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The Spanning Laceability of k-ary n-cubes
when k is Even

Yuan-Kang Shih, Shu-Li Chang, and Shin-Shin Kao

Abstract—Qk
n has been shown as an alternative to the hypercube

family. For any even integer k ≥ 4 and any integer n ≥ 2, Qk
n is

a bipartite graph. In this paper, we will prove that given any pair of
vertices, w and b, from different partite sets of Qk

n, there exist 2n
internally disjoint paths between w and b, denoted by {Pi | 0 ≤ i ≤
2n− 1}, such that

⋃2n−1
i=0 Pi covers all vertices of Qk

n. The result is
optimal since each vertex of Qk

n has exactly 2n neighbors.
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I. INTRODUCTION

The k-ary n-cube, denoted by Qk
n, has been proposed as an

alternative to the hypercube since it shares many nice prop-
erties of Qn such as regular degrees, vertex symmetry, edge
symmetry, recursive structure, etc.. The underlying topology
of many machines is based on k-ary n-cubes, such as the Cray
T3E, the iWARP, the Cray T3D and so on. Please see [1], [4],
[11], [17]. Many reseachers have been working on k-ary n-
cubes. For example, Stewart and Xiang [20] proved that the k-
ary n-cube is edge-bipancyclic and bipanconnected for k ≥ 3
and n ≥ 2 and k being even. Namely, any edge of a k-ary n-
cube Qk

n lies on a cycle of any even length r for 4 ≤ r ≤ |Qk
n|,

where |Qk
n| is the total number of vertices of Qk

n. Besides,
given two vertices u and v of Qk

n, there exists a path of
any even length r between u and v for d(u, v) ≤ r ≤ |Qk

n|,
where d(u, v) is the distance between u and v. Other studies
about fault tolerance on k-ary n-cubes can be found in [8],
[23]. Recently, there are many studies about the spanning
connectivity for interconnection networks and graphs [9]. A
graph H = (B

⋃
W, E) is bipartite if V (H) is the union of

two disjoint sets B and W such that every edge joins B with
W . It is easy to see that any bipartite graph with at least three
vertices is not hamiltonian connected except K2. Note that any
(nontrivial) bipartite graph except K2 cannot be hamiltonian
connected, whereas a bipartite graph is hamiltonian laceable
if there exists a hamiltonian path between any two vertices u,
v with u ∈ B and v ∈ W [22]. A graph H = (B

⋃
W,E) is

a balanced bipartite graph if |V (B)| = |V (W )|. Throughout
this thesis, we only work on Qk

n with k ≥ 4 an even integer
and n ≥ 2, which are balanced bipartite graphs. A bipartite
graph H = (B

⋃
W,E) is m∗-laceable if given a white

vertex w ∈ W and a black vertex b ∈ B, there exist(s) m
internal disjoint paths between w and b, denoted by Pi for
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0 ≤ i ≤ m − 1, such that
⋃m−1

0 Pi covers V . The spanning
laceability of a graph H , κ∗(H), is the largest integer k such
that H is m∗-laceable for every m with 1 ≤ m ≤ k. A
higher spanning connectivity/laceability of the interconnection
network implies a more efficient communication between
processors. About the spanning connectivity and the spanning
laceability, readers can refer to [6], [7], [12]–[15].

In this paper, we want to show the spanning laceability of
k-ary n-cubes for any even integer k ≥ 4. More precisely, we
show that given a white vertex w and a black vertex b of a
k-ary n-cube Qk

n, there exist(s) m internally disjoint path(s)
between w and b whose union covers all vertices of Qk

n for
1 ≤ m ≤ 2n. The result is optimal since any vertex in Qk

n has
exactly 2n neighbors. This paper is organized as follows. In
Section 2, we introduce the graph terminologies and symbols
that will be used in the paper and the definition of Qk

n. In
Section 3, we show our main results.

II. PRELIMINARIES

Throughout this paper, we follow [3] for the graph def-
initions and notations. The sets of vertices and edges of a
graph G are denoted by V (G) and E(G), respectively. If
u, v are vertices of a graph G such that there is an edge
e = (u, v) ∈ E(G) between u and v, then we say that
the vertices u and v are adjacent in G. The degree of any
vertex x is the number of distinct vertices adjacent to x.
A path P between two vertices v0 and vk is represented
by P = 〈v0, v1, . . . , vk〉, where each pair of consecutive
vertices are connected by an edge. We use P−1 to denote
the path 〈vk, vk−1, vk−2, . . . , v0〉. We also write the path
P = 〈v0, v1, . . . , vk〉 as 〈v0, v1, . . . , vi, Q, vj , vj+1, . . . , vk〉,
where Q denotes the path 〈vi, vi+1, . . . , vj〉. A hamiltonian
path between u and v, where u and v are two distinct vertices
of G, is a path joining u to v that visits every vertex of G
exactly once. A cycle is a path of at least three vertices such
that the first vertex is the same as the last vertex. A hamiltonian
cycle of G is a cycle that traverses every vertex of G exactly
once. A hamiltonian graph is a graph with a hamiltonian cycle.
A graph G is connected if there is a path between any two
distinct vertices in G and is hamiltonian connected if there
is a hamiltonian path between any two distinct vertices in G
[18]. A graph H = (W ∪B,E) is bipartite if V (H) = W ∪B
and E(H) is a subset of {(w, b)|w ∈ W, b ∈ B}. A bipartite
graph H is hamiltonian laceable if there is a hamiltonian path
between any two distinct vertices from different partite sets in
H .

A graph G is k-connected if there exists V ′ ⊆ V (G) with
|V ′| = k such that G − V ′ is disconnected and G − V ′′ is
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connected for any V ′′ ⊆ V (G) with |V ′′| < k. It follows
from Menger’s Theorem [16] that for every k-connected graph
G, there exist k internally vertex-disjoint paths between any
pair of distinct vertices of G. A k-container C(u, v) in a
graph G is a set of k internally vertex-disjoint paths between
two distinct vertices u and v. We say that a graph G has a
spanning k-container between u and v, denoted by C(u, v),
if C(u, v) is a k-container that covers all vertices of G. A
spanning k-container is also abbreviated as a k∗-container for
simplicity. A graph G is k∗-connected if there is a k∗-container
between any pair of vertices of G. Obviously, a graph G is
hamiltonian connected if and only if G is 1∗-connected, and G
is hamiltonian if and only if G is 2∗-connected. Lin et al. [13]
defined the concept of spanning connectivity. The spanning
connectivity of a graph G, κ∗(G), is the largest integer k such
that G is w∗-connected for all 1 ≤ w ≤ k. Similarly, a bipartite
graph H is k∗-laceable if there is a k∗-container between any
pair of two vertices from different partite sets of H . Also, a
bipartite graph H is hamiltonian laceable if and only if H
is 1∗-laceable, and H is hamiltonian if and only if H is 2∗-
laceable. So, the spanning laceability of a bipartite graph H ,
κ∗(H), is the largest integer k such that H is m∗-laceable for
all 1 ≤ m ≤ k.

The k-ary n-cube, Qk
n, is defined for all integers k ≥ 2

and n ≥ 1. The subclass Q2
n is the well-studied hypercube

family. The subclass Qk
1 with k ≥ 3 is defined as the cycle

of length k. The k-ary n-cube, Qk
n, for k ≥ 3 and n ≥ 2

is defined as follows. Let u ∈ V (Qk
n) be represented by

(u(0), u(1), ..., u(n − 1)), where 0 ≤ u(i) ≤ k − 1. Two
vertices u and v are adjacent if and only if |u(i) − v(i)| = 1
or k − 1 for some i and u(j) = v(j) for any 0 ≤ j ≤ n − 1
with j 	= i. It is shown that Qk

n is bipartite if k is even [10].
Here we mention some properties of Qk

n that will be used in
this paper.

