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 
Abstract—A new relative efficiency in linear model in reference is 

instructed into the linear weighted regression, and its upper and lower 
bound are proposed. In the linear weighted regression model, for the 
best linear unbiased estimation of mean matrix respect to the 
least-squares estimation, two new relative efficiencies are given, and 
their upper and lower bounds are also studied. 
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I. INTRODUCTION 

ONSIDERING the linear weighted regression model: 
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where Y  is the 1n observation vector, X  is the n p  full 

column rank design matrix which we are known,   is the 

1p  unknown parameter vector,   is the 1n  observation 

vector,   is the n n  positive definite covariance matrix, 

1 2( , ,... )nW diag w w w , 0, 1, 2...iw i n   are constants. 

There are two kinds of estimate class commonly used of 
parameter  : 

One is the best linear unbiased estimation (BLUE), that is: 
when   is known, the best linear unbiased estimation (BLUE) 

of   in the model (1) is: 1 1 1=( )X W WX X W WY        and 
1 1 1( )WX X W WX X W WYX W        , the covariance 

matrix is 2 1 1( )= ( )Cov X W WX     ; 

Another is the least-squares estimation (LSE), that is: 
2 1 2ˆ ( )X W X X W Y    and 2 1 2ˆ ( )WX X W X X W YX W    , 

the covariance matrix is 2 2 1ˆ( )= ( )Cov X W X X W W      
2 1( )X X W X  . Where   is the sequence characteristics root of 

2W X . 

When n  is very large, the calculation of 1  is very 

complicated, or people tend to use the LSE ̂  instead of the 

BLUE    of   when   is unknown. By the theorem of 

Gauss-Markov: ˆ( ) ( )Cov Cov   . That is 2 1 1( )X W WX     
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2 2 1 2 1( ) ( )X W X X W WX X W X      .It will bring some 

losses to the estimation when uses the LSE ̂  instead of the 

BLUE   of  . Because of that, the relative efficiency is cited. 

Following are commonly used [1]–[3]: 
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  where A  means the 

determinant of A , trA  means the trace of A , A  means the 

Euclidean mode of A . 
However, the above three kinds of relative efficiency all 

have their drawbacks. The degree that 1
ˆ( )e  depends on the 

matrix X is too low, 2
ˆ( )e   does not consider the resulting 

effect of each component covariance, though the degree that 

2
ˆ( )e   depends on the matrix X  is improved. The sensitivity 

of 3
ˆ( )e   is no better than 1

ˆ( )e  , though it measures the size of 

deviation arising from covariance and variance between the 
various components of LSE and BLUE. 

So that, H.S. Liu et al. had introduced a new relative 

efficiency [4]: 
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 , and also discussed the 

relationship between this new relative efficiency and other 
three existing relative efficiency. This means that, the 

dependence 4
ˆ( )e   on the matrix X  is still too low despite the 

increase of the sensitivity. X.M. Liu et al. have defined another 

new efficiency in the linear model [8]: 5 1

ˆ( )ˆ( ) min
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i p
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e

Cov
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This paper could push it into the linear weighted regression 
model and study its lower bound. 

In addition, this paper has defined two new relative 
efficiencies of the mean value matrix   from another 

perspective: 6 ˆ ˆ( / ) ( )e tr Cov Cov      , 7 ˆ( / )e     
1

ˆ[ ( ) ]q qtr Cov Cov  , and their upper and lower bounds have 

given. In the last, it has discussed the relationship between the 
several kinds of relative efficiencies. 

II. THE UPPER AND LOWER BOUNDS OF 5 ( )e   

Lemma 1: Assume ,A B  is n  order real symmetric matrix 

and 0B  , If A B , then    i iA B  , 1, 2, ,i n  . [5] 
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Lemma 2: Assume ,A B  is n  order symmetric matrix, 

there is          2 2
1n i i iB A ABA B A      , where 

 i A  means the i  characteristic root of the matrix A . [5] 

Lemma 3: Assume A  is the n n  Hermit matrix, U  is the 
n k  column orthogonal array, that is kU U I  , then 

     n k i i iA U AU A      , 1, 2, ,i k  . [5] 

Lemma 4: In the model of (1), for any two unbiased 

estimation 1 2  ，  of  , if 1 2( ) ( ) 0Cov Cov    , then 

5 1 5 2( ( )e e  ) . [7] 

Theorem 1: In the model of (1), *
1 , *

2 is any two unbiased 

estimation of  , if * *
1 2( ) ( ) 0Cov Cov   , then there is 

* *
5 1 5 2( ) ( )e e  . 

