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Abstract— A novel method of individual level adaptive mutation
rate control called the rank-scaled mutation rate for genetic algo-
rithms is introduced. The rank-scaled mutation rate controlled genetic
algorithm varies the mutation parameters based on the rank of each
individual within the population. Thereby the distribution of the
fitness of the papulation is taken into consideration in forming the
new mutation rates. The best fit mutate at the lowest rate and the least
fit mutate at the highest rate. The complexity of the algorithm is of
the order of an individual adaptation scheme and is lower than that
of a self-adaptation scheme. The proposed algorithm is tested on two
common problems, namely, numerical optimization of a function and
the traveling salesman problem. The results show that the proposed
algorithm outperforms both the fixed and deterministic mutation rate
schemes. It is best suited for problems with several local optimum
solutions without a high demand for excessive mutation rates.

Keywords— Genetic algorithms, mutation rate control, adaptive
mutation.

I. INTRODUCTION

GENETIC algorithms are computational models that
mimic the evolutionary process [1], [2], [3]. Small

genetic ‘mistakes’ or mutations give rise to genetic traits which
are not present in the overall population [2]. The near-optimum
mutation rate is problem domain dependant and is usually
found by trial and error [4], [5], [6]. Successful approaches of
applying genetic algorithms to solve real-world problems with
fixed mutation rates are numerous (e.g. Zhang et al. [7], Lutton
and Véhel [8]). The use of such a fixed parameter throughout
the run is called parameter tuning and differs from parameter
control. Controlling the parameters optimize the algorithm to
the problem. Interested readers are referred to the surveys by
Eiben et al. [9] and by Angeline [10] which discuss the issues
surrounding parameter control and parameter tuning. There
are three classes of methods of controlling the mutation rate
(or any other parameter), namely, deterministic, adaptive and
self-adaptive parameter control. The first class, deterministic
control, changes the mutation rate with time according to some
deterministic rule with no feedback from the search [4], [5],
[6]. The deterministic rule is devised as a function of time
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(or evolution or generation) based on some heuristics. It can
also be dependent on one or more parameters such as the string
length, the population size and the total number of generations
[5]. While most of these schemes vary the mutation rate
based on time, there are others based on quantities such as
distance to the optimum [11]. The second class, adaptive
parameter control, on the other hand uses feedback from the
search to modify the parameters [12]. The third class, self-
adaptive parameter control uses a ‘meta-evolution’ scheme
where the parameters themselves are evolved along with the
search variables.

Adaptive parameter control is preferred due to its adaptabil-
ity to the search and the controllability, taking the intrinsic
dynamic and adaptive nature of a genetic algorithm run [9],
[13]. A classic example is the 1/5 rule of Rechenberg (see
Eiben [9] for details) which adapts the mutation step size
depending on the frequency of successful mutations. Mutation
survival rate is also exploited by Aguirre and Tanaka [14]
by reducing the mutation rate by a coefficient each time
the survival rate falls under a predefined constant. Similar
approaches of varying mutation rate are found in Uyar [15]
and Acan [16]. Djurisic et al. [17] adapt the mutation rate
depending on the average of rates of the current generation
and narrowing the range of the of mutation rate using a
predetermined parameter.

The adaptive parameter control schemes cited above tend to
vary the mutation rate based on the frequency of successful
mutants. The distribution of the fitness of the current genera-
tion is not directly exploited in coming up with the new mu-
tation rate. This concept can be characterized by the scope of
the mutation parameter. The scope refers to the level at which
the change is made: population level or individual level. If the
scope is population level, as in the cited schemes above, the
fitness distribution is disregarded. Altering the parent solution
guided by a probability model to generate new offspring has
been successfully applied for the maximum clique problem
[18]. The purpose of the probability model is to characterize
the promising area in the solution space while the similarity
between the offspring and the parents are controlled. It is
important to note that both feasible and infeasible solutions
can affect the algorithm [19]. The feasibility of the offspring
of the set of feasible solutions should be maintained to explore
the promising area. On the other hand a compromise should
be made between the the exploration of the whole space and
eliminating the potentially harmful infeasible individuals.

The adaptive mutation approach presented in this paper
makes use of the knowledge of the fitness distribution of
the current generation to adapt the individual mutation rates.
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The metric used is the fitness rank of each individual. The
rank refers to how fit an individual is as determined by the
evaluation function. The mutation rate is made a function of
the fitness rank. Consequently, the mutation rate is lowest for
the best fit and highest for the least fit. This can be used to
vary the degree of retaining feasible solutions and eliminating
infeasible solutions. The scope of the algorithm is therefore at
the individual level. As a result the complexity of the proposed
scheme is much lower than that of a self adaptive scheme and
is of the order of an individual adaptation scheme.