Qk
n is vertex symmetric (and edge symmetric) [10]. It means

that given any two distinct vertices v and v′ of Qk
n, there is an

automorphism of Qk
n mapping v to v′. Note that each vertex

of Qk
n is represented by a n-bit tuple. We will call the dth-

bit the dth dimension. We can partition Qk
n over dimension

d by fixing the dth element of any vertex tuple at some
value a for every a ∈ {0, 1, ..., k − 1}. This results in k
copies of Qk

n−1, denoted by Qk,0
n−1, Qk,1

n−1, ..., Qk,k−1
n−1 , with

corresponding vertices in Qk,0
n−1, Q

k,1
n−1, ..., Q

k,k−1
n−1 joined in a

cycle of length k (in dimension d) [19].
In this article, we always partition Qk

n over the 0-th dimen-
sion by letting V (Qk,i

n−1) = {((i), v(1), v(2), . . . , v(n − 1)) |
0 ≤ v(j) ≤ k − 1, ∀1 ≤ j ≤ n− 1} for 0 ≤ i ≤ k − 1. Given
a vertex x = (x(0), x(1), . . . , x(n−1)) ∈ V (Qk

n), the symbol
xj = ((j), x(1), x(2), . . . , x(n − 1)), where 0 ≤ j ≤ k − 1,
is defined to be the vertex corresponding to x in Qk,j

n−1 for
simplicity. So, if P = 〈x0, x1, . . . , xn−1〉, P j is represented
by 〈xj

0, x
j
1, . . . , x

j
n−1〉. Throughout this paper, let n ≥ 2 be an

integer and k ≥ 4 an even integer.

Theorem 1. [10] For any even integer k ≥ 4, Qk
n is

hamiltonian laceable for n ≥ 2. In other words, Qk
n is 1∗-

laceable.

Theorem 2. [5] The graph Qk
n is hamiltonian. In other words,

Qk
n is 2∗-laceable.

III. MAIN RESULTS

Lemma 1. Given Qk
n and its k subcubes, Qk,i

n−1, where 0 ≤
i ≤ k − 1. Let j and j′ be two integers satisfying 0 ≤ j ≤
j′ ≤ k − 1, w ∈ V (Qk,j

n−1) an arbitrary white vertex, and
b ∈ V (Qk,j′

n−1) an arbitrary black vertex. Then there exists a
path between w and b that visits each vertex in Qk,j

n−1, Qk,j+1
n−1 ,

Qk,j+2
n−1 , . . ., Qk,j′

n−1 exactly once.

Proof: There are three cases.
Case 1. j = j′. W.L.O.G., let j = j′ = 0. By Theorem 1,
Qk,0

n−1 is hamiltonian laceable. Thus, there is a hamiltonian
path between w and b that visits each vertex of Qk,0

n−1 exactly
once.
Case 2. j − j

′
= 1. W.L.O.G., we can let j = 0 and j′ = 1.

Let w be a white vertex in Qk,0
n−1 and b a black vertex in

Qk,1
n−1. We can find a pair of adjacent vertices x0 and x1 where

x0 is a black vertex of Qk,0
n−1 and x1 is a white vertex of

Qk,1
n−1. By Theorem 1, there exists a hamiltonian path P0 of

Qk,0
n−1 between w and x0, and a hamiltonian path P1 of Qk,1

n−1

between x1 and b. Let P = 〈w,P0, x
0, x1, P1, b〉. Hence P

is the path between w and b that visits every vertex of Qk,0
n−1

and Qk,1
n−1 exactly once.

Case 3. j − j′ ≥ 2. Let w be a white vertex in Qk,j
n−1 and

b be a black vertex in Qk,j′
n−1. There are j − j′ + 1 k-ary

n − 1-cubes, Qk,j
n−1, Q

j,j+1
n−1 , Qk,j+2

n−1 , . . . , Qk,j′−1
n−1 and Qk,j′

n−1.
There are j′ − j pairs of adjacent vertices xr ∈ Qk,r

n−1

and yr+1 ∈ Qk,r+1
n−1 where xr is a black vertex and yr+1

is a white vertex for j ≤ r ≤ j′ − 1. By Theorem 1,
there is a hamiltonian path Rr of Qk,r

n−1 joining yr to xr,
where j + 1 ≤ r ≤ j′ − 1. Again, with Theorem 1, there
exists a hamiltonian path T of Qk,j

n−1 joining w to xj , and
a hamiltonian path U of Qk,j′

n−1 joining yj′
to b. Let P =

〈w, T, xj , yj+1, Rj+1, x
j+1, yj+2, Rj+2, x

j+2, . . . , yj′−1,
Rj′−1, x

j−1, yj′
, U, b〉. Therefore, P is a path covering all the

vertices of Qk,j
n−1, Q

j,j+1
n−1 , Qk,j+2

n−1 , . . . , Qk,j′
n−1 for 0 ≤ j ≤ j′ ≤

k−1 between w and b. Please see Figure 1 for an illustration.
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Fig. 1. The illustration for Case 3 of Lemma 1.

Lemma 2. Given Qk
n and its k subcubes Qk,i

n−1 for 0 ≤ i ≤
k− 1. Let w be a white vertex, b a black vertex in Qk,i

n−1, and
j an integer with 0 ≤ i ≤ j ≤ k − 1. There exists a path
between w and b that covers all the vertices of Qk,i

n−1, Qk,i+1
n−1 ,

. . ., and Qk,j
n−1.

Proof: We consider the following two cases.
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Case 1. j = i. There is only one k-ary (n − 1)-cube Qk,i
n−1.

By Theorem 1, the lemma holds in this case.
Case 2. j 	= i. There are j − i + 1 k-ary (n − 1)-cubes.
According to Theorem 1, there is hamiltonian path Pi that
covers all the vertices of Qk,i

n−1 between w and b of the form
〈w, Si, x

i, yi, Ti, b〉, where {xi, yi} is an edge of Qk,i
n−1 with

{xi, yi}⋂{w, b} = ∅. Notice that by Theorem 1, Qk,r
n−1 is

hamiltonian laceable and hence there exists a hamiltonian path
Pr between xr and yr of the form 〈xr, Sr, z

r, wr, Tr, y
r〉 for

i + 1 ≤ r ≤ j. Let the required path between w and b be R,
we have the following two subcubes.
Case 2.1. If j − i + 1 is even, then
R = 〈w, Si, x

i, xi+1, Si+1, z
i+1, zi+2, (Si+2)−1, xi+2, xi+3,

Si+3, z
i+3, zi+4, (Si+4)−1, xi+4, . . . , xj , Sj , z

j , wj , Tj , y
j ,

yj−1, (Tj−1)−1, wj−1, wj−2, Tj−2, y
j−2, yj−3, (Tj−3)−1,

wj−3, . . . , yi+1, yi, Ti, b〉. Please see Figure 2 for an illustra-
tion.
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Fig. 2. The illustration for Lemma 2 when j − i + 1 is even.

