The positive solution for singular eigenvalue problem of one-dimensional p-Laplace operator

Lv Yuhua

Abstract-In this paper, by constructing a special cone and using fixed point theorem and fixed point index theorem of cone, we get the existence of positive solution for a class of singular eigenvalue value problems with p-Laplace operator, which improved and generalized the result of related paper.

Keywords-Cone, fixed point index, eigenvalue problem, pLaplace operator, positive solutions.

I. Introduction

THE eigenvalue problems with p-Laplace operator arises in a variety of applied mathematics and physics, and they are widely applied in studying for non-newtonian fluid mechanics, cosmological physics, plasma physics, and theory of elasticity, etc. In recent years, some important results have been obtained by a variety of method(see[1-9]). In paper [10], Wang and Ge study for the following problem

$$
\left\{\begin{array}{l}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+a(t)(t) f(t, u(t))=0, t \in(0,1) \\
u(0)=u(1)=0
\end{array}\right.
$$

by using fixed point theorem of cone, they get the existence of multiple positive solution. Motivated by paper [4,6,10], we consider the following problems:

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=\lambda h(t) f(x(t)), \quad t \in(0,1) \tag{1}\\
\alpha \varphi_{p}(x(0))-\beta \varphi_{p}\left(x^{\prime}(0)\right)=0 \\
\gamma \varphi_{p}(x(1))+\delta \varphi_{p}\left(x^{\prime}(1)\right)=0
\end{array}\right.
$$

where $\varphi_{p}(s)=|s|^{p-2} s, p>1$, and λ is a positive parameter, $h(t)$ is nonnegative measurable function in $(0,1), h(t)$ may be singular at $t=0,1, \alpha>0, \beta \geq 0, \gamma>0, \delta \geq 0 f(x)$ is nonnegative continuous function in $[0,+\infty), f$ is sup-linear and sub-linear at 0 and ∞.

We first list the following conditions:
$\left(\mathbf{H}_{1}\right) \quad \mathrm{h}(\mathrm{t})$ is nonnegative function in $(0,1)$, for any closed subinterval of $(0,1), h(t) \neq 0$ and $0<\int_{0}^{1} h(t) d t<+\infty$;
$\left(\mathbf{H}_{2}\right) \quad f \in C([0,+\infty),[0,+\infty))$ and $f(0)=0$; for $u>$ $0, f(u)>0$;
$\left(\mathbf{H}_{3}\right) \lim _{x \rightarrow 0} \frac{f(x)}{x^{p-1}}=a$, where $a \in[0,+\infty]$;
$\left(\mathbf{H}_{4}\right) \lim _{x \rightarrow+\infty} \frac{f(x)}{x^{p-1}}=+\infty ;(f$ is sup-linear at $x=+\infty$.)
$\left(\mathbf{H}_{\mathbf{5}}\right) \lim _{x \rightarrow 0} \frac{f(x)}{x^{p-1}}=0 ;(f$ is sub-linear at $x=0$.)
$\left(\mathbf{H}_{\mathbf{6}}\right) \lim _{x \rightarrow+\infty} \frac{f(x)}{x^{p-1}}=0 .(f$ is sub-linear at $x=+\infty$.)
For the sake of convenience, we list the following definitions and lemmas:

[^0]Definition 1.1 If $x \in C[0,1] \cap C^{1}(0,1)$ and satisfy (1), $\varphi_{p}\left(x^{\prime}(t)\right)$ is absolutely continuous in $(0,1)$, $-\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=\lambda h(t) f(x(t))$ hold almost everywhere in $(0,1)$, we call x is positive solution for problem (1).

Definition 1.2 Let E be a real Banach space, if K is a nonempty convex closed set in E, and satisfy the following conditions:
(1) $x \in K, \lambda \geq 0 \Rightarrow \lambda x \in K ;(2) x \in K,-x \in K \Rightarrow x=$ θ, θ is zero element in E; we call K is a cone in E.
Let $E=C[0,1] \cap C^{1}[0,1]$, we induce the order $x<y$: for all $t \in[0,1]$, we have $x(t)<y(t)$. If we denote the norm $\|x\|=\max \left\{\max _{0 \leq t \leq 1}|x(t)|, \max _{0 \leq t \leq 1}\left|x^{\prime}(t)\right|\right\}$, then $(E,\|\cdot\|)$ is a Banach space.
Let $K=\left\{x \in E: x(t) \geq 0, \alpha \varphi_{p}(x(0))-\beta \varphi_{p}\left(x^{\prime}(0)\right)=\right.$ $0, \gamma \varphi_{p}(x(1))+\delta \varphi_{p}\left(x^{\prime}(1)\right)=0, x$ is concave function in $[0,1]\}$, then K is a cone in E.

Lemma 1.1 For any $0<\varepsilon<\frac{1}{2}, x \in K$ has the following properties:
(1) $x(t) \geq\|x\| t(1-t), \forall t \in[0,1]$;
(2) $x(t) \geq \varepsilon^{2}\|x\|, \forall t \in[\varepsilon, 1-\varepsilon]$. (the proof is elementary.)
lemma 1.2 Suppose H_{3}, H_{4} hold, and $a=\infty$, then there exists $R>0$, such that $\frac{f(R)}{R^{p-1}}=\min _{t>0} \frac{f(t)}{t^{p-1}}$, suppose H_{5}, H_{6} hold, then there exists $L>0$, such that $\frac{f(L)}{L^{p-1}}=\max _{t>0} \frac{f(t)}{t^{p-1}}=C^{\prime}$.