II. ADAPTIVE MUTATION CONTROL

There are three methods of adapting the mutation rate as
indicated in the Section I, namely, deterministic, adaptive and
self-adaptive control. Deterministic mutation control changes
the mutation rate with generation or time according to some
heuristic rule. An example of a deterministic scheme is the one
in Bäck and Schüts [5]. The individuals are represented as a
fixed length binary vector x = (x1, x2, · · · , xn) ∈ {0, 1}n and
the time dependent mutation rate is pt = (a + b · t)−1 with
initial rate p0 = 1/2 and final rate pT−1 = 1/n. t is the time,
epoch or the generation. The resulting function is

pt =
(

2 +
n − 1
T − 1

t

)−1

. (1)

More examples are found in Thierens [12] and Eiben [9]. The
mutation rate is changed deterministically over time and is
independent of any feedback from the search. The question is
whether the deterministic rule of the fixation of parameters of
the mutation rate is the optimum for the algorithm or not. The
alternative is to use feedback from the search itself.

Methods with adaptive mutation rate use feedback from the
search process to to modify the mutation rate. For example, the
well known Rechenberg’s “1/5 success rule” (see Eiben [9] for
details ) aims at maintaining at least 1/5 of the mutants being
successful. If t is the generation, n represents the frequency
of mutation rate change and ps is the relative frequency of
successful mutation, the mutation rate σ(t) is found as
if (t mod n = 0) then

σ(t) =

⎧⎪⎨
⎪⎩

σ(t − n)/c ifps > 1/5
σ(t − n) · c ifps < 1/5
σ(t − n) ifps = 1/5

(2)

else
σ(t) = σ(t − 1) (3)

c < 1 is a constant close to 1. These schemes ensure
that fit mutants are retained. The proposed scheme refines
the retention property to the extent that the fitness of the
individuals is taken into account in the process of mutation.

III. RANK-SCALED MUTATION CONTROL ALGORITHM

The method for mutation selection being proposed here
is the “rank-scaled mutation rate”. This method involves
increasing the chance that the solutions mutate depending on
their viability. The solutions become more likely to mutate
as their viability decreases. The optimum solutions are less

likely to mutate, allowing them to recombine to produce better
offspring. The least viable solutions are more likely to mutate,
inserting new codes into the population. This method has an
advantage in the way that since the least viable solutions are
more likely to mutate, the system has the ability to explore
potential solutions other than the solution that the “optimum”
solution is converging on. This would make it less likely to
converge to a local maximum and more likely to converge to
a global maximum.

IV. IMPLEMENTATION DETAILS

The implementation is carried out to reflect the essence
of various forms of mutation rates. The problems selected
for testing the algorithm are optimization of a function and
the traveling salesman problem (TSP). TSP favors higher
mutation rates than the function optimization problem. It will
be shown in results (Section V) that the proposed algorithm
performs well with problems requiring low mutation rates. As
the implementation slightly differs depending on the problem,
the section outlines the details.

A. Traveling Salesman Problem

Traveling salesman problem (TSP) is to find the most
efficient path to visit each of n cities, passing through a city
only once. Finding the optimum path in the TSP is done, in
general, by swapping cities in the processes of crossover and
mutation. In particular, mutation takes place once two cities
selected at random in the current route of a random salesman
is swapped. The random selection of a salesman is tied to the
rank of the salesman. A predefined number (elite count) of
best ranking salesman is retained. A salesman is selected to
be mutated at random in the following fashion. If x ∈ [0, 1]
is a random variable the probability of mutation pm is

pm = P

(
x < b + k

i

N

)
(4)

where i is the rank, N is the population size and k is a small
positive integer tuned to increase the mutation dependency on
the rank. b is used to act as a bias. If k is large, then the
probability of mutation is increasingly high if the rank i if the
individual is high. We selected k = 3 in our experiments and
as a result the mutation tendency is kept at a higher rate.

B. Optimizing a Curve

The objective is to find the global maximum (or minimum)
of a function. That is to find

x� = argmax
x

f(x) (5)

subject to some constraints. However, we follow a slightly
different approach in optimizing the function. Both the domain
x and the value y = f(x) are evolved. The function selected
in this example is f(x) = sin(x/3) × x2 + 10 where x ∈
[0, 50]. Each individual contains both x and y and they are
initialized randomly. Single point cross over is used and the
elitism count is 1. Based on the predefined crossover point,
each of xt and yt at time t can be expressed as xt = xt

U +xt
L
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and yt = yt
U+yt

L, respectively. Rank scaled mutation is carried
out depending on a random number α ∈ {0, 1, . . . , N} related
to the mutation rate σ and a random number β ∈ {1, 2, . . . , 8}
as shown below.

if α − i × 3 < c, xt+1
U =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xt
U − 1 if β = 1

xt
L + 1 if β = 2

xt
L − 1 if β = 3

xt
U otherwise

(6)

Here i is the rank of the individual in the current population
and since the probability of mutation is controlled by i, the
scheme is a rank-scaled mutation scheme. c is a constant that
acts as a threshold controlling the mutation rate. The values
of xt+1

L ,yt+1
L and yt+1

U are also found in a similar fashion
depending on φ.