Proof: When * *
1 2( ) ( ) 0Cov Cov   , By the theorem 1: 

* *
1 2( ( )) ( ( )) 0i iCov Cov     . Then it is believed that 
* *

* *
1 2

( ( )) ( ( ))

( ( )) ( ( ))
i i
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Cov Cov
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 , it can obtained that 

* *

* *1 1
1 2

( ( )) ( ( ))
min min

( ( )) ( ( ))
i i

i p i p
i i

Cov Cov

Cov Cov

   
      

 , that is * *
5 1 5 2( ) ( )e e  . 

The theorem 1 shows that, the increaser of ˆ( )Cov  , the 

more decrease of 5
ˆ( )e  , Which shows that the greater loss of 

̂  takes the place of * ; Otherwise, the greater of ˆ( )Cov  , 

the smaller of the loss. According to the theorem 
Gauss-Markov, for any linear unbiased estimation of  , there 

is    * ˆCov Cov  , then the upper bound of 5 ( )e  is 1. 

Theorem 2: In the model of (1), 
 
   5

1

ˆ 1n e
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
 


. Where 

 i i   ,  i i   . 

Proof: In the model of (1), Assume WX P Q  , that is the 

singular value decomposition of WX . Where 

 1 , ,p p pP P I Q Q QQ I diag          ,  
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by the lemma 2 and the lemma 3:  
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 and because 

  

   
   

 
   
   

 

2

1 12 2

1 1

1 1

2
1

2
1

1
1 1

ˆ
i

i

i

i

i

i

p i

Cov

X W X X W WX X W X

Q P P Q Q P P Q Q P P Q

P P

P P

 









 

 

 

 

 

 






 

   

              
   

  

  

 

  (3) 

 

It is obtained by (2) and (3): 
 
 

*

1

( ( ))
ˆ( ( ))

ni

i

Cov

Cov

 
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



. 

According to the theorem Gauss-Markov, it is believed: 

   * ˆCov Cov  . And by the lemma 1, it achieves that: 

   * ˆ
i iCov Cov    , then it can obtain easily that: 

 5
ˆ 1e   . The theorem 2 has been proved. 

In addition, according to the theorem Gauss-Markov, it is 

believed that for any unbiased estimation   of  , the greater 

the deviation, the smaller relative efficiency of the estimation. 

Theorem 3: 1 2 3 5
ˆ ˆ ˆ ˆ( ) 1 ( ) 1 ( ) 1 ( ) 1e e e e           

Proof: Assume ( )Cov A  , ˆ( )Cov B  , then 0B A  . 

Thus it is believed that: ( ) (A), 1, ,i iB i p    . The 

following are obtained: 
 

1 1
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i i i i
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1 1
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      . 

 
The theorem 3 has been proved. 

III. THE UPPER AND LOWER BOUNDS OF 6 ˆ( / )e    

Lemma 5: Assume ,A B  is n  order positive definite matrix, 

then 1( ) ( ) ( ) ( )n B tr A trAB B tr A   , where 1( )B , ( )n B  

means the maximum and minimum characteristic root of the 
matrix B  respectively. [5] 

Lemma 6: Assume 1 1[ ( ) ]i iV U AU U A U     , U is the 

n k  column orthogonal array, and 1 m k  , then 
1

m

i
i

V


  

2min( , )

1
1

( )
m n k

i n i
i

 


 


 , where i is the sequence 

characteristics root of A , and 1, 2, ,i n  . [6] 
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Lemma 7: Assume A  is the n n  Hermit matrix, 

1 2, , , n    is the characteristic value of A , and 1 ... n   , 

X  is the n p  order matrix and meets pX X I  , then 

1

n

i
i n p

trX AX
  

 . When 1( ,... )n p nX    , the equal sign is 

established. [5] 
Lemma 8: Assume A  is the n n  positive definite Hermit 

matrix, 1 2, , , n    is the characteristic value of A , and 

1 ... n   , then for all of the matrix X  which meets 

pX X I  , there is 1 1

1

( )
p

n p i
i

tr X AX  
 



    When X   

1( ,..., )n p n   , the equal sign is established. [5] 

Lemma 9: Assume ,A B  is n  order symmetrical matrix, 

there is 1( ) ( ) ( ) ( ) ( )n i i iB A AB B A      , where ( )i A  

means the i  characteristic root of the matrix A , where 
1,2,...i n . [5] 

Theorem 4: In the model of (1), if ( )r X p  then 
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 
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               (4) 

 

where i , 1, 2,...,i n  is the sequence characteristics root of 
2W X , and there is 1 m p  . 