Lemma 1.3 (see[11]) Let E be Banach space, K is a cone in E, for $r>0$, we define $K_{r}=\{x \in K:\|x\| \leq r\}$. Suppose $T: K_{r} \rightarrow K$ is completely continuous, such that $\forall u \in \partial K_{r}=\{x \in K:\|x\|=r\}$, we have $T x \neq x$, If $\|x\| \leq\|T x\|, x \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=0$; if $\|x\| \geq\|T x\|, x \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=1$.

Lemma 1.4 (see [12]) Let Ω_{1}, Ω_{2} is a bounded open set in $E, \theta \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}, A: K \bigcap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow$ K is completely continuous. If $\|A x\| \leq\|x\|, \forall x \in$ $K \bigcap \partial \Omega_{1} ;\|A x\| \geq\|x\|, \forall x \in K \bigcap \partial \Omega_{2}$. or $\|A x\| \leq$ $\|x\|, \forall x \in K \bigcap \partial \Omega_{2} ;\|A x\| \geq\|x\|, \forall x \in K \bigcap \partial \Omega_{1}$, then A has fixed point in $K \bigcap\left(\bar{\Omega}_{2} \backslash \bar{\Omega}_{1}\right)$.

II. Conclusion

Theorem 2.1 If conditions $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right),\left(H_{4}\right)$ hold, and $a=+\infty$.
(a) If there exists $\lambda^{*}>0$ such that $\left(\lambda^{* \frac{1}{p-1}}+\right.$ $\left.\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right)\left(\frac{f(\bar{R})}{\bar{R}^{p-1}}\right)^{\frac{1}{p-1}} \psi_{p}\left(\int_{0}^{1} h(t) d t\right) \leq 1$
where $\psi_{p}(t)=|t|^{\frac{1}{p-1}} \operatorname{sgn}(t)$ is converse function of φ_{p}, $\bar{R} \in(0, R]$ is the maximum point of f in $(0, R]$, then for $0<\lambda<\lambda^{*}$, Problem (1) has two positive solutions $x_{1}(t), x_{2}(t)$, and satisfy $0<\left\|x_{1}\right\|<R<\left\|x_{2}\right\|$.
(b) There exists $\lambda^{* *}$, when $\lambda>\lambda^{* *}$, the problem (1) has no positive solution.
(a) Proof For any $x \in K$, we have $x^{\prime}(0) \geq 0, x^{\prime}(1) \leq 0$, so there exists a constant $\sigma\left(=\sigma_{x}\right)$ such that $x^{\prime}(\sigma)=0$, we define $T_{\lambda}: K \rightarrow E$ as follow
$\left(T_{\lambda} x\right)(t)=\left\{\begin{array}{l}\psi_{p}\left(\frac{\beta}{\alpha} \int_{0}^{\sigma} \lambda h(r) f(u(r)) d r\right)+ \\ \int_{0}^{t} \psi_{p}\left(\int_{S}^{\sigma} \lambda h(r) f(u(r)) d r\right) d s, 0 \leq t \leq \sigma, \\ \psi_{p}\left(\frac{\delta}{\gamma} \int_{\sigma}^{\mathcal{T}} \lambda h(r) f(u(r)) d r\right)+ \\ \int_{t}^{1} \psi_{p}\left(\int_{\sigma}^{s} \lambda h(r) f(u(r)) d r\right) d s, \sigma \leq t \leq 1,\end{array}\right.$
By the definition of T_{λ}, we know $\forall x \in K, T_{\lambda} x \in C^{1}[0,1]$ is nonnegative and satisfy the boundary condition, furthermore,
$\left(T_{\lambda} x\right)^{\prime}(t)= \begin{cases}\left.\psi_{p} \int_{t}^{\sigma} \lambda h(r) f(u(r)) d r\right)>0, & 0 \leq t \leq \sigma, \\ -\psi_{p}\left(\int_{\sigma}^{t} \lambda h(r) f(u(r)) d r\right)<0, & \sigma \leq t \leq 1,\end{cases}$ is continuous and non-increasing in $[0,1]$, and $\left(T_{\lambda} x\right)^{\prime}(\sigma)=$ 0 , so $\left(T_{\lambda} x\right)(\sigma)$ is the maximum value of $T_{\lambda} x$ in $[0,1]$. Since $\left(T_{\lambda} x\right)^{\prime}$ is continuous and non-increasing in $[0,1]$, we have $T_{\lambda} x \in K$, this imply $T_{\lambda} K \subset K$, furthermore, $-\left(\varphi_{p}\left(T_{\lambda} x^{\prime}(t)\right)\right)^{\prime}=\lambda h(t) f(x(t))$, so the fixed point of T_{λ} in K is solution for problem (1).

Similar to the method of $[4,5]$, we know $T_{\lambda}: K \rightarrow K$ is completely continuous.