V. EXPERIMENTS AND RESULTS

Experiments were carried out to solve the TSP and to
find the global maximum of a function. Performance of the
proposed rank-scaled mutation rate is compared against a
standard GA with a set of fixed mutation rates as well as
using a GA with deterministic mutation rate. As can be seen
from Figure 1, for the TSP implementation the rank-scaled
method is superior to both the set and deterministic mutation
rate methods, for both the cases of fixed cities and random
cities. This is most likely due to the nature of the method of
mutation. Since two random cities are swapped, this creates
the possibility of having a large difference prior to and post
mutation, and a much smaller possibility of having minute
decrements in path length. This type of system equally favors
the recombination and mutation methods for approaching the
optimum solution. This type of problem also has several
local optimum solutions for the algorithm to become confused
by, whereas the curve fitting problem only has two. This
type of problem therefore favors the strengths of the rank-
scaled mutation rates, which is having the greater likelihood
of finding the global optimum. On the other hand, in the
curve fitting problem, as the system approaches the optimum
solution, small increments and decrements of solutions are
favored. The method that was chosen for mutation was to
add or subtract from the coordinates, 50% of the time at
the decimal level. Therefore, the recombination stage for this
problem is only effective for the first few iterations, after
which mutation is favored. Since the deterministic method, as
it approaches the optimum solution, is more likely to mutate,
it is more likely to quickly converge than the other methods.

In the first implementation of the rank-scaled mutation rate,
the random city TSP, we can see that the rank-scaled mutation
rate with a rate of 5% was the optimum solution, showing an
average of 89.9 iterations before convergence (Figure 1(a)).
This beat the next best solution, the deterministic mutation
rate, by 17%, and the best set mutation rate by 46%. The rank-
scaled mutation rate also had the smallest standard deviation
of 59.98 iterations, ensuring the most consistency between
implementations (Figure 1(b)).

In the second implementation of the rank-scaled mutation
rate, the fixed city TSP, we can see that the rank-scaled
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Fig. 1. Traveling salesman problem with random cities

mutation rate with a rate of 10% was the optimum solution,
showing an average of 65.6 iterations before convergence.
(Figure 2(a)) This beat the next best solution, the deterministic
mutation rate, by 10%, and the best set mutation rate by 38.5%.
The rank-scaled mutation rate also had the smallest standard
deviation of 33.8 iterations, ensuring the most consistency
between implementations. (Figure 2(b))

For the third implementation, the rank-scaled mutation rate
came in second to the deterministic mutation rate. The rank-
scaled mutation rate at 10% had 3663.08 average iterations,
while the deterministic mutation rate had 2517.98, beating it
by 45.47%. The rank-scaled mutation rate still beat the nearest
set mutation rate by 21.56%. (Figure 3(a)) The deterministic
mutation rate also had the smallest standard deviation of
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1069.37 iterations. (Figure 3(b))

VI. CONCLUSION

This paper proposed an individual level adaptive mutation
scheme called rank-scaled mutation. In this scheme the mu-
tation rate is adaptively changed depending on the rank of
each individual. Overall, the rank scaled mutation rate was
found to be an effective method of mutating a population of
solutions in a genetic algorithm. Although not as effective in
problems where mutation is favored, it is extremely effective
in problems with several local optimum solutions, beating its
nearest competitor by 10% – 17% fewer iterations.
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A. Improvements

The implementation assumes a linear rank scaled mutation
scheme. Further refinements can be introduced if the mutation
rate is defined as a function of the rank. Assume that an
individual i(= 1, 2, . . . , n) where n is the current population
size less the elicit count, is represented by xi. Ranks 1 to n
are assigned to each individual depending on the fitness as
the best fit individual assumes rank 1 and the least fit assumes
rank n. The mutation rate for the individual i is found as

pmi = β × γ × σ(0, 1) (7)

where

γ =
(

pmax − pmin

n
× i

)α

(8)
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β is a constant used to tune the algorithm and σ(0, 1) is the
zero mean Gaussian random variable with variance 1. α is
a parameter which allows selection of the nature of the rank
scaling. For example α = 1 yields a linear scaling scheme and
so on. Additional control is available through the lower and
upper bounds pmax and pmin respectively.
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