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The Pell Equation x2 − (k2 − k)y2 = 2t

Ahmet Tekcan

Abstract—Let k, t, d be arbitrary integers with k ≥ 2, t ≥ 0 and
d = k2 − k. In the first section we give some preliminaries from
Pell equations x2 − dy2 = 1 and x2 − dy2 = N , where N be any
fixed positive integer. In the second section, we consider the integer
solutions of Pell equations x2 − dy2 = 1 and x2 − dy2 = 2t. We
give a method for the solutions of these equations. Further we derive
recurrence relations on the solutions of these equations.

Keywords—Pell equation, solutions of Pell equation.

I. PRELIMINARY FACTS.

Let d �= 1 be a positive non-square integer and N be any
fixed positive integer. Then the equation

x2 − dy2 = ±N (1)

is known as Pell equation and is named after John Pell (1611-
1685), a mathematician who searched for integer solutions to
equations of this type in the seventeenth century. Ironically,
Pell was not the first to work on this problem, nor did
he contribute to our knowledge for solving it. Euler (1707-
1783), who brought us the ψ-function, accidentally named the
equation after Pell, and the name stuck.

For N = 1, the Pell equation

x2 − dy2 = ±1 (2)

is known as the classical Pell equation and was first studied by
Brahmagupta (598-670) and Bhaskara (1114-1185), (see [1]).
Its complete theory was worked out by Lagrange (1736-1813),
not Pell. It is often said that Euler (1707-1783) mistakenly
attributed Brouncker’s (1620-1684) work on this equation to
Pell. However the equation appears in a book by Rahn (1622-
1676) which was certainly written with Pell’s help: some
say entirely written by Pell. Perhaps Euler knew what he
was doing in naming the equation. Baltus [2], Kaplan and
Williams [5], Lenstra [7], Matthews [8], Mollin, Poorten and
Williams [9], Stevenhagen [10], Tekcan [12,13,14], and the
others consider some specific Pell equations and their integer
solutions. Further details on Pell equations can be found in
[3,10].

The Pell equation in (2) has infinitely many integer solutions
(xn, yn) for n ≥ 1. The first non-trivial positive integer solu-
tion (x1, y1) (in this case x1 or x1+y1

√
d is minimum) of this

equation is called the fundamental solution, because all other
solutions can be (easily) derived from it. In fact, if (x1, y1)
is the fundamental solution of x2 − dy2 = 1, then the n-th
positive solution of it, say (xn, yn), is defined by the equality

xn + yn

√
d = (x1 + y1

√
d)n (3)
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for integer n ≥ 2. (Furthermore, all nontrivial solutions can be
obtained considering the four cases (±xn,±yn) for n ≥ 1.)

There are several methods for finding the fundamental
solution of Pell’s equation x2 − dy2 = 1 for a positive non-
square integer d, e.g., the cyclic method [4, p. 30], known
in India in the 12-th century, or the slightly less efficient but
more regular English method (17-th century) which produce
all solutions of x2−dy2 = 1 [4, p. 32]. But the most efficient
method for finding the fundamental solution is based on the
simple finite continued fraction expansion of

√
d. We can

describe it as follows (see [2] and also [6, p.154]): Let

[a0; a1, a2, · · · , ar, 2a0]

be the simple continued fraction of
√

d, where a0 = �√d�.
Let p0 = a0, p1 = 1 + a0a1, q0 = 1, q1 = a1. In general

pn = anpn−1 + pn−2 (4)

qn = anqn−1 + qn−2

for n ≥ 2. Then the fundamental solution of x2 − dy2 = 1 is

(x1, y1) =

⎧⎨
⎩

(pr, qr) if r is odd

(p2r+1, q2r+1) if r is even.
(5)

On the other hand, in connection with (1) and (2), it is well
known that if (X1, Y1) and (xn−1, yn−1) are integer solutions
of x2 − dy2 = ±N and x2 − dy2 = 1, respectively, then
(Xn, Yn) is also a positive solution of x2−dy2 = ±N , where

Xn + dYn = (xn−1 + dyn−1)(X1 + dY1) (6)

for n ≥ 2.
In this work we will define by recurrence an infinite se-

quence of positive solutions of the Pell equation x2−dy2 = 2t,
where d = k2 − k with k ≥ 2 an integer and t ≥ 0 is also an
integer. We will also express the obtained solutions for t ≥ 1
in terms of the “fundamental solution” of x2−dy2 = 1 in two
cases k = 2 or k ≥ 3.