By $\left(H_{1}\right), \forall \varepsilon>0$, we have $0<\int_{\varepsilon}^{1-\varepsilon} h(t) d t<+\infty$, and when $\varepsilon \leq x \leq 1-\varepsilon, y(x)=\int_{\varepsilon}^{\int_{x}^{\varepsilon}} \psi_{p}\left(\int_{s}^{x} h(r) d r\right) d s+$ $\int_{x}^{1-\varepsilon} \psi_{p}\left(\int_{x}^{s} h(r) d r\right) d s$ is nonnegative continuous. i.e. $\lim _{x \rightarrow 0} \frac{f(x)}{x^{p-1}}=\infty$, we know there exists $0<r^{\prime}<R$, such that when $0 \leq x \leq r^{\prime}, f(x) \geq(M x)^{p-1}$, where $M>2\left(\lambda^{\frac{1}{p-1}} \varepsilon^{2} P\right)$, for $x \in \partial K_{r^{\prime}}=\left\{x \in K:\|x\|=r^{\prime}\right\}$, we have

$$
\begin{aligned}
2\left\|T_{\lambda} x\right\| \geq & \int_{\varepsilon_{\varepsilon}}^{\sigma} \psi_{p}\left(\int_{s}^{\sigma} \lambda h(r) f(u(r)) d r\right) d s+ \\
& \int_{\sigma}^{1-\varepsilon} \psi_{p}\left(\int_{\sigma}^{s} \lambda h(r) f(u(r)) d r\right) d s \\
\geq & \lambda^{\frac{1}{p-1}} M \varepsilon^{2} r^{\prime}\left(\int_{\varepsilon}^{\sigma} \psi_{p}\left(\int_{s}^{\sigma} h(r) d r\right) d s+\right. \\
& \left.\int_{\sigma_{1}}^{1-\varepsilon} \psi_{p}\left(\int_{\sigma}^{s} h(r) d r\right) d s\right) \\
= & \lambda^{\frac{1}{p-1}} M \varepsilon^{2} r^{\prime} y(\sigma) \\
\geq \geq & \lambda^{\frac{1}{p-1}} M \varepsilon^{2} r^{\prime} P \\
\geq & 2 r^{\prime}=2\|x\|, \quad \sigma \in[\varepsilon, 1-\varepsilon]
\end{aligned}
$$

$$
\begin{aligned}
\left\|T_{\lambda} x\right\| & \geq \int_{\varepsilon}^{1-\varepsilon} \psi_{p}\left(\int_{s}^{1-\varepsilon} \lambda h(r) f(u(r)) d r\right) d s \\
& \geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} r^{\prime}\left(\int_{\varepsilon}^{1-\varepsilon} \psi_{p}\left(\int_{s}^{1-\varepsilon} h(r) d r\right) d s\right) \\
& =\lambda^{\frac{1}{p-1}} M \varepsilon^{2} r^{\prime} y(1-\varepsilon) \\
& \geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} r^{\prime} P \\
& >2 r^{\prime}>r^{\prime}=\|x\|, \quad \sigma>1-\varepsilon \\
\left\|T_{\lambda} x\right\| & \geq \int^{1-\varepsilon} \psi_{p}\left(\int_{\varepsilon}^{s} \lambda h(r) f(u(r)) d r\right) d s \\
& \geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} r^{\prime} y(\varepsilon) \\
& \geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} r^{\prime} P \\
& >2 r^{\prime}>r^{\prime}=\|x\|, \quad \sigma<\varepsilon
\end{aligned}
$$

so for $x \in \partial K_{r^{\prime}}$, we have $\left\|T_{\lambda} x\right\| \geq\|x\|$, by lemma 1.3,

$$
\begin{equation*}
i\left(T_{\lambda}, K_{r^{\prime}}, K\right)=0 \tag{2}
\end{equation*}
$$

By $\left(H_{4}\right) \lim _{x \rightarrow+\infty} \frac{f(x)}{x^{p-1}}=+\infty$, there exists $R_{1}>0, \forall x \geq$ R_{1}, we have $f(x) \geq(M x)^{p-1}$, take $\tilde{R}>\max \left\{R, R_{1}\right\}$, for $x \in \partial \tilde{R},\|x\|=\tilde{R}$, by lemma 1.1, we have

$$
\begin{aligned}
2\left\|T_{\lambda} x\right\| \geq & \int_{\varepsilon}^{\sigma} \psi_{p}\left(\int_{s}^{\sigma} \lambda h(r) f(u(r)) d r\right) d s+ \\
& \int_{\sigma}^{1-\varepsilon} \psi_{p}\left(\int_{\sigma}^{s} \lambda h(r) f(u(r)) d r\right) d s \\
\geq & \lambda^{\frac{1}{p-1}} M \varepsilon^{2} \tilde{R}\left(\int_{\varepsilon}^{\sigma} \psi_{p}\left(\int_{s}^{\sigma} h(r) d r\right) d s+\right. \\
& \left.\int_{\sigma^{\frac{1}{2}}}^{1-\varepsilon} \psi_{p}\left(\int_{\sigma}^{s} h(r) d r\right) d s\right) \\
\geq & \lambda^{\frac{1}{p-1}} M \varepsilon^{2} \tilde{R} y(\sigma) \\
\geq \geq & \lambda^{\frac{1}{p-1}} M \varepsilon^{2} \tilde{R} P \\
\geq & 2 r=2\|x\|, \quad \sigma \in[\varepsilon, 1-\varepsilon]
\end{aligned}
$$