Case 2.2. If j − i + 1 is odd, then
R = 〈w, Si, x

i, xi+1, Si+1, z
i+1, zi+2, (Si+2)−1, xi+2, xi+3,

Si+3, z
i+3, zi+4, (Si+4)−1, xi+4, . . . , zj , (Sj)−1, xj , yj ,

(Tj)−1, wj , wj−1, Tj−1, y
j−1, yj−2, (Tj−2)−1, wj−2, wj−3,

Tj−3, y
j−3, . . . , yi+1, yi, Ti, b〉. Please see Figure 2 for an

illustration.
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Fig. 3. The illustration for Lemma 2 when j − i + 1 is odd.

Lemma 3. The graph Q4
2 is 3∗-laceable and 4∗-laceable.

Proof: The proof is by brute force. Reader can refer to
Appendix A.

Lemma 4. The graph Q6
2 is 3∗-laceable and 4∗-laceable.

Proof: By brute force, we constructed all spanning con-
tainers. Please see Appendix B.

Lemma 5. The graph Qk
2 is 3∗-laceable and 4∗-laceable for

any even integer k ≥ 6.

Proof: With Lemma 4, we have shown that Q6
2 is 3∗-

laceable and 4∗-laceable. Now we will present a recursive

algorithm that uses a 3∗-container (resp. 4∗-container) of Qk
2

to construct a 3∗-container (resp. 4∗-container) of Qk+2
2 . Let

R be a subset of V (Qk
2) ∪ E(Qk

2). We define a function, f ,
which maps R from Qk

2 into Qk+2
2 in the following way:

(1) If (i, j) ∈ R ∩ V (Qk
2), where 0≤ i, j ≤ k − 1, then

f((i, j)) =

⎧⎪⎪⎨
⎪⎪⎩

(i, j) if 0 ≤ i, j ≤ k − 2;
(i + 2, j) if i = k − 1, 0 ≤ j ≤ k − 2;
(i, j + 2) if j = k − 1, 0 ≤ i ≤ k − 2;
(i + 2, j + 2) if i = k − 1 = j.

(2) If ((i, j), (i′, j′)) ∈ R∩E(Qk
2), where i ≤ i′, j ≤ j′, then

f(((i, j), (i′, j′)))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((i, j), (i′, j′)) if 0 ≤ i, j ≤ k − 3,
1 ≤ i′, j′ ≤ k − 2;

((i + 2, j), (i′ + 2, j)) if i = i′ = k − 1,
0 ≤ j ≤ k − 3,
1 ≤ j′ ≤ k − 2;

((i, j + 2), (i′, j′ + 2)) if j = j′ = k − 1,
0 ≤ i ≤ k − 3,
1 ≤ i′ ≤ k − 2;

((i, j), (i′, j′ + 2)) if 0 ≤ i = i′ ≤ k − 2,
j = 0, j′ = k − 1;

((i, j), (i′ + 2, j′)) if 0 ≤ j = j′ ≤ k − 2,
i = 0, i′ = k − 1;

((i, j + 2), (i′ + 2, j′ + 2)) if i = 0, i′ = k − 1,
j = j′ = k − 1;

((i + 2, j), (i′ + 2, j′ + 2)) if j = 0, j′ = k − 1,
i = i′ = k − 1.

Let w be a white vertex and b be a black vertex of Qk
2 . We

say that a 3∗-container (resp. 4∗-container) C(u, v) of Qk
2 is

regular if C(w, b) contains some edges in {((α, k−2), (α, k−
1)) | 0 ≤ α ≤ k − 1} and {((k − 2, β), (k − 1, β)) | 0 ≤ β ≤
k−1}. For example, all 3∗-containers and 4∗-containers of Q6

2

constructed in Lemma 4 are regular. Let C(w, b) be a regular
3∗-container (resp. 4∗-container) of Qk

2 with the endvertex set
P = {w = (0, 0), b = (x, y)}. We construct a regular 3∗-
container (resp. 4∗-container) of Qk+2

2 with the endvertex set
f(P ) using the following algorithm. Please see Figure 4 for
an illustration.

(a) w=(0,0), b=(2,1) (b) w=(0,0), b=(2,1)
6
2Q

8
2Q

w

(5,0) (5,5)

(0,5)
(0,0)

b

w

(5,0)

(0,5)
(0,0)

b

(7,0)
(7,7)

(0,7)

Fig. 4. Using the 4∗-container of Q6
2 to construct the 4∗-container of Q8

2.

Step 1. In Qk
2 , let {v0, v1, . . . , vt−1} and {h0, h1, . . . , hs−1}

be finite sequences of indices satisfying the following require-
ments:
(1) 0 ≤ v0 < v1 < . . . < vt−1 ≤ k − 1 and k − 1 ≥ h0 >
h1 > . . . > hs−1 ≥ 0;
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(2) for 0 ≤ i ≤ k − 1, ((vi, k − 2), (vi, k − 1)) is an edge of
C(w, b); for 0 ≤ j ≤ k − 1, ((k − 2, hj), (k − 1, hj)) is an
edge of C(w, b).
Step 2. Let C(w, b) be the image in Qk+2

2 of C(w, b) −
({((vi, k−2), (vi, k−1)) | 0 ≤ i ≤ k−1}∪{((k−2, hj), (k−
1, hj)) | 0 ≤ j ≤ k − 1}) under the function f . Please see
Figure 5 for an illustration.

(0,0) (0,5)

(5,5)(5,0)

(0,4)

(4,0)

6
2Q

8
2Q

)0,0(
))0,0((

�
f

)7,0(
))5,0((

�
f

)4,0(
))4,0((

�
f

)0,4(
))0,4((

�
f

)0,7(
))0,5((

�
f )7,7(

))5,5((
�
f

f

Fig. 5. Using function f to map a subset of edges and vertices of Q6
2 into

Q8
2.

Step 3. For any two positive integers r and d, we use [r]d to
denote r(mod d). In Qk+2

2 , define the following path patterns,
where r1, r2 are integers:

Iα(r1, r2) = 〈(r1, α), ([r1 + 1]k+2, α), . . . , (r2, α)〉;
I−1
α (r2, r1) = 〈(r2, α), ([r2 − 1]k+2, α), . . . , (r1, α)〉;
Hβ(r1, r2) = 〈(β, r1), (β, [r1 + 1]k+2), . . . , (β, r2)〉;

H−1
β (r2, r1) = 〈(β, r2), (β, [r2 − 1]k+2), . . . , (β, r1)〉.

Let vi = vi +2 if vi = k−1 and vi = vi if 0 ≤ vi ≤ k−2,
and hj = hj +2 if hj = k−1 and hj = hj if 0 ≤ hj ≤ k−2.
Case 1. v0 = k − 1.
Let P0 = 〈(k +1, k−2), (k+1, k−1), (0, k−1), Ik−1(0, k−
2), (k−2, k−1), (k−2, k), I−1

k (k−2, 0), (0, k), (k+1, k), (k+
1, k + 1)〉.
Case 1.1. s = 1.
Let P 0 = 〈(k − 2, h0), (k − 1, h0),H−1

k−1(h0, [h0 + 1]k+2),
(k − 1, [h0 + 1]k+2), (k, [h0 + 1]k+2), Hk([h0 + 1]k+2, h0),
(k, h0), (k+1, h0)〉. Then C(w, b)∪P0∪P 0 is the 3∗-container
(or 4∗-container) of Qk+2

2 .
Case 1.2. s ≥ 2.
Let P i = 〈(k − 2, hi), (k − 1, hi),H−1

k−1(hi, hi+1 + 1), (k −
1, hi+1+1), (k, hi+1+1),Hk(hi+1+1, hi), (k, hi), (k+1, hi)〉
for 0 ≤ i ≤ s− 2, and P s−1 = 〈(k − 2, hs−1), (k − 1, hs−1),
H−1

k−1(hs−1, [h0 + 1]k+2), (k − 1, [h0 + 1]k+2), (k, [h0 +
1]k+2), Hk([h0 +1]k+2, hs−1), (k, hs−1), (k+1, hs−1)〉. Then
C(w, b) ∪ P0 ∪ {P i | 0 ≤ i ≤ s − 1} is the 3∗-container (or
4∗-container) of Qk+2

