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 
Abstract—Using the quantum kinetic equation for electrons 

interacting with acoustic phonon, the density of the constant current 
associated with the drag of charge carriers in cylindrical quantum 
wire by a linearly polarized electromagnetic wave, a DC electric field 
and a laser radiation field is calculated. The density of the constant 
current is studied as a function of the frequency of electromagnetic 
wave, as well as the frequency of laser field and the basic elements of 
quantum wire with a parabolic potential. The analytic expression of 
the constant current density is numerically evaluated and plotted for a 
specific quantum wires GaAs/AlGaAs to show the dependence of the 
constant current density on above parameters. All these results of 
quantum wire compared with bulk semiconductors and superlattices 
to show the difference. 

 
Keywords—Photon-drag effect, constant current density, 

quantum wire, parabolic potential. 

I. INTRODUCTION 

HE photon-drag effect is explained by propagation 
electromagnetic wave carriers which absorb both energy 

and electromagnetic wave momentum, thereby electrons are 
generated with directed motion and a constant current is 
created in this direction. The presence of intense laser 
radiation can also influence electrical conductivity and kinetic 
effects in material [1]-[3]. The photon-drag effect has been 
researched in semiconductors [4]-[6], in superlattices [7]. In 
quantum wire, the photon drag effect is still open for study. In 
this paper, using the quantum kinetic equation for an electron 
system interacting with acoustic phonon is placed in a direct 
electric field, an electromagnetic wave and the presence of an 
intense laser field in quantum wire with a parabolic potential, 
the constant current density of the photon-drag effect is 
calculated and numerical calculations are carried out with a 
specific GaAs/GaAsAl quantum wire.  

II.  CALCULATING THE CONSTANT CURRENT DESTINY OF THE 

PHOTON-DRAG EFFECT IN CYLINDRICAL QUANTUM WIRE 

WITH PARABOLIC POTENTIAL  

We examine the electron system, which is placed in a 
linearly polarized electromagnetic wave 

( i t i tE(t) E(e e ), H(t) n, E(t)        
    ), in a DC electric field 0E


 

and in a strong radiation field F(t) Fsin t. 
 

 The Hamiltonian 

 
Hoang Van Ngoc and Nguyen Quang Bau are with the Faculty of Physics, 

Hanoi University of Sciences, Hanoi National University, No. 334, Nguyen 
Trai Str., Thanh Xuan Dist., Hanoi, Vietnam (e-mail: 
hoangfvanwngocj@gmail.com, nguyenquangbau54@gmail.com).  

N. T. Huong is with the Faculty of Physics, Ha Noi University of Sciences, 
Hanoi National University, 334 - Nguyen Trai, Thanh Xuan, Hanoi, Viet 
Nam, (phone: +84-989-146-314; e-mail: huong146314@ yahoo.com). 

of the electron - phonon system in the quantum wire can be 
written as [8], [9] (using with 1  unit and we suppose the 
axis 0z along the length of the wire): 
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z z z
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where  A t


 is the vector potential of laser field (only the 

laser field affects the probability of scattering): 

0

1
A(t) F sin t

c
  

 
; 

zn,l,pa and 
zn,l,pa  ( qb  and qb ) are the 

creation and annihilation operators of electron (phonon); zp


 is 

the electron wave momentum along axis 0z; q


 is phonon 

wave vector; q  is the frequency of acoustic phonon; qC is 

the electron-acoustic phonon interaction constant: 
2

2
q

s

q
C

2 v V





, here V,  , sv  and   are volume, the density, 

the acoustic velocity and the deformation potential constant, 
respectively; (n, l) and (n’, l’) are the quantum numbers of 
electron.  

The electron energy takes the simple: 

z

2
z

n,l,p 0

p
(2n l 1)

2m
      ( n 0, 1, 2,...   , l 1, 2,3,... ); 

R
*

n,l,n ',l ' n,l n ',l 'n n '2
0

2
I (q) J (qR) (r) (r)dr

R     is form factor 

where n,l n n,l
n 1 n,l

1 r
(r) J (A )

J (A ) R

   is radial wave function, 

R is radius of wire, n,lA  is solution of the Bessel function of 

real argument n n,lJ (A ) 0 . This case particle system is set in 

a parabolic potential with quantum numbers n, l and form 
factor is not 1, this is the differences with the bulk 
semiconductor. 

In order to establish the quantum kinetic equations for 
electrons in quantum wire, we use general quantum equations 
for the particle number operator or electron distribution 
function: 

 

z

z z
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with 
z z zn,l,p n,l,p n,l,p tf (t) a a   is distribution function. From 

(1) and (2), we obtain the quantum kinetic equation for 
electrons in quantum wire (after supplement: A linearly 
polarized electromagnetic wave field and a direct electric field 

0E


): 
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where 
H

h
H




 is the unit vector of the magnetic field direction, 

0
L 2

eE q
J ( )

m

 
 is the Bessel function of real argument; qN  is the 

time-independent component of distribution function of 

phonon: q
s

1
N

exp( v q) 1


 
. 

