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Abstract—We report here, the results of molecular dynamics
simulation of p-doped (Ga-face)GaN over n-doped (Si-
face)(0001)4H-SiC hetero-epitaxial material system with one-layer
each of Ga-flux and (Al-face)AIN, as the interface materials, in the
form of, the total Density of States (DOS). It is found that the total
DOS at the Fermi-level for the heavily p-doped (Ga-face)GaN and n-
doped (Si-face)4H-SiC hetero-epitaxial system, with one layer of
(Al-face)AIN as the interface material, is comparatively higher than
that of the various cases studied, indicating that there could be good
vertical conduction across the (Ga-face)GaN over (Si-face)(0001)4H-
SiC hetero-epitaxial material system.
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. INTRODUCTION

GaN and 4H-SiC as bulk materials (both have Space Group
of P6;mc (186) with hexagonal Wurzite structure) offer great
potentials for high-temperature and power-electronics
applications due to their attractive material properties such as
large bandgap energies, high breakdown fields and high
thermal conductivities [1]-[4]. In addition, GaN has very good
optical absorption coefficient and short carrier life time [1]-
[4]. It would be preferable, if we have a semiconductor device
which can possess excellent power handling capabilities, high
thermal capacity and also can be optically controlled
efficiently, to avoid any electro-magnetic-interference (EMI).
In order to retain above qualities in a single device, direct
hetero-epitaxial growth of GaN over 4H-SiC and vertical
conduction, is the possible answer and we have already
observed quite interesting features in our preliminary
investigated simulation results [5], for a vertical npn-device,
using above two materials.

The materials, GaN and 4H-SiC have a lattice mismatch of
~ 3.4%. So, to avoid this lattice mismatch, researchers have
tried to grow GaN epitaxy, over a buffer layer of AIN [6]-[8]
and studied the lateral conduction, which is entirely through
GaN.
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But, investigations on vertical conduction are rarely available
in the literatures [9]-[16]. In lateral devices, only the
properties of GaN are exploited, however if we want to
exploit the properties of 4H-SiC, as well, which are highly
suitable for power-electronics applications, a vertical
conduction approach has to be made. This is possible, if we
can grow GaN directly above 4H-SiC without any buffer
layer. To achieve this, Ga-flux has been used over (Si-
face)(0001)4H-SiC, experimentally [15], [16], before actually
growing GaN epitaxial layers.

In this work, we report, the total Density of States (DOS),
for the p-doped (Ga-face)GaN over n-doped (Si-face)4H-SiC
hetero-epitaxial material system with Ga-flux and (Al-
face)AIN, as the interface materials, from the atomistic
standpoint, by carrying out Molecular Dynamics simulations,
using DMol® first-principle atomistic simulator [17] module of
Material studio 5.0 [18], with the help of NCSA (National
Center for Supercomputing Applications at University of
Illinois Urbana-Champaign, US) Intel 64 Cluster Abe [19].

Il. SIMULATION METHOD

While performing the Molecular Dynamics simulation (the
supercell approach was adopted where the total no. of atoms
in the cell was kept sixty and the atoms in (Si-face)4H-SiC
were constrained whereas Ga, Al and N atoms were relaxed),
the following major considerations were set in the DMol®
first-principle atomistic simulator:

Ensemble: NVT

DFT exchange-correlation: LDA/PWC

Thermostat: Simple Nose-Hoover

External stress: 0 GPa

Temperature: 800 K (This value of temperature was
considered in view of experimental setting [15], [16])

