1+
B(T ∗ − T0)),
P2 = − a1N1

∗
1+B(T∗−T0)

, P3 = γa1N2
∗

1+B(T∗−T0)
,

P4 = −r20 + γa1N1
∗

1+B(T∗−T0)
, P5 = − 1

τ − βZ∗, P6 = −βC∗,
P7 = −1/τ1, P8 = −βZ∗, P9 = −(α2 + βC∗)
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From the nature of the roots of characteristic equation (17) we
find that the equilibrium point E3 is linearly asymptotically
stable provided T ∗ > T0.
Further, from the above analysis it is noted that E2 is linearly
stable only when E3 does not exist and E3 is linearly stable
only if E2 is unstable.
It is observed from the analysis that the stability conditions are
depending upon the equilibrium temperature level and average
normal temperature.

B. Global Stability

Next, we discuss the global stability of the interior
equilibrium point E3.
Theorem 3.1: The box V1 is a compact positively invariant
set in space (N1, N2, C, C1, Z, T ).
Proof: Consider the system given by Eqs. (2)-
(7). To prove the theorem, we consider the point
X ′ = (N1

′, N2
′, C ′, C1′, Z ′, T ′) out side the box V1,

with N1
′ > K10, N2

′ > r10K10/η, C
′ > Pτ,C1

′ >
(I0 + Q0)/η, Z ′ > Q0/α2 and T ′ > D/α1 and take the
box V1 in the phase space (N1, N2, C, C1, Z, T ) with one
vertex located at the origin and the other at X ′. Now, let
us compute the angle that the flow makes with each one of
the faces of V1 not lying on the coordinate planes. Consider
the planes ΠN1 : N1 = N1

′,ΠN2 : N2 = N2
′,ΠC : C =

C ′,ΠC1 : C1 = C1
′,ΠZ : Z = Z ′ and ΠT : T = T ′ and

let nN1 , nN2 , nC , nC1 , nZ and nT are outward unit normal
vectors (with respect to box V1) respectively to each plane.
Then

nN1

dX

dt
|πN1

= N ′
1

(
r1(T ′) − r10N

′
1

K10
− a1N

′
2

1 +B(T ′ − T0

)
then we get

nN1

dX

dt
|πN1

≤ N ′
1

(
−r11T ′ − a1N

′
2

1 +B(T ′ − T0)

)
hence,

nN1

dX

dt
|πN1

≤ 0

Similarly we can show that

nN2

dX

dt
|πN2

≤ 0, nC
dX

dt
|πC

≤ 0, nC1

dX

dt
|πC1

≤ 0,

nZ
dX

dt
|πZ

≤ 0, nT
dX

dt
|πT

≤ 0

where,
dX/dt = (dN1/dt, dN2/dt, dC/dt, dC1/dt, dZ/dt, dT/dt).
Thus, the flow along the normals to each of the plane is again
moving towards the box. Clearly we can say that box V1 is
compact positively invariant box. This completes the proof of
the theorem 3.1. Now it is clear by the above theorem that
the trajectories of the system cannot cross V1 once they enter
inside. It is also observed that the interior equilibrium E3 lies
inside V1. Moreover, E3 is only attractor inside V1, which is
established in the following theorem.
Theorem 3.2: The equilibrium E3 is non-linearly
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Fig. 4. Behavior of the trajectories of model with respect to time when
B < B0.

asymptotically stable with respect to solution initiating
in the interior of V1 if the following inequalities hold:

A1r10

(
γa1NM

1 +B(Tm − T0)
+ r20

)
>
K10a1

2(1 − γN2
∗A1)2

(1 +B(Tm − T0))2
(18)

and

2A4A2(α2 + βC∗)
(

1
τ

+ βZm

)
> β2(A4C∗ +A2Zm)2

(19)
(for proof see Appendix B)

IV. NUMERICAL EXAMPLE

For the model, consider the following values of parameters-
r10 = 0.9, r20 = 0.5, K10 = 3.0, r11 = 0.001, a1 = 0.4,
γ = 0.75, P = 0.5,
T0 = 22, τ = 60.0, τ1 = 10.0, β = 0.02, I0 = 0.6, Q0 = 0.5,
C10 = 0.5,
h = 2.5, α1 = 1.2, α2 = 1.0, K1 = 0.5, K2 = 1.5.
For the above set of values of parameters and B = 0.001 <
B0 = 0.287, we obtain the following value of interior
equilibrium point E3(N1

∗, N2
∗, C∗, C1∗, Z∗, T ∗)