2 .
Case 2. vt−1 ≤ k − 2 and ((k − 2, k − 1), (k − 1, k − 1)) ∈
E(C(w, b)) in Qk

2 .
Case 2.1. t = 1.
Let P0 = 〈(v0, k− 2), (v0, k− 1), Ik−1(v0, k− 2), (k− 2, k−
1), (k − 2, k), I−1

k (k − 2, v0), (v0, k), (v0, k + 1)〉.
Case 2.1.1 s = 1.
Let P 0 = 〈(k − 2, h0), (k − 1, h0),H−1

k−1(h0, 0), (k − 1, 0),
(k, 0), Hk(0, k − 1), (k, k − 1), (k + 1, k − 1), Ik−1(k +

1, [v0−1]k+2), ([v0−1]k+2, k−1), ([v0−1]k+2, k), I−1
k ([v0−

1]k+2, k + 1), (k + 1, k), (k, k), (k, h0), (k + 1, h0)〉. Then
C(w, b) ∪ P0 ∪ P 0 is the 3∗-container (or 4∗-container) of
Qk+2

2 .
Case 2.1.2 s = 2.
Let P 0 = 〈(k − 2, h0), (k − 1, h0),H−1

k−1(h0, h1 + 1), (k − 1,

h1 + 1), (k, h1 + 1), Hk(h1 + 1, k − 1), (k, k − 1), (k + 1,
k − 1), Ik−1(k + 1, [v0 − 1]k+2), ([v0 − 1]k+2, k − 1),
([v0 − 1]k+2, k), I−1

k ([v0 − 1]k+2, k + 1), (k + 1, k), (k, k),
(k, h0), (k + 1, h0)〉, and P 1 = 〈(k − 2, h1), (k − 1, h1),
H−1

k−1(h1, 0), (k−1, 0), (k, 0),Hk(0, h1), (k, h1), (k+1, h1)〉.
Then C(w, b) ∪ P0 ∪ P 0 ∪ P 1 is the 3∗-container (or 4∗-
container) of Qk+2

2 .
Case 2.1.3 s ≥ 3.
Let P 0 = 〈(k − 2, h0), (k − 1, h0),H−1

k−1(h0, h1 + 1), (k −
1, h1 +1), (k, h1 +1), Hk(h1 +1, k−1), (k, k−1), (k+1, k−
1), Ik−1(k + 1, [v0 − 1]k+2), ([v0 − 1]k+2, k − 1),
([v0 − 1]k+2, k), I−1

k ([v0 − 1]k+2, k + 1), (k + 1, k), (k, k),
(k, h0), (k + 1, h0)〉, P i = 〈(k − 2, hi), (k − 1, hi),H−1

k−1(hi,

hi+1 + 1), (k − 1, hi+1 + 1), (k, hi+1 + 1),Hk(hi+1 + 1, hi),
(k, hi), (k + 1, hi)〉 for 1 ≤ i ≤ s − 2, and P s−1 = 〈(k − 2,
hs−1), (k − 1, hs−1), H−1

k−1(hs−1, 0), (k − 1, 0), (k, 0), Hk(0,

hs−1), (k, hs−1), (k + 1, hs−1)〉. Then C(w, b) ∪ P0 ∪ {P i |
0 ≤ i ≤ s− 1} is the 3∗-container (or 4∗-container) of Qk+2

2 .
Case 2.2. t ≥ 2.
Let Pi = 〈(vi, k − 2), (vi, k − 1), Ik−1(vi, vi+1 − 1), (vi+1 −
1, k − 1), (vi+1 − 1, k), I−1

k (vi+1 − 1, vi), (vi, k), (vi, k + 1)〉
for 0 ≤ i ≤ t − 2, and Pt−1 = 〈(vt−1, k − 2), (vt−1, k −
1), Ik−1(vt−1, k − 2), (k − 2, k − 1), (k − 2, k), I−1

k (k −
2, vt−1), (vt−1, k), (vt−1, k + 1)〉.
Case 2.2.1 s = 1.
Using the same P 0 as in Case 2.1.1, then C(w, b)∪{Pi | 0 ≤
i ≤ t−1}∪P 0 is the 3∗-container (or 4∗-container) of Qk+2

2 .
Case 2.2.2 s = 2.
Using the same P 0 and P 1 as in Case 2.1.2., then C(w, b) ∪
{Pi | 0 ≤ i ≤ t − 1} ∪ P 0 ∪ P 1 is the 3∗-container (or
4∗-container) of Qk+2

2 .
Case 2.2.3 s ≥ 3.
Using the same {P i | 0 ≤ i ≤ s − 1} as in Case 2.1.3., then
C(w, b) ∪ {Pi | 0 ≤ i ≤ t − 1} ∪ {P i | 0 ≤ i ≤ s − 1} is the
3∗-container (or 4∗-container) of Qk+2

2 .
Case 3. vt−1 ≤ k − 2 and ((k − 2, k − 1), (k − 1, k − 1)) /∈
E(C(w, b)) in Qk

2 .
Case 3.1. t = 1.
Let P0 = 〈(v0, k− 2), (v0, k− 1), Ik−1(v0, k− 1), (k− 1, k−
1),H−1

k−1(k− 1, h0 + 1), (k− 1, h0 + 1), (k, h0 + 1),Hk(h0 +
1, k − 1), (k, k − 1), (k + 1, k − 1), (0, k − 1), Ik−1(0, v0 −
1), (v0 − 1, k − 1), (v0 − 1, k), I−1

k (v0 − 1, 0), (0, k), (k +
1, k), (k, k), (k, k + 1), (k − 1, k + 1), (k − 1, k), I−1

k (k −
1, v0), (v0, k), (v0, k + 1)〉.
Case 3.1.1 s = 1.
Let P 0 = 〈(k−2, h0), (k−1, h0), H−1

k−1(h0, 0), (k−1, 0), (k,

0), Hk(0, h0), (k, h0), (k +1, h0)〉. Then C(w, b)∪P0 ∪P 0 is
the 3∗-container (or 4∗-container) of Qk+2

2 .
Case 3.1.2 s ≥ 2.
Let P i = 〈(k−2, hi), (k−1, hi), H−1

k−1(hi, hi+1 +1), (k−1,

hi+1 +1), (k, hi+1 +1),Hk(hi+1 +1, hi), (k, hi), (k +1, hi)〉
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for 0 ≤ i ≤ s− 2, and P s−1 = 〈(k − 2, hs−1), (k − 1, hs−1),
H−1

k−1(hs−1, 0), (k− 1, 0), (k, 0),Hk(0, hs−1), (k, hs−1), (k +
1, hs−1)〉. Then C(w, b) ∪ P0 ∪ {P i | 0 ≤ i ≤ s − 1} is the
3∗-container (or 4∗-container) of Qk+2