Given simulation time: 0.5 ps

Core-treatment: All-electron with Harris approximation
K-point set: Medium

I1l. RESULTS AND DISCUSSION

Fig. 1 shows a typical initial setup for Molecular Dynamics
simulation for Ga-fluxed p-doped GaN over heavily n-doped
(Si-face)4H-SiC hetero-epitaxial material system. Figs. 2(a),
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2(b), and 2(c) show the total density of states (DOS) of p-
doped GaN over n-doped (Si-face)4H-SiC, heavily p-doped
GaN over n-doped (Si-face)4H-SiC, p-doped GaN over
heavily n-doped (Si-face)4H-SiC, hetero-epitaxial material
systems, with one-layer of Ga-flux as the interface material
whereas Figs. 3(a), 3(b), and 3(c) show the total density of
states (DOS) of p-doped GaN over n-doped (Si-face)4-SiC,
heavily p-doped GaN over n-doped (Si-face)4H-SiC, p-doped
GaN over heavily n-doped (Si-face)4H-SiC, hetero-epitaxial
material systems, with one-layer of (Al-face)AIN as the
interface material. We replace the Ga-site with one
Magnesium(Mg) atom for p-doped GaN and two Mg atoms
for heavily p-doped GaN and similarly, C-site of 4H-SiC is
replaced with one Nitrogen(N) atom for n-doped 4H-SiC and
two N atoms for heavily n-doped (Si-face)4H-SiC. The energy
unit has been converted from Hartree to ElectronVolt (1 Ha
=~ 27.2 eV) while reporting the DOS value.

Fig. 1 A typical initial setup for Molecular Dynamics simulation for
Ga-fluxed p-doped GaN over heavily n-doped (Si-face)4H-SiC
hetero-epitaxial material system.
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Fig. 2(a) The total density of states (DOS) of p-doped GaN over n-
doped (Si-face)4H-SiC hetero-epitaxial material system, with one-
layer of Ga-flux as the interface material.

Fig. 3(b) shows the maximum DOS at the Fermi-level for
heavily p-doped GaN over n-doped (Si-face)4H-SiC hetero-
epitaxial material system, with one-layer of (Al-face)AIN as
the interface material. The element Mg has valence electrons
in 3s?3p"3d". That means the p and d-orbitals are vacant which
means, these are holes (or minority carrier density) ready to be
occupied by electrons. The maximum no. of electrons that can
be accommodated in p and d- orbitals are 6 and 10,
respectively. So, the minority carrier density is quite high in
case of Mg-dopant. The element N has valence electrons in
2s%2p°, which means there are 3 unpaired electrons available
out of which 2 will go to Si so that it can satisfy the Octet. So,
the element N is left with 1 electron which will act as free
electron i.e., the majority carrier density is quite low in case of
N-dopant. The element Ga has valence electrons in
45%4p*4d°4f°. The element Al has valence electrons in 3s°3p®.
In case of Ga-flux p+-n hetero-epitaxial material system, the
one unpaired electron from Ga will either go to Si or Mg,
thereby reducing the DOS. In the absence of AIN, the p+-n
hetero-epitaxial material system, has 2 Mg-dopant atoms
whose p and d orbitals vacant and only one N-dopant atom.
Since no free electrons are available in the one-layer of (Al-
face)AIN material, it does not affect the DOS of the hetero-
epitaxial material system and prevents the one freely available
electron of N-dopant of 4H-SiC to be shared either by Mg-
dopant or Ga of GaN.

1V. CONCLUSION

We have carried out the molecular dynamics simulation and
provided the theoretical explanations in terms of total Density of
States (DOS), for p-doped GaN over n-doped (Si-face)4H-SiC
hetero-epitaxial material system with Ga-flux and (Al-face)AIN as
the interface materials. We observed that the total DOS at the Fermi-
level for heavily p-doped GaN over n-doped (Si-face)4H-SiC hetero-
epitaxial material system, with one-layer of (Al-face)AIN as the
interface material, exceeds the various other doped cases, signifying
that there is a possibility of good vertical conduction across the (Ga-
face)GaN over (Si-face)(0001)4H-SiC hetero-epitaxial material
system with one-layer of (Al-face)AIN, as the interface material.
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Fig. 2(b) The total density of states (DOS) of heavily p-doped GaN
over n-doped (Si-face)4H-SiC hetero-epitaxial material system, with

one-layer of Ga-flux as the interface material.
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Fig. 2(c) The total density of states (DOS) of p-doped GaN over
heavily n-doped (Si-face)4H-SiC hetero-epitaxial material system,

with one-layer of Ga-flux, as the interface material.
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Fig. 3(a) The total density of states (DOS) of p-doped GaN over n-
doped (Si-face)4H-SiC hetero-epitaxial material system, with one-

layer of (Al-face)AIN as the interface material.
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Fig. 3(b) The total density of states (DOS) of heavily p-doped GaN
over n-doped (Si-face)4H-SiC hetero-epitaxial material system, with

one-layer of (Al-face)AIN as the interface material.
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Fig. 3(c) The total density of states (DOS) of p-doped GaN over heavily
n-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-
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layer of (Al-face)AIN as the interface material.
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