N1
∗ = 1.67, N2

∗ = 0.87, C∗ = 21.09, C1∗ = 6.0,
Z∗ = 0.35, T ∗ = 24.52
It is noted that for the above set of parametric values, the
stability conditions (13), (18) and (19) are satisfied. Hence,
E3

∗ is globally asymptotically stable (see Fig. 4).
For the above parametric values, when B = 0.288 > B0 =

0.287 is considered then the conditions for the existence of
the interior equilibrium point E3 is violated and in this case
the equilibrium point E2 exists with the following equilibrium
values:
N1

∗ = 2.83, N2
∗ = 0.00, C∗ = 21.09, C1∗ = 6.0,

Z∗ = 0.35, T ∗ = 24.52
The linear stability condition given by (16) for E2 is satisfied
for the above set of parametric values with B = 0.0238 and
the stability behaviour of the model for B > B0 is shown in
Fig. 5.
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V. CONCLUSION

From the linear stability analysis of the equilibrium point E2
it is concluded that the population with density N2 would tend
to extinction and population with density N1 would survive
but at lower equilibrium value due to the decrease in its
growth rate on account of elevated temperature. The non-trivial
positive equilibrium point E3 exists only when the equilibrium
point E2 is unstable. Hence, from the linear as well as non-
linear stability analysis of the non-trivial positive equilibrium
E3 it is concluded that the prey and predator populations
would co-exist if the parameter B which measures the stress
of temperature is less than its threshold value B0 (see Figs.
4 and 6). However, it may be noted here that the prey and
predator populations would co-exist even if the threshold value
B0 is taken to be zero. Further, it is shown that if the value
of the parameter B is more than its threshold value B0 then
the predator population tend to extinction (see Figs. 5 and
7). Numerical example has been supplemented to validate the
analytical results. The graphs of all the variables have been
plotted with respect to time and from these graphs the stability
behaviour is illustrated (see Figs. 4 and 5).

APPENDIX A
PROOF OF LEMMA 3.1

Proof:From Eqs. (2) and (3) we get,

d(N1 +N2)
dt

≤ (r10 − r11(T − T0))N1 − r20N2

− N1N2

1 +B(T − T0)
(a1 − a2)

≤ r10K10−r11(Tm−T0)N1−r20N2− N1N2

1 +B(T − T0)
(a1−a2)

≤ r10K10 − η(N1 +N2)

if a2 < a1, i.e. γ < 1.
Where η = min(r11(Tm − T0), r20) and it is assumed that
Tm > T0.
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Fig. 6. Phase space diagram for prey population N1(t) and predator
population N2(t) when B < B0.
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Fig. 7. Phase space diagram for prey population N1(t) and predator
population N2(t) when B > B0.

Then by the usual comparison theorem we get as t→ ∞ :

(N1 +N2) ≤ r10K10

η

and hence,

N2 ≤ r10K10

η

From Eq. (7) and using the solution of C1 in eq.(7) we get,

dT

dt
≤ D + hBe−t/τ1 − α1T

where, A = K1
K2+Zm

+ α1T0 and D = hI0τ1 +A
Then by the usual comparison theorem we get as t→ ∞ :

T ≤ D

α1

i.e.

T ≤ hI0τ1
α1

+
K1

α1(K2 + Zm)
+ T0 = TM
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Again from Eq. (7) we get ,

dT

dt
≥
(

K1

K2 + ZM
− hC10

)
− α1T

Then by the usual comparison theorem we get as t→ ∞ :

T ≥
K1

K2+ZM
− hC10

α1
= Tm

and Tm > 0 if K1
K2+ZM

> hC10
Similarly from Eqs. (4) and (6), we get as t→ ∞ :

C ≤ Pτ = CM , Z ≤ Q0

α2
= ZM

Again from Eq. (6) we get

dZ

dt
≥ Q0 − α2Z − βZPτ

By the usual comparison theorem we get as t→ ∞ :

Z ≥ Q0

α2 + βPτ
= Zm

By adding Eqs. (5) and (6), we get

d(C1 + Z)
dt

≤ I0 +Q0 − η(C1 + Z)

where, η = min( 1τ1 , α2) and by usual comparison theorem
we get as t→ ∞ :

(C1 + Z) ≤ I0 +Q0

η

and hence,

C1 ≤ I0 +Q0

η
= C1M

This completes the proof of the lemma 3.1.