2 .
Case 3.2. t ≥ 2.
Let Pi = 〈(vi, k − 2), (vi, k − 1), Ik−1(vi, vi+1 − 1), (vi+1 −
1, k − 1), (vi+1 − 1, k), I−1

k (vi+1 − 1, vi), (vi, k), (vi, k + 1)〉
for 0 ≤ i ≤ t − 2, and Pt−1 = 〈(vt−1, k − 2), (vt−1, k −
1), Ik−1(vt−1, k−1), (k−1, k−1),H−1

k−1(k−1, h0 +1), (k−
1, h0 + 1), (k, h0 + 1),Hk(h0 + 1, k − 1), (k, k − 1), (k +
1, k − 1), (0, k − 1), Ik−1(0, v0 − 1), (v0 − 1, k − 1), (v0 −
1, k), I−1

k (v0 − 1, 0), (0, k), (k + 1, k), (k, k), (k, k + 1), (k −
1, k+1), (k−1, k), I−1

k (k−1, vt−1), (vt−1, k), (vt−1, k+1)〉.
Case 3.2.1 s = 1.
Using the same P 0 as in Case 3.1.1, then C(w, b)∪{Pi | 0 ≤
i ≤ t−1}∪P 0 is the 3∗-container (or 4∗-container) of Qk+2

2 .
Case 3.2.2 s ≥ 2.
Using the same {P i | 0 ≤ i ≤ s − 1} as in Case 3.1.2., then
C(w, b) ∪ {Pi | 0 ≤ i ≤ t − 1} ∪ {P i | 0 ≤ i ≤ s − 1} is the
3∗-container (or 4∗-container) of Qk+2

2 .
Case 4. vt−1 = k − 1 for some t ≥ 2 and v0 = 0.
Case 4.1. t = 2.
Let P0 = 〈(v0, k− 2), (v0, k− 1), Ik−1(v0, k− 2), (k− 2, k−
1), (k − 2, k), I−1

k (k − 2, v0), (v0, k), (v0, k + 1)〉, and P1 =
〈(k + 1, k − 2), (k + 1, k − 1), (k + 1, k), (k + 1, k + 1)〉.
Case 4.1.1. s = 1.
Using the same P 0 as in Case 1.1., then C(w, b)∪P0∪P1∪P 0

is the 3∗-container (or 4∗-container) of Qk+2
2 .

Case 4.1.2. s ≥ 2.
Using the same {P i | 0 ≤ i ≤ s − 1} as in Case 1.2., then
C(w, b) ∪ P0 ∪ P1 ∪ {P i | 0 ≤ i ≤ s − 1} is the 3∗-container
(or 4∗-container) of Qk+2

2 .
Case 4.2. t ≥ 3.
Let Pi = 〈(vi, k − 2), (vi, k − 1), Ik−1(vi, vi+1 − 1), (vi+1 −
1, k − 1), (vi+1 − 1, k), I−1

k (vi+1 − 1, vi), (vi, k), (vi, k + 1)〉
for 0 ≤ i ≤ t − 3, Pt−2 = 〈(vt−2, k − 2), (vt−2, k −
1), Ik−1(vt−2, k − 2), (k − 2, k − 1), (k − 2, k), I−1

k (k −
2, vt−2), (vt−2, k), (vt−2, k + 1)〉, and Pt−1 = 〈(k + 1, k −
2), (k + 1, k − 1), (k + 1, k), (k + 1, k + 1)〉.
Case 4.2.1. s = 1.
Using the same P 0 as in Case 1.1., then C(w, b) ∪ {Pi | 0 ≤
i ≤ t−1}∪P 0 is the 3∗-container (or 4∗-container) of Qk+2

2 .
Case 4.2.2. s ≥ 2.
Using the same {P i | 0 ≤ i ≤ s − 1} as in Case 1.2., then
C(w, b) ∪ {Pi | 0 ≤ i ≤ t − 1} ∪ {P i | 0 ≤ i ≤ s − 1} is the
3∗-container (or 4∗-container) of Qk+2

2 .

Theorem 3. For any integer n ≥ 2 and any even integer
k ≥ 4, the graph Qk

n is m∗-laceable where 1 ≤ m ≤ 2n.

Proof: According to Theorem 2-3 and Lemma 3-5, the
theorem holds for any even integer k ≥ 4 when n = 2. We will
give the proof of the theorem by mathematical induction on n.
By induction hypothesis, assume that Qk,i

n−1 is m∗-laceable for
1 ≤ m ≤ 2n − 2, where 0 ≤ i ≤ k − 1. Given a white vertex
w ∈ V (Qk,j

n−1) and a black vertex b ∈ V (Qk,j′
n−1). We will

show that we can use the m∗-containers of Qk,j
n−1 to construct

a (m + 2)∗-container of Qk
n between w and b.

Case 1. For j = j′. Without loss of generality, we let
j = j′ = 0.
In this case, we have {w, b} ∈ Qk,0

n−1. By induction hypothesis,
there are m internal disjoint paths {Pi}m−1

i=0 whose union cov-
ers all vertices of Qk,0

n−1 between w and b for 1 ≤ m ≤ 2n−2.
By Lemma 2, the exists a path S covering all vertices of
Qk,i

n−1 for 1 ≤ i ≤ k − 2 between w1 and b1. We can let
Pm = 〈w, w1, S, b1, b〉. In Qk,k−1

n−1 , there exist a hamiltonian
path R joining from wk−1 to bk−1 by Theorem 1. Also, we
can let Pm+1 = 〈w, wk−1, R, bk−1, b〉. Therefore, there are
m+2 internal disjoint paths {Pi}m+1

i=0 whose union covers all
vertices of Qk

n between w and b. Please see Figure 6 for an
illustration.
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Fig. 6. The illustration for Case 1 of Theorem 3.

Case 2. For |j′ − j| = 1. Without loss of generality, we let
j = 0 and j′ = 1.
We have the following two cases.
Case 2.1. Suppose that d(w, b) = 1. It is easy to see that we
can let Pm+1 = 〈w, b〉.
Case 2.1.1. If m = 1.
Let z be any black vertex of Qk,0

n−1. By Theorem 1, there
exist a hamiltonian path S of Qk,0

n−1 from w to z, and
a hamiltonian path T of Qk,1

n−1 from z1 to b. So we set
P0 = 〈w,S, z, z1, T, b〉. According to Lemma 1, a hamiltonian
path R between wk−1 ∈ Qk,k−1

n−1 and b2 ∈ Qk,2
n−1 covers all

vertices of Qk,i
n−1 for 2 ≤ i ≤ k − 1. We can write P1 as

〈w, wk−1, R, b2, b〉. Hence, there are 3 internal disjoint paths
{P0, P1, P2} whose union covers all vertices of Qk

n between
w and b. Please see Figure 7 for an illustration.
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Fig. 7. The illustration for Case 2.1.1 of Theorem 3.

Case 2.1.2. If m ≥ 2.
According to the induction hypothesis, given any black vertex
z ∈ V (Qk,0

n−1 − N(w)), there exist m internal disjoint paths
{Ri}m−1

i=0 whose union covers all vertices of Qk,0
n−1 between

w and z for 2 ≤ m ≤ 2n − 2. Let Ri = 〈w,Si, yi, z〉 for
0 ≤ i ≤ m − 1. We set P0 = 〈w,S0, y0, z, z1, y1

0 , (S1
0)−1, b〉

and Pi = 〈w, Si, yi, y
1
i , (S1

i )−1, b〉 for 1 ≤ i ≤ m − 1. By
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Lemma 1, there is a hamiltonian path T between wk−1 ∈
Qk,k−1

n−1 and b2 ∈ Qk,2
n−1 covering all vertices of Qk,i

n−1 for
2 ≤ i ≤ k − 1. Set Pm = 〈w,wk−1, T, b2, b〉. Consequently,
there are m + 2 internal disjoint paths {Pi}m+1

i=0 whose union
covers all vertices of Qk

n between w and b. Please see Figure 8
for an illustration.
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Fig. 8. The illustration for Case 2.1.2 of Theorem 3.