$$
\begin{aligned}
\left\|T_{\lambda} x\right\| & \geq \int_{\varepsilon}^{1-\varepsilon} \psi_{p}\left(\int_{s}^{1-\varepsilon} \lambda h(r) f(u(r)) d r\right) d s \\
& \geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} \tilde{R}\left(\int_{\varepsilon}^{1-\varepsilon} \psi_{p}\left(\int_{s}^{1-\varepsilon} h(r) d r\right) d s\right) \\
& =\lambda^{\frac{1}{p-1}} M \varepsilon^{2} \tilde{R} y(1-\varepsilon) \\
& \geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} r P \\
& >2 \tilde{R}>\tilde{R}=\|x\|, \quad \sigma>1-\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
\left\|T_{\lambda} x\right\| & \geq \int_{\varepsilon_{1}}^{1-\varepsilon} \psi_{p}\left(\int_{\varepsilon}^{s} \lambda h(r) f(u(r)) d r\right) d s \\
& \geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} \tilde{R} y(\varepsilon) \\
& \geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} \tilde{R} P \\
& >2 \tilde{R}>\tilde{R}=\|x\|, \quad \sigma<\varepsilon
\end{aligned}
$$

so for $x \in \partial K_{\tilde{R}}$, we have $\left\|T_{\lambda} x\right\| \geq\|x\|$, by lemma 1.3,

$$
\begin{equation*}
i\left(T_{\lambda}, K_{\tilde{R}}, K\right)=0 \tag{3}
\end{equation*}
$$

On the other hand, for $x \in \partial K_{R}$, we have

$$
\begin{aligned}
\left\|T_{\lambda} x\right\| \leq & \psi_{p}\left(\int_{0}^{1} \lambda h(r) f(u(r)) d r\right) d s+ \\
& \max \left\{\psi_{p}\left(\frac{\beta}{\alpha} \int_{0}^{1} \lambda h(r) f(u(r)) d r\right)\right. \\
& \left.\psi_{p}\left(\frac{\delta}{\gamma} \int_{0}^{1} \lambda h(r) f(u(r)) d r\right)\right\} \\
\leq & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& \psi_{p}\left(\int_{0}^{1} h(r) f(\bar{R}) d r\right) \\
= & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& \psi_{p}\left(\frac{f(\bar{R})}{\varphi_{p}(\bar{R})} \varphi_{p}(\bar{R}) \int_{0}^{1} h(r) d r\right) \\
= & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& \left(\frac{f(\bar{R})}{R^{p-1}}\right)^{\frac{1}{p-1}} \psi_{p}\left(\int_{0}^{1} h(r) d r\right) \bar{R} \\
< & R^{2} \leq\|x\|,
\end{aligned}
$$

by lemma 1.3 ,

$$
\begin{equation*}
i\left(T_{\lambda}, K_{R}, K\right)=1 \tag{4}
\end{equation*}
$$

by (2),(3),(4) and the additivity of fixed point index
$i\left(T_{\lambda}, K_{\bar{R}} \backslash \dot{K}_{R}\right)=-1, i\left(T_{\lambda}, K_{R} \backslash \dot{K}_{r}\right)=1$.
So T_{λ} has fixed point x_{1} in $K_{\bar{R}} \backslash \dot{K}_{R}$ and x_{2} in $K_{R} \backslash \dot{K}_{r}$.
Next we show $x_{1} \neq x_{2}$, we only need to show when $x_{i} \in$ $\partial K_{R}, i=1,2, T_{\lambda} x_{i} \neq x_{i}$ hold.

If it is not true, when $x_{i} \in \partial K_{R}, i=1,2, T_{\lambda} x_{i}=x_{i}$, so $\left\|T_{\lambda} x_{i}\right\|=\left\|x_{i}\right\|$. Since x_{i} satisfy (1), we have

$$
\begin{aligned}
\left\|T_{\lambda} x_{i}\right\| \leq & \psi_{p}\left(\int_{0}^{1} \lambda h(r) f(u(r)) d r\right) d s+ \\
& \max \left\{\psi_{p}\left(\frac{\beta}{\alpha} \int_{0}^{1} \lambda h(r) f(u(r)) d r\right),\right. \\
& \left.\psi_{p}\left(\frac{\delta}{\gamma} \int_{0}^{1} \lambda h(r) f(u(r)) d r\right)\right\} \\
\leq & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& \psi_{p}\left(\int_{0}^{1} h(r) f(\bar{R}) d r\right) \\
= & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& \psi_{p}\left(\frac{f(\bar{R})}{\varphi_{p}(\bar{R})} \varphi_{p}(\bar{R}) \int_{0}^{1} h(r) d r\right) \\
= & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& \left(\frac{f(\bar{R})}{\bar{R}^{p-1}}\right)^{\frac{1}{p-1}} \psi_{p}\left(\int_{0}^{1} h(r) d r\right) \bar{R} \\
\leq & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& \left(\frac{f(\bar{R})}{R^{p-1}}\right)^{\frac{1}{p-1}} \psi_{p}\left(\int_{0}^{1} h(r) d r\right)\left\|x_{i}\right\|
\end{aligned}
$$

this imply

$$
\begin{align*}
1 & \leq \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \tag{5}\\
& \left(\frac{f(\bar{R})}{R^{p-1}}\right)^{\frac{1}{p-1}} \psi_{p}\left(\int_{0}^{1} h(r) d r\right) .
\end{align*}
$$

this is a contradiction, so $x_{1} \neq x_{2}$.
Last, obviously $0<\left\|x_{1}\right\|<R<\left\|x_{2}\right\|$.
(b) Proof Suppose there exists a subsequence $\left\{\lambda_{n}\right\}$, and $\lambda_{n}>n$ such that for any n, problem (1) has a positive solution $x_{n} \in K$, by $H_{3}, \forall x>0$, we have $f(x) \geq \bar{C} x^{p-1}$, where $\bar{C}=\frac{f(R)}{R^{p-1}}$, when $\sigma<\varepsilon$, by lemma 1.1, we have

