The Role of Ga(Gallium)-flux and AlN(Aluminum Nitride) as the Interface Materials, between (Ga-face)GaN and (Si-face)4H-SiC, through Molecular Dynamics Simulation

Srikanta Bose⁺, and Sudip K. Mazumder

Abstract—We report here, the results of molecular dynamics simulation of *p*-doped (Ga-face)GaN over *n*-doped (Si-face)(0001)4H-SiC hetero-epitaxial material system with one-layer each of Ga-flux and (Al-face)AlN, as the interface materials, in the form of, the total Density of States (DOS). It is found that the total DOS at the Fermi-level for the heavily *p*-doped (Ga-face)GaN and *n*-doped (Si-face)4H-SiC hetero-epitaxial system, with one layer of (Al-face)AlN as the interface material, is comparatively higher than that of the various cases studied, indicating that there could be good vertical conduction across the (Ga-face)GaN over (Si-face)(0001)4H-SiC hetero-epitaxial material system.

Keywords—Molecular dynamics, GaN, 4H-SiC, hetero-epitaxy.

I. INTRODUCTION

GaN and 4H-SiC as bulk materials (both have Space Group of P63mc (186) with hexagonal Wurzite structure) offer great potentials for high-temperature and power-electronics applications due to their attractive material properties such as large bandgap energies, high breakdown fields and high thermal conductivities [1]-[4]. In addition, GaN has very good optical absorption coefficient and short carrier life time [1]-[4]. It would be preferable, if we have a semiconductor device which can possess excellent power handling capabilities, high thermal capacity and also can be optically controlled efficiently, to avoid any electro-magnetic-interference (EMI). In order to retain above qualities in a single device, direct hetero-epitaxial growth of GaN over 4H-SiC and vertical conduction, is the possible answer and we have already observed quite interesting features in our preliminary investigated simulation results [5], for a vertical npn-device, using above two materials.

The materials, GaN and 4H-SiC have a lattice mismatch of ~ 3.4%. So, to avoid this lattice mismatch, researchers have tried to grow GaN epitaxy, over a buffer layer of AlN [6]-[8] and studied the lateral conduction, which is entirely through GaN.

The authors are with the Laboratory for Energy and Switching-Electronics System, Department of Electrical and Computer Engineering, University of Illinois at Chicago, 851 South Morgan Street, Science and Engineering Office, Room No. 1020, Mail Code 154, Chicago, IL: 60607-7053 ('phone: 312-996-6548; fax: 312-996-6465; e-mail: sribose@ece.uic.edu).

But, investigations on vertical conduction are rarely available in the literatures [9]-[16]. In lateral devices, only the properties of GaN are exploited, however if we want to exploit the properties of 4H-SiC, as well, which are highly suitable for power-electronics applications, a vertical conduction approach has to be made. This is possible, if we can grow GaN directly above 4H-SiC without any buffer layer. To achieve this, Ga-flux has been used over (Si-face)(0001)4H-SiC, experimentally [15], [16], before actually growing GaN epitaxial layers.

In this work, we report, the total Density of States (DOS), for the *p*-doped (Ga-face)GaN over *n*-doped (Si-face)4H-SiC hetero-epitaxial material system with Ga-flux and (Alface)AlN, as the interface materials, from the atomistic standpoint, by carrying out Molecular Dynamics simulations, using DMol³ first-principle atomistic simulator [17] module of Material studio 5.0 [18], with the help of NCSA (National Center for Supercomputing Applications at University of Illinois Urbana-Champaign, US) Intel 64 Cluster Abe [19].

II. SIMULATION METHOD

While performing the Molecular Dynamics simulation (the supercell approach was adopted where the total no. of atoms in the cell was kept sixty and the atoms in (Si-face)4H-SiC were constrained whereas Ga, Al and N atoms were relaxed), the following major considerations were set in the DMol³ first-principle atomistic simulator:

Ensemble: NVT

DFT exchange-correlation: LDA/PWC Thermostat: Simple Nose-Hoover

External stress: 0 GPa

Temperature: 800 K (This value of temperature was considered in view of experimental setting [15], [16])

Given simulation time: 0.5 ps

Core-treatment: All-electron with Harris approximation

K-point set: Medium

III. RESULTS AND DISCUSSION

Fig. 1 shows a typical initial setup for Molecular Dynamics simulation for Ga-fluxed *p*-doped GaN over heavily *n*-doped (Si-face)4H-SiC hetero-epitaxial material system. Figs. 2(a),