Case 2.2. Suppose that d(w, b) ≥ 3.
Case 2.2.1. If m = 1.
Given any black vertex z in Qk,0

n−1, by Theorem 1, there
is a hamiltonian path R of Qk,0

n−1 joining from w to z. So
there is also a hamiltonian path S of Qk,1

n−1 between w1 to
z1. We can set S = 〈w1, S′

1, b, S
′
2, z

1〉. By Lemma 1, there
exists a hamiltonian path T between wk−1 ∈ Qk,k−1

n−1 and
b2 ∈ Qk,2

n−1 covering all vertices of Qk,i
n−1 for 2 ≤ i ≤ k − 1.

We let P0 = 〈w, R, z, z1, (S′
2)

−1, b〉, P1 = 〈w, w1, S′
1, b〉,

and P2 = 〈w, wk−1, T, b2, b〉. Therefore, there are 3 internal
disjoint paths {P0, P1, P2} whose union covers all vertices of
Qk

n between w and b. Please see Figure 9 for an illustration.
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Fig. 9. The illustration for Case 2.2.1 of Theorem 3.

Case 2.2.2. If m ≥ 2.
Let z be a black vertex of V (Qk,0

n−1 − N(w)). In Qk,0
n−1,

according to the induction hypothesis, there exist m internal
disjoint paths {Si}m−1

i=0 whose union covers all vertices of
Qk,0

n−1 between w and z for 2 ≤ m ≤ 2n − 2. So as in
Qk,1

n−1, there exist m internal disjoint paths {Ti}m−1
i=0 whose

union covers all vertices of Qk,1
n−1 between z1 and b for

2 ≤ m ≤ 2n − 2. Let T0 = 〈z1, y0, T
′
0, x0, w

1, T ′′
0 , b〉 and

Ti = 〈z1, yi, T
′
i , b〉 for 1 ≤ i ≤ m − 1 in Qk,1

n−1.
Case 2.2.2.1. If b0 /∈ V (S0).
Without loss of generality, let b0 ∈ V (Sm−1). In Qk,0

n−1, we
also let S0 = 〈w, x0

0, e, S
′
0, y

0
0 , z〉, Si = 〈w, S′

i, y
0
i , z〉 for 1 ≤

i ≤ m − 2, and Sm−1 = 〈w,S′
m−1, b

0, f, S′′
m−1, y

0
m−1, z〉. A

hamiltonian path R is embedded in Qk,k−1
n−1 between wk−1 and

fk−1 by Theorem 1. Write R as 〈wk−1, R′, ek−1, g, R′′, fk−1

〉. Notice that gk−2 is a black vertex and b2 is a white vertex.

According to Lemma 1, there is a hamiltonian path U between
gk−2 and b2 covering all vertices of Qk,i

n−1 for 2 ≤ i ≤ k − 2.
We can set P0 = 〈w, x0

0, x0, (T ′
0)

−1, y0, z
1, ym−1, Tm−1, b〉,

P1 = 〈w,w1, T ′′
0 , b〉, P2 = 〈w, wk−1, R′, ek−1, e, S′

0, y
0
0 , z,

y0
m−1, (S

′′
m−1)

−1, f, fk−1, (R′′)−1, g, gk−2, U, b2, b〉, P3 = 〈
w, S′

m−1, b
0, b〉, and Pi = 〈w, S′

i−3, y
0
i−3, yi−3, T

′
i−3, b〉 for

4 ≤ i ≤ m + 1. So, there are m + 2 internal disjoint paths
{Pi}m+1

i=0 whose union covers all vertices of Qk
n between w

and b. Please see Figure 10 for an illustration.
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Fig. 10. The illustration for Case 2.2.2.1 of Theorem 3.

Case 2.2.2.2. If b0 ∈ V (S0).
Let S0 = 〈w, x0

0, e, S
′
0, b

0, f, S′′
0 , y0

0 , z〉, and Si = 〈w, S′
i, y

0
i ,

z〉 for 1 ≤ i ≤ m − 1. A hamiltonian path R is embedded
in Qk,k−1

n−1 between wk−1 and fk−1 by Theorem 1. R is
written as 〈wk−1, R′, ek−1, g, R′′, fk−1〉. Notice that gk−2

is a black vertex and b2 is a white vertex. According to
Lemma 1, there is a hamiltonian path U between gk−2 and
b2 covering all vertices of Qk,i

n−1 for 2 ≤ i ≤ k − 2. We
let P0 = 〈w, x0

0, x0, (T ′
0)

−1, y0, z
1, ym−1, T

′
m−1, b〉, P1 =

〈w, w1, T ′′
0 , b〉, P2 = 〈w, wk−1, R′, ek−1, e, S′

0, b
0, b〉, P3 =

〈w, S′
m−1, y

0
m−1, z, y0

0 , (S′′
0 )−1, f, fk−1, (R′′)−1, g, gk−2, U,

b2, b〉, and Pi = 〈w, S′
i−3, y

0
i−3, yi−3, T

′
i−3, b〉 for 4 ≤ i ≤

m+1. Hence, there are m+2 internal disjoint paths {Pi}m+1
i=0

whose union covers all vertices of Qk
n between w and b. Please

see Figure 11 for an illustration.
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Fig. 11. The illustration for Case 2.2.2.2 of Theorem 3.

Case 3. For |j′ − j| ≥ 2. Without loss of generality, we let
j = 0 and 2 ≤ j′ ≤ k

2 be even.
Because b ∈ Qk,j′

n−1 where j′ is even, bi is a white (resp.
black) vertex in Qk,i

n−1 for 0 ≤ i ≤ k − 1 when i is odd
(resp. even). It is easy to see that wi is a black (resp. white)
vertex in Qk,i

n−1 for 0 ≤ i ≤ k − 1 when i is odd (resp. even).
By the induction hypothesis, there exist m internal disjoint
paths {Ri

p}m−1
p=0 of Qk,i

n−1 between wi and bi for 0 ≤ i ≤ j′.
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Let Ri
p = 〈wi, xi

p, U
i
p, y

i
p, b

i〉 for 0 ≤ p ≤ m − 1 and
0 ≤ i ≤ j′. According to Lemma 2, a hamiltonian path S
covers all vertices of Qk,i

n−1 for j′+1 ≤ i ≤ k−2 joining from
wj′+1 to bj′+1. There is a hamiltonian path T of Qk,k−1

n−1 from
wk−1 to bk−1 by Theorem 1. Hence, we can write Pp = 〈w =
w0, x0

p, U
0
p , y0

p, y1
p, (U1

p )−1, x1
p, x

2
p, U

2
p , . . . , (U j′−1

p )−1, xj′−1
p ,

xj′
p , U j′

p , yj′
p , bj′

= b〉 for 0 ≤ p ≤ m−1, Pm = 〈w = w0, w1,

w2, . . . , wj′
, wj′+1, S, bj′+1, bj′

= b〉, and Pm+1 = 〈w =
w0, wk−1, T, bk−1, b0, b1, . . . , bj′−1, bj′

= b〉. Therefore, there
are m+2 internal disjoint paths {Pi}m+1

i=0 whose union covers
all vertices of Qk

n between w and b. Please see Figure 12 for
an illustration.
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Fig. 12. The illustration for Case 3 of Theorem 3.

