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Abstract—This research is aimed to compare the percentages of 

correct classification of Empirical Bayes method (EB) to Classical 
method when data are constructed as near normal, short-tailed and 
long-tailed symmetric, short-tailed and long-tailed asymmetric. The 
study is performed using conjugate prior, normal distribution with 
known mean and unknown variance. The estimated hyper-parameters 
obtained from EB method are replaced in the posterior predictive 
probability and used to predict new observations. Data are generated, 
consisting of training set and test set with the sample sizes 100, 200 
and 500 for the binary classification. The results showed that EB 
method exhibited an improved performance over Classical method in 
all situations under study. 
 

Keywords—Classification, Empirical Bayes, Posterior predictive 
probability.  

I. INTRODUCTION 
ISCRIMINATION and classification are techniques 
often used together.  The goal of discrimination is to 

search for distinct characteristics of observations in the 
training set of sample with known classes and used to 
construct a rule, called discriminant, to separate observations 
as much as possible [1], [2]. Classification is focused on 
allocating new observations in the test set of sample to labeled 
classes based on well-defined rule obtained from the training 
set [3]. Generally, classification can be performed with 
various methods, such as Bayesian, Nearest Neighbor, 
Classification Tree, Support Vector Machines and Neural 
Network etc. 

Bayesian method is one of the most popular methods. This 
method is simple and effective for classification [4]. The 
Bayesian classification method, which classified observations 
into related classes using a decision rule, is known for its 
flexibility and accuracy [5]. Decision rule is defined by the 
posterior probability which class membership is indicated 
based on its highest posterior probability [6], [7]. Duarte-
Mermoud and Beltran [8] proposed the Bayesian network in 
classification of Chilean wines and compared radial basis 
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function neural network with support vector machine. The 
results disclosed that Bayesian network gave the best 
performance with 91% of correct classification in the test set. 
Williams and Barber [5] studied the problem of assigning an 
input vector into several classes using Gaussian prior in 
Bayesian classification and it was generalized to multiclass 
problem. Porwal and Carranza [9] had proposed classifiers 
using Bayesian network and applied to classify mineral 
deposit occurrence.  

The Bayesian classification involves in hyper-parameters 
that should be known or be able to assess using previous 
knowledge prior to data collection [10]. However, little 
information is sometimes available in practice, causing the 
assessment of hyper-parameters impossible. As a result, 
Empirical Bayes (EB) can be utilized to estimate the unknown 
hyper-parameters using information in the observed data. Li 
[11] exhibited the use of EB to estimate unknown parameters 
and classify a set of unidentified input patterns into k separate 
classes using stochastic approximation. In addition, the results 
from Monte Carlo simulation study demonstrated the 
favorable estimation of unknown parameters in normal 
distribution with EB. Chang and Li [12] illustrated the use of 
EB to classify a new item or product using stochastic 
approximation with Weibull distribution into two classes 
(good or defective) or identified an item as produced from one 
of two production lines. Wei and Chen [13] studied EB 
estimation in two-way classification model. The results 
showed that EB yielded smaller mean square error matrix than 
the least sum of squares method. Ji, Tsui, and Kim [14] 
adopted EB to classify gene expression profiles, leading to the 
decrease of number of nuisance parameters in the Bayesian 
model. 

With parametric classification, data are assumed to be 
normally distributed which rarely occurred in practice except 
for large sample. Sometimes, data may be distributed 
symmetrically or asymmetrically with long tail and short tail. 
EB, consequently, can be utilized to produce the posterior 
predictive probability of assigning new observations to known 
classes and it is believed to improve performance over 
Classical method. The objective of this research is to develop 
a classification technique to classify various types of data; 
near normal, short-tailed and long-tailed symmetric, short-
tailed and long-tailed asymmetric, using EB method. The 
estimated hyper-parameters obtained from EB are substituted 
in the posterior predictive probability and used to classify new 
observations and then compared to Classical method. Data 
employed in this research are simulated and divided into two 
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sets: a set of sample used to create a rule, called training data, 
and a set of sample used to evaluate a rule derived from 
training data, called test data. In each situation, the percentage 
of correct classification is considered.  

