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Abstract—We report here, the results of molecular dynamics 
simulation of p-doped (Ga-face)GaN over n-doped (Si-
face)(0001)4H-SiC hetero-epitaxial material system with one-layer 
each of Ga-flux and (Al-face)AlN, as the interface materials, in the 
form of, the total Density of States (DOS). It is found that the total 
DOS at the Fermi-level for the heavily p-doped (Ga-face)GaN and n-
doped (Si-face)4H-SiC hetero-epitaxial system, with one layer of 
(Al-face)AlN as the interface material, is comparatively higher than 
that of the various cases studied, indicating that there could be good 
vertical conduction across the (Ga-face)GaN over (Si-face)(0001)4H-
SiC hetero-epitaxial material system.  

 
Keywords—Molecular dynamics, GaN, 4H-SiC, hetero-epitaxy.  

I. INTRODUCTION 
GaN and 4H-SiC as bulk materials (both have Space Group 

of P63mc (186) with hexagonal Wurzite structure) offer great 
potentials for high-temperature and power-electronics 
applications due to their attractive material properties such as 
large bandgap energies, high breakdown fields and high 
thermal conductivities [1]-[4]. In addition, GaN has very good 
optical absorption coefficient and short carrier life time [1]-
[4]. It would be preferable, if we have a semiconductor device 
which can possess excellent power handling capabilities, high 
thermal capacity and also can be optically controlled 
efficiently, to avoid any electro-magnetic-interference (EMI). 
In order to retain above qualities in a single device, direct 
hetero-epitaxial growth of GaN over 4H-SiC and vertical 
conduction, is the possible answer and we have already 
observed quite interesting features in our preliminary 
investigated simulation results [5], for a vertical npn-device, 
using above two materials.   
 The materials, GaN and 4H-SiC have a lattice mismatch of 
~ 3.4%. So, to avoid this lattice mismatch, researchers have 
tried to grow GaN epitaxy, over a buffer layer of AlN [6]-[8] 
and studied the lateral conduction, which is entirely through 
GaN.  
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But, investigations on vertical conduction are rarely available 
in the literatures [9]-[16]. In lateral devices, only the 
properties of GaN are exploited, however if we want to 
exploit the properties of 4H-SiC, as well, which are highly 
suitable for power-electronics applications, a vertical 
conduction approach has to be made. This is possible, if we 
can grow GaN directly above 4H-SiC without any buffer 
layer. To achieve this, Ga-flux has been used over (Si-
face)(0001)4H-SiC, experimentally [15], [16], before actually 
growing GaN epitaxial layers.  
 In this work, we report, the total Density of States (DOS), 
for the p-doped (Ga-face)GaN over n-doped (Si-face)4H-SiC 
hetero-epitaxial material system with Ga-flux and (Al-
face)AlN, as the interface materials, from the atomistic 
standpoint, by carrying out Molecular Dynamics simulations, 
using DMol3 first-principle atomistic simulator [17] module of 
Material studio 5.0 [18], with the help of NCSA (National 
Center for Supercomputing Applications at University of 
Illinois Urbana-Champaign, US) Intel 64 Cluster Abe [19]. 

II.  SIMULATION METHOD 
While performing the Molecular Dynamics simulation (the 

supercell approach was adopted where the total no. of atoms 
in the cell was kept sixty and the atoms in (Si-face)4H-SiC 
were constrained whereas Ga, Al and N atoms were relaxed), 
the following major considerations were set in the DMol3 
first-principle atomistic simulator: 
Ensemble: NVT 
DFT exchange-correlation: LDA/PWC  
Thermostat: Simple Nose-Hoover 
External stress: 0 GPa 
Temperature: 800 K (This value of temperature was 
considered in view of experimental setting [15], [16]) 
Given simulation time: 0.5 ps 
Core-treatment: All-electron with Harris approximation 
K-point set: Medium 