$$
\begin{aligned}
\left\|x_{n}\right\| & \geq \int_{\varepsilon}^{1-\varepsilon} \psi_{p}\left(\int_{\varepsilon}^{s} \lambda_{n} h(r) f(u(r)) d r\right) d s \\
& \geq \lambda_{n}^{\frac{1}{p-1}} \int_{\varepsilon}^{1-\varepsilon} \psi_{p}\left(\int_{\varepsilon}^{s} h(r) \bar{C}\left(u_{n}\right)^{\frac{1}{p-1}} d r\right) d s \\
& \geq\left(\lambda_{n} \bar{C}\right)^{\frac{1}{p-1}} \varepsilon^{2}\left\|x_{n}\right\| \int_{\varepsilon}^{1-\varepsilon} \psi_{p}\left(\int_{\varepsilon}^{s} h(r) d r\right) d s \\
& =\left(\lambda_{n} \bar{C}\right)^{\frac{1}{p-1}} \varepsilon^{2}\left\|x_{n}\right\| y(\varepsilon) \\
& \geq\left(\lambda_{n} \bar{C}\right)^{\frac{1}{p-1}} \varepsilon^{2}\left\|x_{n}\right\| P
\end{aligned}
$$

so

$$
\begin{equation*}
1 \geq n \bar{C} \varepsilon^{2(p-1)} P^{p-1} \tag{6}
\end{equation*}
$$

Since n is sufficient large, so we get a contradiction.
When $\sigma>1-\varepsilon$ and $\sigma \in[\varepsilon, 1-\varepsilon]$, we can get the similar result.

So there exists $\lambda^{* *}$, when $\lambda>\lambda^{* *}$, problem (1) has no positive solution, the proof is finished.

Theorem 2.2 If $\left(H_{1}\right),\left(H_{3}\right),\left(H_{4}\right)$ hold \quad and $0<a<+\infty$, if there exists $\lambda^{* * *}>0$ and $\lambda^{* * * \frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \psi_{p}\left(a \int_{0}^{1} h(t) d t\right) \leq 1$, where $\psi_{p}(t)=|t|^{\frac{1}{p-1}} \operatorname{sgn}(t)$ is converse function of φ_{p}, so for $0<\lambda<\lambda^{* * *}$, problem (1) has a positive solution.

Proof \quad Take $\epsilon>0, \quad$ such that $\left(\lambda^{\frac{1}{p-1}}+\right.$
$\left.\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right)(a+\epsilon)^{\frac{1}{p-1}} \psi_{p}\left(\int_{0}^{1} h(t) d t\right)<1$. by H_{3}, there exists $\eta>0$ such that when $0 \leq x \leq \eta$, $f(x) \leq x^{p-1}(a+\epsilon)$. so for $x \in \partial K_{\eta}$, we have

$$
\begin{aligned}
\left\|T_{\lambda} x\right\| \leq & \psi_{p}\left(\int_{0}^{1} \lambda h(r) f(u(r)) d r\right) d s+ \\
& \max \left\{\psi_{p}\left(\frac{\beta}{\alpha} \int_{0}^{1} \lambda h(r) f(u(r)) d r\right)\right. \\
& \left.\psi_{p}\left(\frac{\delta}{\gamma} \int_{0}^{1} \lambda h(r) f(u(r)) d r\right)\right\} \\
\leq & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& \psi_{p}\left(\int_{0}^{1} h(r) x^{p-1}(r)(a+\epsilon) d r\right) \\
\leq & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& (a+\epsilon)^{\frac{1}{p-1}} \psi_{p}\left(\int_{0}^{1} h(r) d r\right)\|x\| \\
\leq & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& (a+\epsilon)^{\frac{1}{p-1}} \psi_{p}\left(\int_{0}^{1} h(r) d r\right) \eta \\
< & \eta=\|x\| .
\end{aligned}
$$

By H_{4}, there exists $\varrho>0$, such that when $x \geq \varrho, f(x) \geq(M x)^{p-1}$, choose $\mu>\max \{\varrho, \eta\}$, by the similar method with theorem 2.1 , we can show when $x \in \partial K_{\mu},\left\|T_{\lambda} x\right\| \geq\|x\|$, so if we define
$\Omega_{1}=\{x \in K:\|x\|<\eta\}, \Omega_{2}=\{x \in K:\|x\|<\mu\}$, by lemma 1.4, T_{λ} has at least one fixed point $x \in K$, and $\mu>\|x\|>\eta$, the proof is finished.

Corollary In condition H_{3}, let $a=0$, then $\forall \lambda>0$, problem (1) has at least one positive solution.