II. THE PELL EQUATION x2 − (k2 − k)y2 = 2t .

Let d = k2 − k be a positive non-square integer for an
integer k ≥ 2 and let t ≥ 0 be an arbitrary integer. In this
section we consider the integer solutions of Pell equation x2−
(k2 − k)y2 = 2t. First we consider the case t = 0, that is, the
classical Pell equation

x2 − (k2 − k)y2 = 1.

Theorem 2.1: Let d = k2 − k with k ≥ 2. Then
1) The continued fraction expansion of

√
d is given by

√
d =

⎧⎨
⎩

[1; 2] if k = 2

[k − 1; 2, 2k − 2] otherwise.
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2) The fundamental solution of x2 − dy2 = 1 is

(x1, y1) = (2k − 1, 2).

3) For n ≥ 4,

xn = (4k − 1)(xn−1 − xn−2) + xn−3

yn = (4k − 1)(yn−1 − yn−2) + yn−3.

Proof: 1) Let k = 2. Then it is easily seen that the
continued fraction expansion of

√
2 is [1; 2]. Now let k ≥ 3.

Then√
k2 − k = k − 1 + (

√
k2 − k − (k − 1))

= k − 1 +
1
1√

k2−k−(k−1)

= k − 1 +
1

√
k2−k+(k−1)

k−1

= k − 1 +
1

2 +
√

k2−k−(k−1)
k−1

= k − 1 +
1

2 + 1
k−1√

k2−k−(k−1)

= k − 1 +
1

2 + 1√
k2−k+(k−1)

= k − 1 +
1

2 + 1

2k−2+(
√

k2−k−(k−1))
.

Therefore the continued fraction expansion of
√

d is [k − 1;
2, 2k − 2].

2) The case k = 2 is clear since (x1, y1) = (3, 2) is clearly a
minimum solution of x2−2y2 = 1. On the other hand, for k ≥
3, using the method described in the precedent section to find
a fundamental solution, we get r = 1 with a0 = k−1, a1 = 2.
Hence, (x1, y1) = (p1, q1) = (2k − 1, 2) is the fundamental
solution since p0 = a0 = k−1, p1 = 1+a0a1 = 1+(k−1)2 =
2k − 1 and q0 = 1, q1 = a1 = 2 by (4) and (5).

3) Note that by (3), if (x1, y1) is the fundamental solution
of x2 − (k2 − k)y2 = 1, then the other solutions (xn, yn) of
x2 − (k2 − k)y2 = 1 can be derived by using the equalities
xn +

√
dyn = (x1 +

√
dy1)n for n ≥ 2, in other words(

xn

yn

)
=

(
x1 dy1

y1 x1

)n (
1
0

)

for n ≥ 2. Therefore it can be shown by induction on n that

xn = (4k − 1)(xn−1 − xn−2) + xn−3.

Similarly it can be proved that yn = (4k−1)(yn−1−yn−2)+
yn−3.

Next we consider the general case, that is the case

x2 − (k2 − k)y2 = 2t

for t ≥ 1. But we have to consider the problem in two cases:
k = 2 and k ≥ 3. Note that we denote the integer solutions
of x2 − (k2 − k)y2 = 2t by (Xn, Yn), and denote the integer

solutions of x2 − (k2 − k)y2 = 1 by (xn, yn). Then we have
the following theorem.

Theorem 2.2: Let k = 2 and let t be an arbitrary integer
with t ≥ 1. Define a sequence {(Xn, Yn)} of positive integers
by

(X1, Y1) =

⎧⎪⎪⎨
⎪⎪⎩

(
2

t+1
2 , 2

t−1
2

)
if t is odd

(
3.2

t
2 , 2

t
2+1

)
if t is even

and

Xn =

⎧⎨
⎩

2
t+1
2 xn−1 + 2

t+1
2 yn−1 if t is odd

3.2
t
2 xn−1 + 2

t
2+2yn−1 if t is even

Yn =

⎧⎨
⎩

2
t−1
2 xn−1 + 2

t+1
2 yn−1 if t is odd

2
t
2+1xn−1 + 3.2

t
2 yn−1 if t is even,

where {(xn, yn)} is the sequence of positive solutions of x2−
2y2 = 1. Then

1) (Xn, Yn) is a solution of x2 − 2y2 = 2t for any integer
n ≥ 1.