2(b), and 2(c) show the total density of states (DOS) of pdoped GaN over n-doped (Si-face)4H-SiC, heavily p-doped GaN over n-doped (Si-face)4H-SiC, p-doped GaN over heavily n-doped (Si-face)4H-SiC, hetero-epitaxial material systems, with one-layer of Ga-flux as the interface material whereas Figs. 3(a), 3(b), and 3(c) show the total density of states (DOS) of p-doped GaN over n-doped (Si-face)4-SiC, heavily p-doped GaN over n-doped (Si-face)4H-SiC, p-doped GaN over heavily n-doped (Si-face)4H-SiC, hetero-epitaxial material systems, with one-layer of (Al-face)AlN as the interface material. We replace the Ga-site with one Magnesium(Mg) atom for p-doped GaN and two Mg atoms for heavily p-doped GaN and similarly, C-site of 4H-SiC is replaced with one Nitrogen(N) atom for n-doped 4H-SiC and two N atoms for heavily n-doped (Si-face)4H-SiC. The energy unit has been converted from Hartree to ElectronVolt (1 Ha =~ 27.2 eV) while reporting the DOS value.

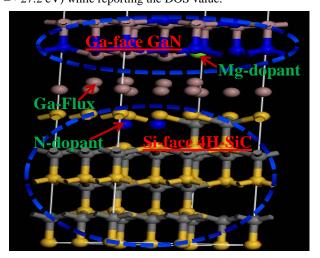


Fig. 1 A typical initial setup for Molecular Dynamics simulation for Ga-fluxed *p*-doped GaN over heavily *n*-doped (Si-face)4H-SiC hetero-epitaxial material system.

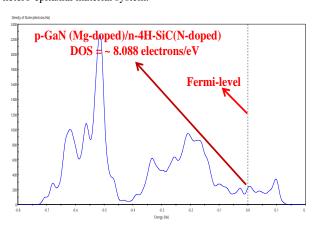


Fig. 2(a) The total density of states (DOS) of *p*-doped GaN over *n*-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of Ga-flux as the interface material.

Fig. 3(b) shows the maximum DOS at the Fermi-level for heavily p-doped GaN over n-doped (Si-face)4H-SiC heteroepitaxial material system, with one-layer of (Al-face)AlN as the interface material. The element Mg has valence electrons in 3s²3p⁰3d⁰. That means the p and d-orbitals are vacant which means, these are holes (or minority carrier density) ready to be occupied by electrons. The maximum no. of electrons that can be accommodated in p and d- orbitals are 6 and 10, respectively. So, the minority carrier density is quite high in case of Mg-dopant. The element N has valence electrons in 2s²2p³, which means there are 3 unpaired electrons available out of which 2 will go to Si so that it can satisfy the Octet. So, the element N is left with 1 electron which will act as free electron i.e., the majority carrier density is quite low in case of N-dopant. The element Ga has valence electrons in $4s^24p^14d^04f^0$. The element Al has valence electrons in $3s^23p^1$. In case of Ga-flux p+-n hetero-epitaxial material system, the one unpaired electron from Ga will either go to Si or Mg, thereby reducing the DOS. In the absence of AlN, the p+-nhetero-epitaxial material system, has 2 Mg-dopant atoms whose p and d orbitals vacant and only one N-dopant atom. Since no free electrons are available in the one-layer of (Alface)AlN material, it does not affect the DOS of the heteroepitaxial material system and prevents the one freely available electron of N-dopant of 4H-SiC to be shared either by Mgdopant or Ga of GaN.

IV. CONCLUSION

We have carried out the molecular dynamics simulation and provided the theoretical explanations in terms of total Density of States (DOS), for *p*-doped GaN over *n*-doped (Si-face)4H-SiC hetero-epitaxial material system with Ga-flux and (Al-face)AlN as the interface materials. We observed that the total DOS at the Fermilevel for heavily *p*-doped GaN over *n*-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of (Al-face)AlN as the interface material, exceeds the various other doped cases, signifying that there is a possibility of good vertical conduction across the (Ga-face)GaN over (Si-face)(0001)4H-SiC hetero-epitaxial material system with one-layer of (Al-face)AlN, as the interface material.

ACKNOWLEDGMENT

We are thankful to National Science Foundation (NSF), US (Award No: 0823983) for necessary financial support.

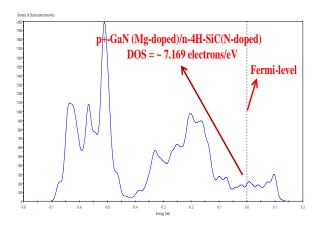


Fig. 2(b) The total density of states (DOS) of heavily *p*-doped GaN over *n*-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of Ga-flux as the interface material.