APPENDIX B
PROOF OF THEOREM 3.2

Proof: Taking the perturbations about the equilibrium value
as follows:

N1 = N1
∗ + u1(t), N2 = N2

∗ + u2(t), C = C∗ + v1(t),

C1 = C1
∗ + w1(t), Z = Z∗ + x(t), T = T ∗ + t1(t).

the non-linearised system of equations from (2) to (7) about
equilibrium point E3 is given by

du1
dt

= (N1
∗+u1){−r11t1− a1N2

∗Bt1
(1 +B(T ∗ − T0))(1 +B(T − T0))

−r10u1
K10

− a1u2
1 +B(T − T0)

} (20)

du2
dt

= −r20u2 − Bt1γa1N1
∗N2

∗

(1 +B(T − T0))(1 +B(T ∗ − T0))

+
γa1

1 +B(T − T0)
(N1u2 +N2

∗u1) (21)

dv1
dt

= −v1
τ

− βC∗x− β(Z∗ + x)v1 (22)

dw1
dt

= −w1
τ1

(23)

dx

dt
= −α2x− βC∗x− β(Z∗ + x)v1 (24)

dt1
dt

=
−K1

(K2 + Z∗)(K2 + Z∗ + x)
+ hw1 − α1t1 (25)

Consider,

G(t) =
[
u1 −N1

∗log(1 +
u1
N1

∗ )
]

+
1
2
A1u2

2 +
1
2
A2v1

2

+
1
2
A3w1

2 +
1
2
A4x

2 +
1
2
A5t1

2

where, Ai(i = 1 to 5) are arbitrary positive constants.
The time derivative of G(t) is given by

dG

dt
=

u1
N1

∗ + u1

du1
dt

+A1u2
du2
dt

+A2v1
dv1
dt

+A3w1
dw1
dt

+A4x1
dx1
dt

+A5t1
dt1
dt

Now, using the system of equations (20)-(25) in dG/dt in
the region V1, we get

dG

dt
≤ −{1

2
r10
K10

u1
2 +

a1
1 +B(Tm − T0)

(1 − γN2
∗A1)u1u2

+
A1
2

(
γa1NM

1 +B(Tm − T0)
+ r20

)
u2

2 +
1
2
r10
K10

u1
2

+
(
r11 +

a1N2
∗B

(1 +B(T ∗ − T0))(1 +B(Tm − T0))

)
u1t1

+
A5
4
α1t1

2 +
A1
2

(
γa1NM

1 +B(Tm − T0)
+ r20

)
u2

2

+
A1Bγa1N1

∗N2
∗

(1 +B(T ∗ − T0))(1 +B(Tm − T0))
u2t1 +

A5
4
α1t1

2

+
A4
2

(α2 + βC∗)x2 + β(A4C∗ +A2Zm)xv1

+A2(
1
τ

+ βZm)v12 +
A4
2

(α2 + βC∗)x2

+
A5K1

(K2 + Z∗)(K2 + ZM )
xt1 +

A5
4
α1t1

2

+
A3
τ
w1

2 −A5hw1t1 +
A5
4
α1t1

2}
Using the sylvester’s criteria in the right hand side of the above
expression and then choosing A1, A3, A4, A5 as follow

A5 > 2
K10

α1r10

[
r11 +

a1N2
∗B

(1 +B(T ∗ − T0))(1 +B(Tm − T0))

]2
,

A1

[
Bγa1N1

∗N2
∗

(1 +B(T ∗ − T0))(1 +B(Tm − T0))

]2

<
A5
2

[
r20 +

γa1NM
1 +B(Tm − T0)

]
α1
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and

A4(α2 + βC∗) > 2A5

[
K1

(K2 + Z)(K2 + Zm)

]2
it may be shown that dG/dt is negative definite if the
conditions (18) and (19) are satisfied. Thus, it is proved that E3
is globally (non-linearly) asymptotically stable in the region
V1.

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

[2] F. Stordal, Isaken ISA, USEPA and UNEP. Washington, DC,1, 1986.
[3] S. F. Singer, Stratospheric Ozone: Science, Policy, Global Climate

Change. Paragon House, New York, 1989.
[4] O. L. Petchey, U. Brose, B. C. Rall, Predicting the Effects of Temperature

on Food Web Connectance. Phil. Trans. R. Soc., B 365(2010) 2081-
2091.

[5] G. Yvon-Durocher, J. I. Jones, M. Trimmer, G. Woodward, J. M.
Montoya, Warming Alters the Metabolic Balance of Ecosystems. Phil.
Trans. R. Soc., 365(2010) 2117-2126.

[6] H. Sarmento, J. M. Montoya, E. Vazquez-Dominguez, D. Vaque, J. M.
Gasol, , Warming Effect on Marine Food Web Processes: How Far can We
Go When It Comes to Predictions? Phil. Trans. R. Soc., B 365(2010)
2137-2149.

[7] J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Sanage, G. B. West, Toward
a Metabolic Theory of Ecology Ecology, 85(2004) 1771-1789.