2) For n ≥ 2,

Xn+1 = 3Xn + 4Yn

Yn+1 = 2Xn + 3Yn.

3) For n ≥ 4,

Xn = 7(Xn−1 − Xn−2) + Xn−3

Yn = 7(Yn−1 − Yn−2) + Yn−3.

Proof: 1) Let us assume t is odd. Then it is easily seen
that (X1, Y1) =

(
2

t+1
2 , 2

t−1
2

)
is a solution of x2 − 2y2 = 2t

since

X2
1 − dY 2

1 =
(
2

t+1
2

)2

− 2
(
2

t−1
2

)2

= 2t+1 − 2.2t−1

= 2t(2 − 1)
= 2t.

On the other hand, as it was said previously, (Xn, Yn) is
also a solution for n ≥ 2. We can prove this as follows. Recall
that (xn−1, yn−1) is a solution of x2 − 2y2 = 1, that is,

x2
n−1 − 2y2

n−1 = 1.

Further we see as above that (X1, Y1) is a solution of x2 −
2y2 = 2t, that is,

X2
1 − 2Y 2

1 = 2t.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:7, 2008

456

Combining these two results we find that

X2
n − 2Y 2

n =
(
2

t+1
2 xn−1 + 2

t+1
2 yn−1

)2

−2
(
2

t−1
2 xn−1 + 2

t+1
2 yn−1

)2

= 2t+1x2
n−1 + 2.2

t+1
2 .2

t+1
2 xn−1yn−1

+2t+1y2
n−1

−2

⎛
⎝ 2t−1x2

n−1+
2.2

t−1
2 .2

t+1
2 xn−1yn−1

+2t+1y2
n−1

⎞
⎠

= x2
n−1

(
2t+1 − 2.2t−1

)
+xn−1yn−1

(
2t+2 − 2t+2

)
+y2

n−1

(
2t+1 − 2.2t+1

)
= 2t

(
x2

n−1 − 2y2
n−1

)
= 2t.

Therefore (Xn, Yn) is a solution of x2 − 2y2 = 2t.
2) Note that

Xn+1 + Yn+1

√
d = (xn + yn

√
d)(X1 + Y1

√
d)

= (x1 + y1

√
d)n(X1 + Y1

√
d)

= (x1 + y1

√
d)

×
[

(x1 + y1

√
d)n−1

×(X1 + Y1

√
d)

]

= (x1 + y1

√
d)

×
[

(xn−1 + yn−1

√
d)

×(X1 + Y1

√
d)

]

= (x1 + y1

√
d)(Xn + Yn

√
d).

Therefore(
Xn+1

Yn+1

)
=

(
x1 dy1

y1 x1

) (
Xn

Yn

)

=
(

3 4
2 3

)(
Xn

Yn

)

=
(

3Xn + 4Yn

2Xn + 3Yn

)
,

that is

Xn+1 = 3Xn + 4Yn

Yn+1 = 2Xn + 3Yn.

3) Recall that

Xn =
(
2

t+1
2 xn−1 + 2

t+1
2 yn−1

)

and also

Xn+1 = 3Xn + 4Yn.

Combining these two results we find by induction on n that

Xn = 7(Xn−1 − Xn−2) + Xn−3.

Similarly we can show that Yn = 7(Yn−1 −Yn−2)+Yn−3 for
n ≥ 4.

Now we consider the case t is even.

1) It is easily seen that (X1, Y1) =
(
3.2

t
2 , 2

t
2+1

)
is a

solution of x2 − 2y2 = 2t since

X2
1 − dY 2

1 =
(
3.2

t
2

)2

− 2
(
2

t
2+1

)2

= 9.2t − 2.2t+2

= 2t(9 − 8)
= 2t.