The constant current density in the form [10]: 
 

0 0j R ( )d  
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with  
z

z
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e
R ( ) p f (p )

m
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  
 is partial current 

density. 
For simplicity, we limit the problem to the case of l 0, 1  . 

We multiply both sides (3) by z n,p( e / m)p ( )


     


 are carry 

out the summation over n, l and zp


, we obtained: 
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with c is the cyclotron frequency, ( )  is the relaxation time 

of electrons with energy   [11] where 
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Solving the equation system (4)-(6), we obtain: 
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The density of constant current: 
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with 
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   is the Hypergeometrix 

function. 
Equation (14) shows the dependence of the constant current 

density on the intensity F and the frequency   of the laser 
radiation field, the frequency   of the linearly polarized 
electromagnetic wave field, the frequency 0  of the parabolic 

potential, the temperature T of the system. We also see the 
dependence of the constant current density on characteristic 
parameters for quantum wire such as: wave function; energy 
spectrum; form factor In,l,n’,l’ and potential barrier, that is the 
difference between the quantum wire, superlattices and bulk 
semiconductor. When 0 0   (where parabolic potential 

2 2
0m R

V
2


 , m is effective mass of electron), the result will 

turn back to the photon drag effect in bulk semiconductors. 
We will give a deeper insight into this dependence by carrying 
out a numerical assessment.  

III. NUMERICAL RESULTS AND DISCUSSION  

In this section, we will survey, plot and discuss the 
expressions for 0zj  for the case of a specific GaAs/GaAsAl 

quantum wire (we select: E 0x


; h 0y


): 
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The parameters used in the calculations are as follows [8]-

[11]: m = 0,0665m0 (m0 is the mass of free electron); F  = 50 

meV; and F( )  10-11 s-1; sv 5220m / s ; 23 3
0n 10 m ; 

3 35.3 10 kg / m   ; 82.2 10 J   ; 13 1
0 5 10 s   ; 

6
0zE 0.5 10   (V/m); 6F 1.2 10  (N), 6 1

q 2 10 s   ; 
6q 2 10  (kg.m/s). 

 

Fig. 1 The dependence of j0z on the frequency of electromagnetic 
wave field with different values of   

 
Fig. 1 shows the dependence of the constant current density 

on the frequency of electromagnetic wave at different values 
of the frequency of laser radiation field. From this figure, we 
can see the constant current density increases strong with 
increasing the frequency of electromagnetic wave for the area 
of values 13 1410 10    (s-1) and reaches saturation as the 
frequency   continues to increase. Besides, the value of the 
constant current density raises remarkably when the frequency 
  increases. 

 

 

Fig. 2 The dependence of j0z on the frequency of radiation laser field 
with different values of T 

 
The dependences of the constant current density on the 

frequency of the laser radiation field are shown in Fig. 2. We 
can see that the value of constant current density reduces 
nonlinearly when the frequency   increases. And the more 
temperature T increases, the more values of the current density 
rise. 
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Fig. 3 The dependence of j0z on the temperature with different values 
of   

 
Fig. 3 shows that when temperature T of the system rises, 

the constant current density along the oz axis also goes up. 
This figure confirms once again that the constant current 
density strongly depends on the frequency of the 
electromagnetic wave. 

 

 

Fig. 4 The dependence of j0z on radius of wire with different values 
of   

 

Fig. 4 shows the dependence of 0zj  on radius of wire, when 

radius increase 0zj  decreases and gradually returns to the 

value of the bulk semiconductor when R  . 

IV. CONCLUSIONS  

In this paper, we have studied the drag effect in cylindrical 
quantum wire with a parabolic potential. In this case, one 
dimensional electron system is placed in a linearly polarized 
electromagnetic wave, a DC electric field and a laser radiation 

field at high frequency. We obtain the expressions for current 

density vector 0j


, in which, we plot and discuss the 

expressions for 0zj . And, the expressions of 0zj  show the 

dependence of 0zj  on the frequency  of the linearly polarized 

electromagnetic wave, on the temperature, the frequency  of 
the intense laser radiation, and on the basic elements of 
quantum wire with a parabolic potential. The analytical results 
are numerically evaluated and plotted for a specific quantum 
wire GaAs/AlGaAs. From a comparison of the results of the 
quantum wire to semiconductors build [11], [12] and the 
superlattices [8] we see that: The basic differences between 
them is in wave function (with bulk semiconductor: electron 
gas is three-dimensional electron gas; with superlattices: 
electron gas is two-dimensional electron gas; with quantum 
well: electron gas is one-dimensional electron gas), in form 
factor In,l,n’,l’ (with bulk semiconductor: In,l,n’,l’ = 1) and in 
potential barrier (with bulk semiconductor: V = 0) that lead to 
the differences in expression and shape graphs of the constant 
current density. 
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