[8] G. B. West, J. H. Brown, B. J. Enquist, A General Model for the Origin
of Allometric Scaling Laws in Biology. Science, 276(1997) 122-126.

[9] W. Voigt, et al., Trophic Level are Differentially Sensitive to Climate.
Ecology, 84(2003) 2444-2453.

[10] O. J. Schmitz, E. Post, C. E. Burns, K. M. Johanston, Ecosystem
Response to Global Climate Change: Moving Beyond Color Mapping.
BioScience, 53(2003) 1199-1205.

[11] D. J . Wollkind, J. A. Logan, Temperature-Dependent Predator-Prey Mite
Ecosystem on Apple Tree Foliage. J. Math. Biol., 6(1978) 265-283.

[12] D. J. Wollkind, J. B. Collings, J. A. Logan, Metastability in a
Temperature-Dependent Model System for Predator-Prey Mite Outbreak
Interactions on Fruit Trees. Bull. Math. Biol., 50(1988) 379-409.

[13] D. J. Wollkind, J. B. Collings, M. C. B. Barba, Diffusive Instabilities
in One-Dimensinonal Temperature-Dependent Model System for a Mite
Predator-Prey Interaction on Fruit Trees: Dispersal Motility and Aggrega-
tive Preytaxis Effects. J. Math. Biol., 29(1991) 339-362.

[14] J. B. Collings, D. J. Wollkind, M. E. Moody, Outbreaks and Oscillations
in a Temperature-Dependent Model for a Mite Predator-Prey Interaction.
Theoret. Popul. Biol., 38(1990) 159-191.

[15] J. B. Collings, Nonlinear Behavior of Parametrically Forced
Temperature-Dependent Model for a Mite Predator-Prey Interaction.
Chaos, Solitons and Fractals, 2(1992) 105-137.

[16] J. B. Collings, Bifurcation and Stability Analysis of a Temperature
Dependent Mite Predator-Prey Interaction Model Incorporating a Prey
Refuge. Bull. Math. Biol., 57(1995) 63-76.

[17] J. D. Logan, W. Wolesensky, A. Jpren, Tempeature Dependent Phe-
nology and Predation in Arthropod System. Ecological Modelling,
196(2006) 471-482.

[18] J. D. Logan, W. Wolesensky, An Index to Measure the effects of
Temperature Change on Trophic Interaction. J. Theroet Biol., 246(2007)
366-376.

[19] J. Norberg, D. Deangelts, Temperature Effects on Stocks and Stability
of a Phytoplankton Zooplankton Model and the Dependence on Light and
Nutrients. Ecological Modelling, 95(1997) 75-86.

[20] X. Zhang, J. R. G. Kreis, Importance of Temperature in Modeling Food
Web-Bioaccmulation in large Aquatic Systems. Ecological Modelling,
218(2008) 315-322.

O.P. Misra Dr.O.P. Misra obtained his Ph.D in Mathematics from I.I.T
Kanpur, Kanpur, India and presently he is professor of Mathematics in the
School of Mathematics and Allied Sciences, Jiwaji University, Gwalior, India,
since 2006. Dr. Misra’s research interest is related to Mathematical Modelling
of Ecological, Epidemiological and Eco-epidemiological Systems. In this

area he has published several research papers in International journals of
repute like Applied Mathematical Modelling, Nonlinear Analysis : Real World
Applications, Nonlinear Analysis : Hybrid systems, Journal of Biological
Systems, Indian Journal of Pure and Applied Mathematics, Proceedings of
National Academy of Sciences, The Journal of Nonlinear Sciences and Ap-
plications, International Journal of Differential Equations, Journal of Applied
Mathematics and Computing, Ecological Modelling, and Mathematical and
Computer Modelling. He has supervised eight Ph.D students in the area of his
research interest. He had been to University of California, Berkeley, U.S.A
for six months as visiting scholar. He also visited International center for
Theoretical Physics, Trieste, Italy two times for participating in the Autumn
Course on Mathematical Ecology and Autumn Workshop on Mathematical
Ecology.

Preety Kalra Preety Kalra is doing research under the guidance of Dr.
O.P. Misra at School of Mathematics and Allied Sciences, Jiwaji University,
Gwalior, India, sice 2008. Her research interest is related to Mathematical
Modelling of Ecological and Agro-Eco Systems. She has published a research
paper in repute International journal like Journal of Applied Mathematics and
Computing. She got a Young Scientist Award of MPCST, Bhopal during 26th
M.P. Young Scientist Congress (Feb 28-Mar 1, 2011) at Jawaharlal Nehru
Krishi Vishwa Vidalaya, Jabalpur (M.P.), India.