Case 4. For |j′ − j| ≥ 2. Without loss of generality, we let
j = 0 and 3 ≤ j′ ≤ k

2 + 1 be odd.
Case 4.1. If m = 1.
Choosing a black vertex z of Qk,0

n−1, by Theorem 1, there is a
hamiltonian path R of Qk,0

n−1 joining from w to z. In Qk,k−1
n−1 ,

there exists a hamiltonian path S of Qk,k−1
n−1 between wk−1

and zk−1. We can let S = 〈wk−1, S′, e, bk−1, S′′, zk−1〉,
where bk−1 is a black vertex of Qk,k−1

n−1 , so e is a white
vertex of Qk,k−1

n−1 . By Theorem 1, there is a hamiltonian
path T of Qk,k−2

n−1 joining from ek−2 to bk−2. Let
T = 〈ek−2, W, fk−2, bk−2〉. In Qk,i

n−1, we also have a
hamiltonian path T i between ei and bi for j′ ≤ i ≤ k − 3, so
we let T i = 〈ei, W i, f i, bi〉. According to Lemma 1, there is
a hamiltonian path U between a black vertex w1 ∈ Qk,1

n−1 and
a white vertex bj′−1 ∈ Qk,j′−1

n−1 covering all vertices of Qk,i
n−1

for 2 ≤ i ≤ j′ − 1. We set P0 = 〈w, w1, U, bj′−1, b〉, P1 =
〈w, R, z, zk−1, (S′′)−1, bk−1, bk−2, . . . , bj′+1, bj′

= b〉, and
P2 = 〈w, wk−1, S′, e, ek−2,W, fk−2, fk−3, (W k−3)−1, ek−3,
ek−4, W k−4, fk−4, . . . , ej′+1,W j′+1, f j′+1, f j′

, W j′
, bj′

=
b〉. Hence, there are 3 internal disjoint paths {P0, P1, P2}
whose union covers all vertices of Qk

n between w and b.
Please see Figure 13 for an illustration.
Case 4.2. If m ≥ 2.
Given a white vertex z in Qk,j′

n−1 such that z is adjacent to
b. So zi is a black (resp. white) vertex and wi is a white
(reps. black) vertex of Qk,i

n−1 if 0 ≤ i ≤ j′ − 1 when i is
even (resp. odd). By the induction hypothesis, there exist m
internal disjoint paths {Ri}m−1

i=0 of Qk,0
n−1 between w and

z0. We write R0 = 〈w, x0(1), x0(2), . . . , x0(α), z0〉, and
Rp = 〈w, xp, Sp, yp, z

0〉 for 1 ≤ p ≤ m − 1. Again, by the
induction hypothesis, there exist m internal disjoint paths
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Fig. 13. The illustration for Case 4.1 of Theorem 3.

{T i
p}m−1

p=0 of Qk,i
n−1 between wi and zi for 2 ≤ i ≤ j′ − 1.

We let T i
p = 〈wi, xi

p, U
i
p, t

i
p, z

i〉 for 0 ≤ p ≤ m − 1 and
2 ≤ i ≤ j′−1. Notice that bj′−1 is adjacent to zj′−1, without
loss of generality, we let tj

′−1
m−1 = bj′−1. In Qk,j′

n−1, there
are m internal disjoint paths {Wi}m−1

i=0 from b to z by the
induction hypothesis. We can write Wp = 〈z, tj

′
p , Yp, b〉 for

0 ≤ p ≤ m − 2 and Wm−1 = 〈z, b〉. According to Lemma 1,
there is a hamiltonian path V between wk−1 ∈ Qk,k−1

n−1 and
bj′+1 ∈ Qk,j′+1

n−1 covering all vertices of Qk,i
n−1 for j′ + 1 ≤ i

≤ k − 1. Set P0 = 〈w, wk−1, V, bj′+1, b〉, P1 = 〈w, w1, w2,

x2
0, U

2
0 , t20, t

3
0, (U

3
0 )−1, x3

0, w
3, w4, . . . , wj′−1, xj′−1

0 , U j′−1
0 ,

tj
′−1

0 , tj
′

0 , Y0, b〉, P2 = 〈w, x0(1), x1
0(1), x1

0(2), x0(2), . . . ,
x0(α− 1), x1

0(α− 1), x1
0(α), x0(α), z0, z1, . . . , zj′

, b〉, P3 = 〈
w, xm−1, Sm−1, ym−1, y

1
m−1, (S

1
m−1)

−1, x1
m−1, x

2
m−1, U

2
m−1,

t2m−1, t
3
m−1, (U

3
m−1)

−1, x3
m−1, . . . , x

j′−1
m−1, U

j′−1
m−1 , tj

′−1
m−1 =

bj′−1, b〉, and Pi = 〈w, xi−3, Si−3, yi−3, y
1
i−3, (S

1
i−3)

−1, x1
i−3,

x2
i−3, U

2
i−3, t

2
i−3, t

3
i−3, (U

3
i−3)

−1, x3
i−3, . . . , x

j′−1
i−3 , U j′−1

i−3 , tj
′−1

i−3 ,

tj
′

i−3, Yi−3, b〉 for 4 ≤ i ≤ m + 1. So, there are m + 2 internal
disjoint paths {Pi}m+1

i=0 whose union covers all vertices of
Qk

n between w and b. Please see Figure 14 for an illustration.

1�kw
w

)1(0x b

2
0}{ �

�
m
ppY

0z 1z 2z
2b

1w
2w

)1(1
0x

)2(0x

)2(1
0x

1
0

2}{ �
�
m
ppU

)1(0 ��x

)(0 �x )(1
0 �x

)1(1
0 ��x

1
1}{ �
�
m
ppS

1
1

1 }{ �
�
m
ppS

V

,3
1

k
nQ �

,4
1

k
nQ �

0,
1

k
nQ �

1,
1

k
nQ �

2,
1

k
nQ �

1,
1
�

�
kk

nQ

1'�jb

0P

1P

2P

3P

2
0x

2
0t

2
1�mx

'

2
j
mt �

'

0
jt

'jzz �

1�mx

1�my 1
1�my

1
1�mx

Fig. 14. The illustration for Case 4.2 of Theorem 3.

APPENDIX A
PROOF OF LEMMA 3

Notice that Q4
2 is vertex symmetric. W.L.O.G, let w =

(0, 0). There are only two cases for b. That is, b ∈
{(1, 0), (2, 1)}.
Case 1. To prove that Q4

2 is 3∗-laceable.
Case 1.1. Let b = (1, 0).
The three disjoint paths {P1, P2, P3} between w and b whose
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union covers all vertices of Q4
2 are P1 = 〈(0, 0), (1, 0)〉, P2 =

〈(0, 0), (0, 1), (1, 1), (1, 0)〉, and P3 = 〈(0, 0), (3, 0), (3, 1),
(3, 2), (3, 3), (2, 3), (1, 3), (0, 3), (0, 2), (1, 2), (2, 2), (2, 1),
(2, 0), (1, 0)〉.
Case 1.2. Let b = (2, 1).
The three disjoint paths {R1, R2, R3} between w and b whose
union covers all vertices of Q4

2 are R1 = 〈(0, 0), (1, 0), (2, 0),
(2, 1)〉, R2 = 〈(0, 0), (0, 1), (1, 1), (2, 1)〉, and R3 = 〈(0, 0),
(3, 0), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), (0, 3), (0, 2), (1, 2),
(2, 2), (2, 1)〉.
Case 2. To prove that Q4

2 is 4∗-laceable.
Case 2.1. Let b = (1, 0).
The four disjoint paths {P1, P2, P3, P4} between w and b
whose union covers all vertices of Q4

2 are P1 = 〈(0, 0), (1, 0)〉,
P2 = 〈(0, 0), (0, 1), (1, 1), (1, 0)〉, P3 = 〈(0, 0), (0, 3), (0, 2),
(1, 2), (1, 3), (1, 0)〉, and P4 = 〈(0, 0), (3, 0), (3, 1), (3, 2),
(3, 3), (2, 3), (2, 2), (2, 1), (2, 0), (1, 0)〉.
Case 2.2. Let b = (2, 1).
The four disjoint paths {R1, R2, R3, R4} between w and b
whose union covers all vertices of Q4

2 are R1 = 〈(0, 0), (3, 0),
(3, 1), (2, 1)〉, R2 = 〈(0, 0), (1, 0), (2, 0), (2, 1)〉, R3 = 〈
(0, 0), (0, 1), (1, 1), (2, 1)〉, and R4 = 〈(0, 0), (0, 3), (0, 2),
(1, 2), (1, 3), (2, 3), (3, 3), (3, 2), (2, 2), (2, 1)〉.