We know that (xn−1, yn−1) is a solution of x2 − 2y2 = 1,
that is,

x2
n−1 − 2y2

n−1 = 1,

and also (X1, Y1) =
(
3.2

t
2 , 2

t
2+1

)
is a solution of x2−2y2 =

2t, that is,

X2
1 − 2Y 2

1 = 2t.

Applying these two results we find that

X2
n − 2Y 2

n =
(
3.2

t
2 xn−1 + 2

t
2+2yn−1

)2

−2
(
2

t
2+1xn−1 + 3.2

t
2 yn−1

)2

= 9.2tx2
n−1 + 2.3.2

t
2 .2

t
2+2xn−1yn−1

+2t+4y2
n−1

−2

⎛
⎝ 2t+2x2

n−1+
2.3.2

t
2+1.2

t
2 xn−1yn−1

+9.2ty2
n−1

⎞
⎠

= x2
n−1

(
9.2t − 2.2t+2

)
+xn−1yn−1

(
2.3.2

t
2 .2

t
2+2

−2.2.3.2
t
2+1.2

t
2

)

+y2
n−1

(
2t+4 − 2.9.2t

)
= 2t

(
x2

n−1 − 2y2
n−1

)
= 2t.

Therefore (Xn, Yn) is a solution of x2 − 2y2 = 2t.
2) It can be proved as in the same way that 2) was proved

since (x1, y1) = (3, 2) is the fundamental solution of x2 −
2y2 = 1 and

Xn+1 + Yn+1

√
d = (xn + yn

√
d)(X1 + Y1

√
d)

= (x1 + y1

√
d)(Xn + Yn

√
d).

3) Recall that

Xn =
(
3.2

t
2 xn−1 + 2

t
2+2yn−1

)

and also

Xn+1 = 3Xn + 4Yn.

Combining these two results we find by induction on n that

Xn = 7(Xn−1 − Xn−2) + Xn−3.

Similarly we can show that Yn = 7(Yn−1 −Yn−2)+Yn−3 for
n ≥ 4.

Now we consider the case k ≥ 3.
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Theorem 2.3: Let k and t be arbitrary integers with k ≥ 3
and t ≥ 1 is even. Define a sequence {(Xn, Yn)} of positive
integers by

(X1, Y1) =
(
2

t
2 (2k − 1), 2

t
2+1

)

and

Xn =
(
2

t
2 (2k − 1)xn−1 + 2

t
2+1(k2 − k)yn−1

)

Yn =
(
2

t
2+1xn−1 + 2

t
2 (2k − 1)yn−1

)
,

where {(xn, yn)} is the sequence of positive solutions of x2−
(k2 − k)y2 = 1. Then

1) (Xn, Yn) is a solution of x2 − (k2 − k)y2 = 2t for any
integer n ≥ 1.

2) For n ≥ 2,

Xn+1 = (2k − 1)Xn + (2k2 − 2k)Yn

Yn+1 = 2Xn + (2k − 1)Yn.

3) For n ≥ 4,

Xn = (4k − 1)(Xn−1 − Xn−2) + Xn−3

Yn = (4k − 1)(Yn−1 − Yn−2) + Yn−3.

Proof: 1) Note that (X1, Y1) is a solution of x2 − (k2 −
k)y2 = 2t since

X2
1 − (k2 − k)Y 2

1 =
(
2

t
2 (2k − 1)

)2

−(k2 − k)
(
2

t
2+1

)2

= 2t(4k2 − 4k + 1) − (k2 − k)(2t+2)
= 2t(4k2 − 4k + 1 − 4k2 + 4k)
= 2t.

Note that (xn−1, yn−1) is a solution of x2 − (k2 − k)y2 = 1,
that is,

x2
n−1 − (k2 − k)y2

n−1 = 1.

Also we see as above that (X1, Y1) is a solution of x2−(k2−
k)y2 = 2t, that is,

X2
1 − (k2 − k)Y 2

1 = 2t.