II.  EMPIRICAL BAYES METHOD 
EB can be performed using either parametric or 

nonparametric methods. With parametric EB, the prior 
distribution is assumed to be known, in contrast with 
nonparametric EB [10]. The estimation of hyper-parameters 
with EB method can be obtained from posterior marginal 
distribution function as follow  

 
( | ) ( | ) ( | )m x f x d= ∫δ θ π θ δ θ                                           (1) 

 
where θ   is parameter which is continuous random variable  

                 in this case  
δ  is hyper-parameter 

 ( | )m x δ   is posterior marginal distribution function 
In this research, the form of prior distribution, conjugate 

prior, is assumed to be known with known mean ( 0θ ) and 

unknown variance ( 2σ ). 
Informative prior: 2 ~ ( , )IGσ α β  that is,  
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The steps of EB method are demonstrated below: 

Step i: Find posterior marginal distribution function.    
 Consider probability distribution function of X .  
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Posterior marginal distribution function is 
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Therefore, posterior marginal distribution function of X  is 
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Step ii: Find estimators of hyper-parameter using maximum 
likelihood method and use the Newton-Raphson method to 
solve a nonlinear equation. 
    Therefore, the estimators ofα̂ and β̂ are 
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and r  represents the iteration number. 
 

Step iii: Find the posterior distribution function. 
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Thus, the posterior distribution function is 
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Step iv: Take estimators of hyper-parameter from Step ii and 
replaced into the posterior distribution function. 
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Step v: Compute the posterior predictive probability. 

The posterior predictive probability is frequently used for 
prediction of new observation, y , in test data [15]. The 
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posterior predictive probability of y conditionally on x , 
denoted by 
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Sometimes the posterior predictive probability is not a 
tractable, so Markov Chain Monte Carlo (MCMC) technique 
[16] can be applied to estimate ( )2| ,p y x σ  as 
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where M is the generated MCMC samples size and 

2( ) ,  1, 2, ...,t t Mσ = is the generated MCMC samples. 
 

Step vi: Classify the test data into classes based on the highest 
posterior predictive probability. 

 
Step vii: Compute the percentages of correct classification. 

III. SIMULATION RESULTS 
Five characteristics of data are constructed by varying the 

values of skewness and kurtosis based on Shapiro, Wilk and 
Chen criteria [17] and Ramberg and Tadikamallla [18] as 
(skewness, kurtosis); (0.25, 2.80), (0.00, 2.40), (0.00, 6.00), 
(0.75, 2.80), and (0.75, 6.00) for near normal, short-tailed and 
long-tailed symmetric, short-tailed and long-tailed 
asymmetric, respectively. The percentages of correctly 
classified data in the case of known mean and unknown 
variance using EB and Classical method are shown in Table I. 
Table II illustrated the percentages difference of correctly 
classified data between EB and Classical method. 

With three levels of sample sizes, both Classical and EB 
methods exhibited good classification when data were 
constructed as near normal, all the results were shown in 
Table I. In addition, EB method indicated an improved 
performance over Classical method in all situations under 
study, as displayed in Table II. 

IV. CONCLUSION 
Simulation results of this research suggested that 

classification using EB exhibited outperformance to Classical 
method in all cases. 

 

TABLE I 
PERCENTAGES OF CORRECTLY CLASSIFIED DATA USING CLASSICAL AND EB 

METHOD 

Sample sizes 
(n) Data distribution 

Methods 

Classical EB 

100 Near Normal 98.0700 98.0790 
 Symmetric short -tailed 97.5030 97.5760 
 Symmetric long -tailed 97.7020 97.7030 
 Asymmetric short-tailed 97.5200 97.5880 
 Asymmetric long -tailed 97.6130 97.6220 

200 Near Normal 98.0965 98.1180 
 Symmetric short -tailed 98.0415 98.0425 
 Symmetric long -tailed 97.5325 97.5340 
 Asymmetric short-tailed 97.5450 97.6000 
 Asymmetric long -tailed 97.6495 97.6500 

500 Near Normal 98.0712 98.0856 
 Symmetric short -tailed 97.5268 97.5986 
 Symmetric long -tailed 97.5910 97.5964 
 Asymmetric short-tailed 97.5402 97.6120 
 Asymmetric long -tailed 97.5542 97.5556 

 
TABLE II 

PERCENTAGES DIFFERENCE OF CORRECTLY CLASSIFIED DATA BETWEEN EB 
AND CLASSICAL METHOD 

Data distribution 
Sample sizes (n) 

100 200 500 

Near Normal 0.0092 0.0219 0.0147 

Symmetric short -tailed 0.0749 0.0010 0.0736 

Symmetric long -tailed 0.0010 0.0015 0.0055 

Asymmetric short-tailed 0.0697 0.0564 0.0736 

Asymmetric long -tailed 0.0092 0.0005 0.0014 
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