Proof: By the following formula: 
1 1( ) ( )Cov WX X W WX X W      

2 1 2 1( ) ( ) ( )Cov WX X W X X W WX X W X X W      
 

It can obtain that: 

1 2 1 2 1

1 1 1 1 1 1
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tr W WX X W X WX W WWX X W X

X W W WX X WW W WX X WW

 

  

     


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   



 
Make WX S , W W T  , 1( )SP S S S S  , S SR P TP  

1 1( )S S T S S   , then ( )tr Cov Cov  1 1( )tr W RW  . By 

the lemma 5: 
 

2 2
5 1( ) ( ) ( / ) ( ) ( )n W tr R e W tr R      

                   (5) 
 

Make 
1

2( )S S SQ P P P


 , then pQ Q I  , and 
1 1[ ( ) ]S StrR tr P TP S S T S S   

1 1[ ( ) ]tr QQ TQQ Q Q T Q Q       
1 1[ ( ) ]tr Q TQ Q T Q     

By the lemma 6: 
 

2min( , )

1
1

( )
m n p

i n i
i
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 


                        (6) 

Insert (6) into the right equation of (5): 
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By the lemma 7 and the lemma 8: 
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Insert (8) into the left equation of (5): 
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Combined (7) with (9), the theorem 1 has been proved. 

Inference 1: In the model of (1), if ( )r X p , then 
 

2 2 1
62

1 11

2min( , )

1 12
1

1
( )

1
( )

pn

n i n n p i
i n p i

m n p

i n i n
in

e   


   


 
 

   



 


 

 

 


 

 

where i  is the sequence characteristics root of X , and 

1 m p  , 1, 2,...i n . 

Proof: Because ( )i i W W   , by the lemma 5: 
 

2 2 2
1( )n i i iW                                     (10) 

2 2 2
1 1 1 1( )n n i n i n iW                          (11) 

 
Insert (10) into (4), 
 

2 2 1 1
2 2

1 1 1 11 1
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Insert (11) into (4), 
 

2 2min( , ) min( , )

1 1 12 2
1 1

1 1
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i in n
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The inference 1 has been proved. 

IV. THE UPPER AND LOWER BOUNDS OF 7 ˆ( / )e    

Lemma 10: Assume D  is the n  order positive definite 

matrix, then 1 ( ) ( )p p p pn trD trD trD   , 1p  . [9] 

Proof: When 1p  , the equal sign in the inequality is 

established. The following we can proof that when 1p  , the 

Lemma 10 is founded. 
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Assume 1 2, , , n    is the characteristic value of A , and 

1 ... n   , then because of the Hoder inequality [7], it means 

that: 
1 ( 1)

( 1) 1 1 1

1 1 1

1 ( )
p p pn n n

n p p p p p
i i

i i i

trA trA p 
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 
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     . 

That is 1 ( )p p ptrA n trA , and because 
1

) ( )
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i

trA 
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 （  

1

n
p p

i
i

trA


 . Then 1 ( ) )p p p pn trA trA trA  （ , 1p  . 

The lemma 10 has been proved. 
Theorem 5: In the model of (1), if ( )r X p , then 
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where i  is the sequence characteristics root of 2W X , and 

there 1 m p  , 1, 2,...i n . 

Proof: By the lemma 10: 
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Insert (4) into (13),  
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The theorem 5 has been proved. 

Inference 2: In the model of (1), if ( )r X p , then 
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where i  is the sequence characteristics root of X , and there is 

1 m p  , 1, 2,...i n . 

Proof: Because ( )i i W W   , By the lemma 9: 
2 2 2

1( )n i i iW       , 2 2 2
1 1 1 1( )n n i n i n iW            . 

Then on the basis of (10), it is believed that: 
1 1

1 1

2 2 1 1
2 2

1 1 1 11 1

( ) ( )
p pq qn n

n i n n p i i n p i
i n p i i n p i

n n     
 

 

  
   

       

      , 

2 2min( , ) min( , )

1 1 12 2
1 1

1 1
( ) ( )

m n p m n p

i n i i n i n
i in n

     
 

 

   
 

   
The inference 2 has been proved. 
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