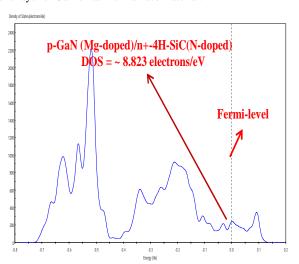


Fig. 2(c) The total density of states (DOS) of p-doped GaN over heavily n-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of Ga-flux, as the interface material.

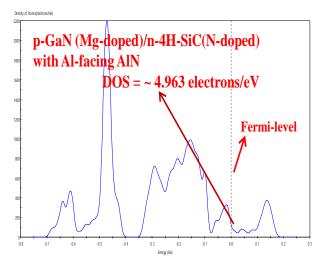


Fig. 3(a) The total density of states (DOS) of *p*-doped GaN over *n*-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of (Al-face)AlN as the interface material.

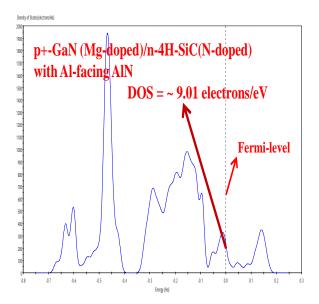


Fig. 3(b) The total density of states (DOS) of heavily *p*-doped GaN over *n*-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of (Al-face)AlN as the interface material.

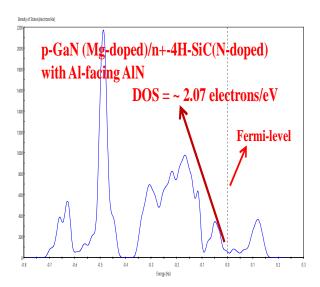


Fig. 3(c) The total density of states (DOS) of *p*-doped GaN over heavily *n*-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of (Al-face)AlN as the interface material.

REFERENCES

- [1] http://www.onr.navy.mil/sci_tech/31/312/ncsr/materials/default.asp
- [2] http://www.ioffe.ru/SVA/NSM/Semicond
- [3] http://www.springerlink.com/content/g1133v/?sortorder=asc&p_o=2 50
- [4] http://www.springerlink.com/content/g1133v/?sortorder=asc&p_o=7
- [5] Srikanta Bose, and Sudip Mazumder, (Paper no. 48) Government Microcircuit Applications and Critical Technology Conference (GOMACTech-10), Reno, NV, March 22-25, 2010.
- [6] H. Yu, M. K. Ozturk, S. Ozcelik, and E. Ozbay, J. Crystal Growth 293, 273 (2006).
- [7] O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, Appl. Phys. Lett. 71, 2638 (1997).
- [8] Y. Honda, M. Okano, M. Yamaguchi, and N. Sawaki, Phys. Stat. Sol. (c) 2, 2125 (2005).
- [9] N. I. Kuznetsov, A. E. Gubenco, A. Nikolaev, Y. V. Melnik, M. N. Blashenkov, I. P. Nikitina, and V. A. Dmitriev, Materials Science and Engineering B46, 74 (1997).
- [10] J. T. Torvik, M. Leksono, J. I. Pankove, B. V. Zeghbroeck, H. M. Ng, and T. D. Moustakas, Appl. Phys. Lett. 72, 1371 (1998).
- [11] J. T. Torvik, C. H. Qiu, M. Leksono, and J. I. Pankove, Appl. Phys. Lett. 72, 945 (1998).
- [12] A. E. Nikolaev, S. V. Rendakova, I. P. Nikitina, K. V. Vassilevski, and V. A. Dmitriev, J. Electronic Materials 27, 288 (1998).
- [13] J. T. Torvik, M. Leksono, J. I. Pankove, C. Heinlein, J. K. Grepstad, and C. Magee, J. Electronic Materials 28, 234 (1999).
- [14] E. Danielsson, C. M. Zetterling, M. Ostling, A. Nikolaev, I. P. Nikitina and V. Dmitriev, IEEE Trans Electron Devices 48, 444 (2001).
- [15] Y. Nakano, J. Suda, and T. Kimoto, Phys. Stat. Sol. (c) 2, 2208 (2005).
- [16] A. S. Brown, M. Lusurdo, T. H. Kim, M. M Giangregorio, S. Choi, M. Morse, P. Wu, P. Capezzuto, and G. Bruno, Cryst. Res. Technol. 40, 997 (2005).
- [17] B. Delley, J. Chem. Phys., 92, 508-517, 1990.
- [18] http://accelrys.com/
- [19] http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64 Cluster/TechSummary/