Applying these two results we find that

X2
n − (k2 − k)Y 2

n =
(

2
t
2 (2k − 1)xn−1

+2
t
2+1(k2 − k)yn−1

)2

−(k2 − k)
(

2
t
2+1xn−1

+2
t
2 (2k − 1)yn−1

)2

= 2t(2k − 1)2x2
n−1 + 2.2

t
2 .2

t
2+1

×(2k − 1)(k2 − k)xn−1yn−1

+2t+2(k2 − k)2y2
n−1

−(k2 − k)

×

⎛
⎜⎜⎝

2t+2x2
n−1

+2.2
t
2+1.2

t
2 (2k − 1)

×xn−1yn−1

+2t(2k − 1)2y2
n−1

⎞
⎟⎟⎠

= x2
n−1

(
2t(2k − 1)2 − 2t+2(k2 − k)

)

+xn−1yn−1

⎛
⎜⎜⎝

2.2
t
2 .2

t
2+1(2k − 1)

×(k2 − k)
−(k2 − k)2.2

t
2+1

×2
t
2 (2k − 1)

⎞
⎟⎟⎠

+y2
n−1

(
2t+2(k2 − k)2

−(k2 − k)2t(2k − 1)2

)

= x2
n−1(2

t) − y2
n−1

(
2t(k2 − k)

)
= 2t

(
x2

n−1 − (k2 − k)y2
n−1

)
= 2t.

Therefore (Xn, Yn) is a solution of x2 − 2y2 = 2t.
2) Recall that(

Xn+1

Yn+1

)
=

(
x1 dy1

y1 x1

)(
Xn

Yn

)

=
(

2k − 1 2k2 − 2k
2 2k − 1

) (
Xn

Yn

)

=
(

(2k − 1)Xn + (2k2 − 2k)Yn

2Xn + (2k − 1)Yn

)
.

So

Xn+1 = (2k − 1)Xn + (2k2 − 2k)Yn

Yn+1 = 2Xn + (2k − 1)Yn.

3) Applying the equalities

Xn =
(
2

t
2 (2k − 1)xn−1 + 2

t
2+1(k2 − k)yn−1

)

and

Xn+1 = (2k − 1)Xn + (2k2 − 2k)Yn

we find by induction on n that

Xn = (4k − 1)(Xn−1 − Xn−2) + Xn−3

for n ≥ 4. Similarly it can be shown that

Yn = (4k − 1)(Yn−1 − Yn−2) + Yn−3.

Example 2.1: Let k = 2 and let t = 2. Then by Theorem
2.2, (X1, Y1) = (6, 4) is a solution of x2−2y2 = 4, and some
other solutions are

(X2, Y2) = (34, 24)
(X3, Y3) = (198, 140)
(X4, Y4) = (1154, 816)
(X5, Y5) = (6726, 4756)
(X6, Y6) = (39202, 27720).

Let t = 5. Then (X1, Y1) = (8, 4) is a solution of x2 −
2y2 = 32, and some other solutions are

(X2, Y2) = (40, 28)
(X3, Y3) = (232, 164)
(X4, Y4) = (1352, 956)
(X5, Y5) = (7280, 5172)
(X6, Y6) = (42528, 30076).
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Example 2.2: Let k = 6 and let t = 4. Then by Theorem
2.3, (X1, Y1) = (44, 8) is a solution of x2 − 30y2 = 16, and
some other solutions are

(X2, Y2) = (964, 176)
(X3, Y3) = (21164, 3864)
(X4, Y4) = (464644, 84832)
(X5, Y5) = (10201004, 1862440)
(X6, Y6) = (223957444, 40888848).

Concluding remark. Note that in Theorem 2.3, we only
consider the case t is even. When we consider the case t
is odd, then we find that there is no solution (X1, Y1) of
x2 − (k2 − k)y2 = 2t for some values of k, or there is a
solution (X1, Y1) of x2 − (k2 − k)y2 = 2t for some values of
k. But we can not determine when x2− (k2−k)y2 = 2t has a
solution or not. For example for k = 8 and t = 3, we find that
(X1, Y1) = (8, 1) is a solution of x2 − 56y2 = 8. Similarly
for k = 17 and t = 9, we find that (X1, Y1) = (28, 1) is a
solution of x2 − 272y2 = 512. But for k = 10 and for every
odd t, there is no solution of x2 − 90y2 = 2t.
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