APPENDIX B
PROOF OF LEMMA 4

Notice that Q6
2 is vertex symmetric. W.L.O.G, let

w = (0, 0). There are four cases for b. That is, b ∈
{(1, 0), (2, 1), (3, 0), (3, 2)}.
Case 1. To prove that Q6

2 is 3∗-laceable.
Case 1.1. Let b = (1, 0).
The three disjoint paths {P1, P2, P3} between w and b whose
union covers all vertices of Q6

2 are P1 = 〈(0, 0), (1, 0)〉, P2 =
〈(0, 0), (0, 1), (1, 1), (1, 0)〉, and P3 = 〈(0, 0), (5, 0), (5, 1),
(5, 2), (5, 3), (5, 4), (5, 5), (4, 5), (3, 5), (2, 5), (1, 5), (0, 5),
(0, 4), (1, 4), (2, 4), (3, 4), (4, 4), (4, 3), (4, 2), (4, 1), (4, 0),
(3, 0), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), (0, 3), (0, 2), (1, 2),
(2, 2), (2, 1), (2, 0), (1, 0)〉.
Case 1.2. Let b = (2, 1).
The three disjoint paths {R1, R2, R3} between w and b whose
union covers all vertices of Q6

2 are R1 = 〈(0, 0), (1, 0), (2, 0),
(2, 1)〉, R2 = 〈(0, 0), (0, 1), (1, 1), (2, 1)〉, and R3 = 〈(0, 0),
(5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (4, 5), (3, 5), (2, 5),
(1, 5), (0, 5), (0, 4), (1, 4), (2, 4), (3, 4), (4, 4), (4, 3), (4, 2),
(4, 1), (4, 0), (3, 0), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), (0, 3),
(0, 2), (1, 2), (2, 2), (2, 1)〉.
Case 1.3. Let b = (3, 0).
The three disjoint paths {S1, S2, S3} between w and b whose
union covers all vertices of Q6

2 are S1 = 〈(0, 0), (1, 0), (2, 0),
(3, 0)〉, S2 = 〈(0, 0), (5, 0), (4, 0), (3, 0)〉, and S3 = 〈(0, 0),
(0, 5), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (5, 4), (4, 4), (3, 4),
(2, 4), (1, 4), (0, 4), (0, 3), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3),
(5, 2), (5, 1), (4, 1), (4, 2), (3, 2), (2, 2), (1, 2), (0, 2), (0, 1),
(1, 1), (2, 1), (3, 1), (3, 0)〉.
Case 1.4. Let b = (3, 2).
The three disjoint paths {T1, T2, T3} between w and b whose
union covers all vertices of Q6

2 are T1 = 〈(0, 0), (1, 0), (2, 0),

(3, 0), (3, 1), (3, 2)〉, T2 = 〈(0, 0), (0, 1), (0, 2), (1, 2), (1, 1),
(2, 1), (2, 2), (3, 2)〉, and T3 = 〈(0, 0), (5, 0), (4, 0), (4, 1),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (4, 5), (3, 5), (2, 5), (1, 5),
(0, 5), (0, 4), (0, 3), (1, 3), (1, 4), (2, 4), (2, 3), (3, 3), (3, 4),
(4, 4), (4, 3), (4, 2), (3, 2)〉.
Case 2. To prove that Q6

2 is 4∗-laceable.
Case 2.1. Let b = (1, 0).
The four disjoint paths {P1, P2, P3, P4} between w and b
whose union covers all vertices of Q6

2 are P1 = 〈(0, 0), (1, 0)〉,
P2 = 〈(0, 0), (0, 1), (1, 1), (1, 0)〉, P3 = 〈(0, 0), (0, 5), (0, 4),
(0, 3), (0, 2), (1, 2), (1, 3), (1, 4), (1, 5), (1, 0)〉, and P4 = 〈
(0, 0), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (4, 5), (4, 4),
(4, 3), (4, 2), (4, 1), (4, 0), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4),
(3, 5), (2, 5), (2, 4), (2, 3), (2, 2), (2, 1), (2, 0), (1, 0)〉.
Case 2.2. Let b = (2, 1).
The four disjoint paths {R1, R2, R3, R4} between w and b
whose union covers all vertices of Q6

2 are R1 = 〈(0, 0), (1, 0),
(2, 0), (2, 1)〉, R2 = 〈(0, 0), (0, 1), (1, 1), (2, 1)〉, R3 = 〈
(0, 0), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (4, 5), (4, 4),
(4, 3), (4, 2), (4, 1), (4, 0), (3, 0), (3, 1), (2, 1)〉, and R4 = 〈
(0, 0), (0, 5), (1, 5), (2, 5), (3, 5), (3, 4), (2, 4), (1, 4), (0, 4),
(0, 3), (0, 2), (1, 2), (1, 3), (2, 3), (3, 3), (3, 2), (2, 2), (2, 1)〉.
Case 2.3. Let b = (3, 0).
The four disjoint paths {S1, S2, S3, S4} between w
and b whose union covers all vertices of Q6

2 are
S1 = 〈(0, 0), (1, 0), (2, 0), (3, 0)〉, S2 = 〈(0, 0), (0, 1), (1, 1),
(2, 1), (3, 1), (3, 0)〉, S3 = 〈(0, 0), (5, 0), (5, 1), (5, 2), (5, 3),
(5, 4), (5, 5), (4, 5), (4, 4), (4, 3), (4, 2), (4, 1), (4, 0), (3, 0)〉,
and S4 = 〈(0, 0), (0, 5), (0, 4), (0, 3), (0, 2), (1, 2), (1, 3),
(1, 4), (1, 5), (2, 5), (2, 4), (2, 3), (2, 2), (3, 2), (3, 3), (3, 4),
(3, 5), (3, 0)〉.
Case 2.4. Let b = (3, 2).
The four disjoint paths {T1, T2, T3, T4} between w and
b whose union covers all vertices of Q6

2 are T1 =
〈(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (3, 2), T2 = 〈(0, 0), (0, 1),
(0, 2), (1, 2), (1, 1), (2, 1), (2, 2), (3, 2)〉, T3 = 〈(0, 0), (5, 0),
(4, 0), (4, 1), (5, 1), (5, 2), (4, 2), (3, 2)〉, and T4 = 〈(0, 0),
(0, 5), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (5, 4), (5, 3), (4, 3),
(4, 4), (3, 4), (2, 4), (1, 4), (0, 4), (0, 3), (1, 3), (2, 3), (3, 3),
(3, 2)〉.
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