Theorem 2.3 If $H_{1}, H_{2}, H_{5}, H_{6}$ hold, then
(a) $\forall \varepsilon \in\left(0, \frac{1}{2}\right)$, there exists $\lambda_{*}=\lambda_{*}(\varepsilon)>0$, such that for all $\lambda>\lambda_{*}$, problem (1) has at least two x_{1}, x_{2} and $0<\left\|x_{1}\right\|<L<\left\|x_{2}\right\|$.
(b) If there exist $\lambda_{* *}>0$ such that $\lambda_{* *}{ }^{\frac{1}{p-1}}(1+$ $\left.\left.\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right)\left(C^{\prime \frac{1}{p-1}}\right) \psi_{p} \int_{0}^{1} h(t) d t\right) \leq 1$, then for all $\lambda<\lambda_{* *}$, problem (1) has no positive solution, where $C^{\prime}=\frac{f(L)}{L^{p-1}}$.
(a) Proof For any $0<\varepsilon<\frac{1}{2}, \forall x \in K$ and $\|x\|=L$, Let $v=\min _{\varepsilon \leq t \leq 1-\varepsilon} \frac{f(u(t))}{u(t)^{p-1}}$, by $\left(H_{2}\right)$ and lemma 1.1, $v>0$, let $\lambda_{*}=\frac{2^{p-1}}{\left(\varepsilon^{2} Q\right)^{p-1} v}$, where $Q=\min _{\varepsilon \leq x \leq 1-\varepsilon} y(x)>0$, then for $\lambda>\lambda_{*}$ we have

$$
\begin{aligned}
2\left\|T_{\lambda} x\right\| \geq & \int_{\varepsilon^{\varepsilon}}^{\sigma} \psi_{p}\left(\int_{s}^{\sigma} \lambda h(r) f(u(r)) d r\right) d s+ \\
& \int_{\sigma}^{1-\varepsilon} \psi_{p}\left(\int_{\sigma}^{s} \lambda h(r) f(u(r)) d r\right) d s \\
& \geq(\lambda v)^{\frac{1}{p-1}} \varepsilon^{2}\left(\int_{\varepsilon}^{\sigma} \psi_{p}\left(\int_{s}^{\sigma} h(r) d r\right) d s+\right. \\
& \left.\int_{\sigma}^{1-\varepsilon} \psi_{p}\left(\int_{\sigma}^{s} h(r) d r\right) d s\right) \\
& =(\lambda v)^{\frac{1}{p-1}} \varepsilon^{2} Q L \\
& >2 L=2\|x\|, \sigma \in[\varepsilon, 1-\varepsilon], \\
& \\
\left\|T_{\lambda} x\right\| & \geq \int_{\varepsilon}^{1-\varepsilon} \psi_{p}\left(\int_{s}^{1-\varepsilon} \lambda h(r) f(u(r)) d r\right) d s \\
& \geq(\lambda v)^{\frac{1}{p-1}} \varepsilon^{2} Q L \\
& >\|x\|, \sigma>1-\varepsilon,
\end{aligned}
$$

$$
\begin{aligned}
\left\|T_{\lambda} x\right\| & \geq \int_{\varepsilon}^{1-\varepsilon} \psi_{p}\left(\int_{\varepsilon}^{s} \lambda h(r) f(u(r)) d r\right) d s \\
& \geq\left(\lambda v \frac{1}{p-1} \varepsilon^{2} Q L\right. \\
& \geq\|x\|, \sigma<\varepsilon
\end{aligned}
$$

so for $x \in \partial K_{L}$, we have $\left\|T_{\lambda} x\right\|>\|x\|$.
For the same λ, choose $\epsilon^{\prime}>0$ such that $\epsilon^{\prime}\left(\lambda^{\frac{1}{p-1}}+\right.$ $\left.\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \psi_{p}\left(\int_{0}^{1} h(r) d r\right)<1$, by $\left(H_{5}\right)$, there exists $0<l<L$, such that when $0 \leq x \leq l, f(x) \leq\left(\epsilon^{\prime} x\right)^{p-1}$,
so for $x \in \partial K_{l}$, we have

$$
\begin{aligned}
&\left\|T_{\lambda} x\right\| \leq \psi_{p}\left(\int_{0}^{1} \lambda h(r) f(u(r)) d r\right) d s+ \\
& \max \left\{\psi_{p}\left(\frac{\beta}{\alpha} \int_{0}^{1} \lambda h(r) f(u(r)) d r\right),\right. \\
&\left.\psi_{p}\left(\frac{\delta}{\gamma} \int_{0}^{1} \lambda h(r) f(u(r)) d r\right)\right\} \\
& \leq \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& \psi_{p}\left(\int_{0}^{1} h(r) f(x(r)) d r\right) \\
& \leq \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
&\left.\psi_{p} \int_{0}^{1}\left(\epsilon^{\prime} x\right)^{p-1} h(r) d r\right) \\
& \leq \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
&< \epsilon^{\prime} \psi_{p}\left(\int_{0}^{1} h(r) d r\right) l \\
&<
\end{aligned} \| x . \quad .
$$

We define a new function $\bar{f}(x)=\max _{0 \leq s \leq x} f(s)$, so $\bar{f}(x)$ is nondecreasing monotonously, by $\left(H_{6}\right) \lim _{x \rightarrow+\infty} \frac{f(x)}{x^{p-1}}=0$, we can get $\lim _{x \rightarrow+\infty} \frac{\bar{f}(x)}{x^{p-1}}=0$, for the same $\epsilon^{\prime}>0$, there exists $S>0$ such that when $x \leq S, \bar{f}(x) \leq\left(\epsilon^{\prime} x\right)^{p-1}$, choose $L^{\prime}=\max \{L, S\}$, so for $x \in K_{L^{\prime}}$, we have