III. RESULTS AND DISCUSSION 
Fig. 1 shows a typical initial setup for Molecular Dynamics 

simulation for Ga-fluxed p-doped GaN over heavily n-doped 
(Si-face)4H-SiC hetero-epitaxial material system.  Figs. 2(a), 
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2(b), and 2(c) show the total density of states (DOS) of p-
doped GaN over n-doped (Si-face)4H-SiC, heavily p-doped 
GaN over n-doped (Si-face)4H-SiC, p-doped GaN over 
heavily n-doped (Si-face)4H-SiC, hetero-epitaxial material 
systems, with one-layer of Ga-flux as the interface material 
whereas Figs. 3(a), 3(b), and 3(c) show the total density of 
states (DOS) of p-doped GaN over n-doped (Si-face)4-SiC, 
heavily p-doped GaN over n-doped (Si-face)4H-SiC, p-doped 
GaN over heavily n-doped (Si-face)4H-SiC, hetero-epitaxial 
material systems, with one-layer of (Al-face)AlN as the 
interface material. We replace the Ga-site with one 
Magnesium(Mg) atom for p-doped GaN and two Mg atoms 
for heavily p-doped GaN and similarly, C-site of 4H-SiC is 
replaced with one Nitrogen(N) atom for n-doped 4H-SiC and 
two N atoms for heavily n-doped (Si-face)4H-SiC. The energy 
unit has been converted from Hartree to ElectronVolt (1 Ha 
=~ 27.2 eV) while reporting the DOS value.  

Fig. 1 A typical initial setup for Molecular Dynamics simulation for 
Ga-fluxed p-doped GaN over heavily n-doped (Si-face)4H-SiC 
hetero-epitaxial material system. 

Fig. 2(a) The total density of states (DOS) of p-doped GaN over n-
doped (Si-face)4H-SiC hetero-epitaxial material system, with one-
layer of Ga-flux as the interface material. 
 

 

Fig. 3(b) shows the maximum DOS at the Fermi-level for 
heavily p-doped GaN over n-doped (Si-face)4H-SiC hetero-
epitaxial material system, with one-layer of (Al-face)AlN as 
the interface material. The element Mg has valence electrons 
in 3s23p03d0. That means the p and d-orbitals are vacant which 
means, these are holes (or minority carrier density) ready to be 
occupied by electrons. The maximum no. of electrons that can 
be accommodated in p and d- orbitals are 6 and 10, 
respectively. So, the minority carrier density is quite high in 
case of Mg-dopant. The element N has valence electrons in 
2s22p3, which means there are 3 unpaired electrons available 
out of which 2 will go to Si so that it can satisfy the Octet. So, 
the element N is left with 1 electron which will act as free 
electron i.e., the majority carrier density is quite low in case of 
N-dopant. The element Ga has valence electrons in 
4s24p14d04f0. The element Al has valence electrons in 3s23p1. 
In case of Ga-flux p+-n hetero-epitaxial material system, the 
one unpaired electron from Ga will either go to Si or Mg, 
thereby reducing the DOS. In the absence of AlN, the p+-n 
hetero-epitaxial material system, has 2 Mg-dopant atoms 
whose p and d orbitals vacant and only one N-dopant atom. 
Since no free electrons are available in the one-layer of (Al-
face)AlN material, it does not affect the DOS of the hetero-
epitaxial material system and prevents the one freely available 
electron of N-dopant of 4H-SiC to be shared either by Mg-
dopant or Ga of GaN.   

IV. CONCLUSION 
We have carried out the molecular dynamics simulation and 

provided the theoretical explanations in terms of total Density of 
States (DOS), for p-doped GaN over n-doped (Si-face)4H-SiC 
hetero-epitaxial material system with Ga-flux and (Al-face)AlN as 
the interface materials. We observed that the total DOS at the Fermi-
level for heavily p-doped GaN over n-doped (Si-face)4H-SiC hetero-
epitaxial material system, with one-layer of (Al-face)AlN as the 
interface material, exceeds the various other doped cases, signifying 
that there is a possibility of good vertical conduction across the (Ga-
face)GaN over (Si-face)(0001)4H-SiC hetero-epitaxial material 
system with one-layer of (Al-face)AlN, as the interface material.  
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Fig. 2(b) The total density of states (DOS) of heavily p-doped GaN 
over n-doped (Si-face)4H-SiC hetero-epitaxial material system, with 
one-layer of Ga-flux as the interface material. 

Fig. 2(c) The total density of states (DOS) of p-doped GaN over 
heavily n-doped (Si-face)4H-SiC hetero-epitaxial material system, 
with one-layer of Ga-flux, as the interface material. 
 

Fig. 3(a) The total density of states (DOS) of p-doped GaN over n-
doped (Si-face)4H-SiC hetero-epitaxial material system, with one-
layer of (Al-face)AlN as the interface material. 

Fig. 3(b) The total density of states (DOS) of heavily p-doped GaN 
over n-doped (Si-face)4H-SiC hetero-epitaxial material system, with 
one-layer of (Al-face)AlN as the interface material. 
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Fig. 3(c) The total density of states (DOS) of p-doped GaN over heavily 
n-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-
layer of (Al-face)AlN as the interface material. 
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