$$
\begin{aligned}
\left\|T_{\lambda} x\right\| \leq & \psi_{p}\left(\int_{0}^{1} \lambda h(r) f(u(r)) d r\right) d s+ \\
& \max \left\{\psi_{p}\left(\frac{\beta}{\alpha} \int_{0}^{1} \lambda h(r) f(u(r)) d r\right),\right. \\
& \left.\psi_{p}\left(\frac{\delta}{\gamma} \int_{0}^{1} \lambda h(r) f(u(r)) d r\right)\right\} \\
\leq & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& \psi_{p}\left(\int_{0}^{1} h(r) \bar{f}\left(L^{\prime}\right) d r\right) \\
\leq & \lambda^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
< & \left.L^{\prime} \psi_{p} \int_{0}^{1} h(r) d r\right) L^{\prime}
\end{aligned}\|x\| .
$$

we define $\Omega_{1}=\{x \in K:\|x\|<L\}, \Omega_{2}=\{x \in K$: $\left.\|x\|<L^{\prime}\right\}$, by lemma 1.4, T_{λ} has at least two fixed points $x_{1}(t), x_{2}(t)$ in K, and satisfy $l \leq\left\|x_{1}\right\| \leq L \leq\left\|x_{2}\right\| \leq L^{\prime}$.

Similarly to the proof of theorem 2.1, T_{λ} has no fixed point in ∂K_{L}, so $x_{1}(t) \neq x_{2}(t)$, the proof is finished.
(b) Proof Suppose there exists a subsequence $\lambda_{n}<\lambda_{* *}$ and $\lambda_{n} \in\left(0, \frac{1}{n}\right)$ such that for $\forall n$ problem (1) has a positive solution $x_{n} \in K$. since $x>0, f(x) \leq\left(C^{\prime} x\right)^{p-1}$, where
$C^{\prime}=\frac{f(L)}{L^{p-1}}$, we have

$$
\begin{aligned}
\left\|x_{\lambda_{n}}\right\| \leq & \psi_{p}\left(\int_{0}^{1} \lambda_{n} h(r) f\left(x_{\lambda_{n}}(r)\right) d r\right) d s+ \\
& \max \left\{\psi_{p}\left(\frac{\beta}{\alpha} \int_{0}^{1} \lambda h(r) f\left(x_{\lambda_{n}}(r)\right) d r\right),\right. \\
& \left.\psi_{p}\left(\frac{\delta}{\gamma} \int_{0}^{1} \lambda h(r) f\left(x_{\lambda_{n}}(r)\right) d r\right)\right\} \\
\leq & \lambda_{n}^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& \psi_{p}\left(\int_{0}^{1} h(r) C^{\prime} x_{\lambda_{n}}^{p-1}(r) d r\right) \\
\leq & \lambda_{n}^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) \times \\
& C^{\prime \frac{1}{p-1}} \psi_{p}\left(\int_{0}^{1} h(r) d r\right)\left\|x_{\lambda_{n}}\right\|,
\end{aligned}
$$

i.e.
$1 \leq \lambda_{n}^{\frac{1}{p-1}}\left(1+\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) C^{\prime \frac{1}{p-1}} \psi_{p}\left(\int_{0}^{1} h(r) d r\right)$.
since $\quad \lambda_{n}<\lambda_{* *}, \quad$ so $\quad \lambda_{n}^{\frac{1}{p-1}}(1+$ $\left.\max \left\{\left(\frac{\beta}{\alpha}\right)^{\frac{1}{p-1}},\left(\frac{\delta}{\gamma}\right)^{\frac{1}{p-1}}\right\}\right) C^{\prime \frac{1}{p-1}} \psi_{p}\left(\int_{0}^{1} h(r) d r\right)<1$, this is contradiction, the proof is finished.

Example 1

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=\lambda(1-t)^{p_{1}} t^{p_{2}}\left(c x^{q_{1}}(t)+x^{q_{2}}(t)\right), \quad t \in(0,1) \\
x(0)=x(1)=0,
\end{array}\right.
$$

where λ is a positive parameter, $c \in R^{+} \bigcup\{0\},-1<p_{1}<$ $0,-1<p_{2}<0,0<q_{1} \leq p-1<q_{2}$.
we cinsider the following two cases:
(1) when $0<q_{1}<p_{1}-1<q_{2}$ and $c>$
$0, \quad R=\bar{R}=\left(c \frac{p-1-q_{1}}{q_{2}-p+1}\right)^{\frac{1}{q_{2}-q_{1}}}, \quad$ and $\lambda^{*}=$
$\frac{\left(\left(q_{2}-p+1\right)^{q_{2}-p+1}\left(p-1-q_{1}\right)^{p-1-q_{1}}\right)^{\frac{1}{q_{2}-q_{1}}}}{q_{2}-q_{1}} \times\left(\beta\left(p_{1}+\right.\right.$ $\left.\left.1, p_{2}+1\right)\right)^{-1} \times c^{\frac{q_{2}-p+1}{q_{1}-q_{2}}}$.

By theorem 2.1, if $\lambda \in\left(0, \lambda^{*}\right)$, then problem (1) has at least two positive solutions x_{1}, x_{2} satisfy $0<\left\|x_{1}\right\|<R<\left\|x_{2}\right\|$, there exists $\lambda^{* *}$ sufficient large, when $\lambda>\lambda^{* *}$, problem (1) has no positive solution.
(2) $q_{1}=p-1$, and $c \geq 0$, if $c>0$, then $h(t)=(1-$ $t)^{p_{1}} t^{p_{2}}$, and $f(x)=c x^{q_{1}}(t)+x^{q_{2}}(t)$ satisfy all the conditions of theorem 2 , and $\beta=0, \delta=0$. Let $\lambda^{* * *}=\left(c \beta\left(p_{1}+1, p_{2}+\right.\right.$ $1))^{-1}$, where β is β function, for $0<\lambda<\lambda^{* * *}$, problem (1) has at least one positive solution.

If $c=0$, by corollary, for each $\lambda>0$, problem (1) has at least one positive solution.

Example 2

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=\lambda h(t)\left(e^{x(t)}-1\right), \quad t \in(0,1) \\
x(0)=x(1)=0
\end{array}\right.
$$

where λ is positive parameter, $h(t)$ is same as above, we consider three cases:
case $1 \quad p>2$. let $\lambda^{*}=\left(\frac{f(\bar{R})}{R^{p-1}} \beta\left(p_{1}+1, p_{2}+1\right)\right)^{-1}$, where $R=\bar{R} \in(p-2, p-1)$ is the only zero point of function
$\chi(x)=e^{x}(x-p+1)+p-1$, by theorem 2.1 , when $\lambda \in\left(0, \lambda^{*}\right)$, problem (1) has at least two solutions, and $0<\left\|x_{1}\right\|<R<$ $\left\|x_{2}\right\|$. there exists $\lambda^{* *}$ sufficient large, when $\lambda>\lambda^{* *}$, problem (1) has no solution.
case $2 \quad p=2$, let $\lambda^{* * *}=\left(\beta\left(p_{1}+1, p_{2}+1\right)\right)^{-1}$, where β is β function. by theorem 2.2, for $0<\lambda<\lambda^{* * *}$ problem (1) has at least one positive solution.
case $31<p<2$, in this case $a=0$, by corollary, for each $\lambda>0$, problem (1) has at least one positive solution.

Example 3

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=\lambda t^{-\alpha} x(t)^{q} e^{-x(t)}, \quad t \in(0,1) \\
x(0)=x(1)=0
\end{array}\right.
$$

where $0<\alpha<1, p-1<q$.
By theorem 2.3, for $\varepsilon \in\left(0, \frac{1}{2}\right)$, let $\lambda_{*}(\varepsilon)=\left(\frac{2}{v \varepsilon^{2} Q}\right)^{p-1}$, for $0<\lambda>\lambda_{*}$, problem (1) has at least two positive solutions, and $0<\left\|x_{1}\right\|<q-p+1<\left\|x_{2}\right\|$. there exists $\lambda_{* *}$ sufficient small, when $\lambda<\lambda_{* *}$ problem (1) has no solution. Specially, $p=2$, let $\lambda_{*}(\varepsilon)=\left(\frac{2}{v \varepsilon^{2} Q}\right)^{p-1}, v=\varepsilon^{2(q-1)}(q-1) e^{\varepsilon^{2}(1-q)}$, and $Q=\frac{\varepsilon^{2-\alpha}+(1-\varepsilon)^{2-\alpha}-2^{\alpha-1}}{(1-\alpha)(2-\alpha)}$, we can get for $0<$ $\lambda>\lambda_{*}$, problem (1) has at least two positive solutions, and $0<\left\|x_{1}\right\|<q-1<\left\|x_{2}\right\|$.

REFERENCES

[1] Su H, Wei Z L, Wang B H. The existence of positive solutions four a nonlinear four-point singular boundary value problem with a p-Laplace operator. Nonlinear anal,2007,66:2204-2217.
[2] Ma D x, Han J X,Chen X G. Positive solution of boundary value problem for one-dimensional p-Laplacian with singularities.J Math Anal Appl,2006,324:118-133.
[3] Liu Y J, Ge W G.Multiple positive solutions to a three-point boundary value problems with p-Laplacian. J Math Anal Appl,2003,277:293-302
[4] Jin J X, Yin C H.Positive solutions for the boundary value problems of one-dimensional p-Laplacian with delay. J Math Anal Appl, 2007, 330:1238-1248.
[5] Su H, Wei Z L, Wang B H. The existence of positive solutions four a nonlinear four-point singular boundary value problem with a p-Laplace operator. Nonlinear anal,2007,66:2204-2217.
[6] Ma D x, Han J X,Chen X G. Positive solution of boundary value problem for one-dimensional p-Laplacian with singularities.J Math Anal Appl,2006,324:118-133.
[7] Sun Y P. Optimal existence criteria for symmetric positive solutions a three-point boundary differential equations. Nonlinear anal,2007,66:10511063
[8] Tian Yuansheng Liu Chungen. The existence of symmetric positive solutions for a three-point singular boundary value problem with a pLaplace operator.Acta Mathematica scientia 2010,30A(3):784-792.
[9] Xie Shengli. Positive solutions of multiple-point boundary value problems for systems of nonlinear second order differential equations .Acta Mathematica scientia 2010,30(A):258-266.
[10] Youyu Wang Weigao Ge Triple positive solutions for two-point boundary-value problems with one-dimensional p-Laplacian Applicable analysis 2005 84:821-831
[11] K.Deimling.Nonlinear Functional Analysis, Spring-Verlag, 1985.
[12] Guo Dajun Nonlinear functional analysis. Jinan. Shandong science and technology publishing house,2001 .

[^0]: Lv Yuhua is with the College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao,266061,China. e-mail: lyh@qust.edu.cn

