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The Panpositionable Hamiltonicity of k-ary n-cubes

Chia-Jung Tsai and Shin-Shin Kao

Abstract—The hypercube (,, is one of the most well-known
and popular interconnection networks and the k-ary n-cube QF is
an enlarged family from Q,, that keeps many pleasing properties
from hypercubes. In this article, we study the panpositionable
hamiltonicity of QF for k > 3 and n > 2. Let z,y of V(QF)
be two arbitrary vertices and C be a hamiltonian cycle of Q.
We use dc(x,y) to denote the distance between x and y on the
hamiltonian cycle C. Define [ as an integer satisfying d(z,y) <
1 < 1|V(QF)|. We prove the followings:

o When k£ = 3 and n > 2, there exists a hamiltonian cycle C'
of QF such that do(z,y) = L.

o When k£ > 5 is odd and n > 2, we request that [ ¢ S
where S is a set of specific integers. Then there exists a
hamiltonian cycle C' of Q% such that dc(z,y) = 1.

o When k > 4 is even and n > 2, we request | —d(x,y) to be
even. Then there exists a hamiltonian cycle C' of QF such
that do(z,y) = 1.

The result is optimal since the restrictions on [ is due to the
structure of QF by definition.

Index Terms—Hamiltonian, panpositionable, bipanposition-
able, k-ary n-cube.

[. INTRODUCTION

HE n-dimensional hypercube @, is one of the most well-
known and popular interconnection networks due to its
excellent properties as the following: it is vertex-symmetric
and edge-symmetric; it is hamiltonian; it allows cycle/path
embedding when faults occur and so on. (See [1], [2] for these
results and their references). Therefore, numerous studies have
been devoted to the hypercube family [3]-[6], [11], [12].
The k-ary n-cube QF is an enlarged family from Q,
that keeps many pleasing properties from hypercubes. More
precisely, each vertex of QF is labeled by a n-bit finite
sequence (ug, Uy, ..., Un—1), Where 0 < u; < k — 1 for
0 <7 <n—1, and every two vertices v and v are adjacent
if and only if |u; —v;| = 1 or k — 1 for some 4 and u; = v,
for any 0 < j < n — 1 with j # 4. It is obviously that the
hypercube @), is indeed a subclass of the k-ary n-cube when
k = 2. Some properties of Qf; mentioned in [6] are listed here:
it is known that QF is vertex-symmetric and edge-symmetric
[3]; it is hamiltonian [4], [5]; it has diameter nL%J [41, [5];
it has a recursive structure; and it contains many important
interconnection networks such as cycles (of certain lengths)
[3], meshes (of certain dimensions) [4], and even hypercubes
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(of certain dimensions) [5]. However, as opposed to Q,,, QF
has not received enough attention. In this article, we want to
prove the panpositionability of QF. Readers can refer to [7]
for the concept of panpositionability. A hamiltonian graph G
is panpositionable if for any two different vertices v and v of
G and any integer [ with dg(u,v) <1< &f)l, there exists
a hamiltonian cycle C of G with d¢(u,v) = [. Similar to
the hamiltonicity for the communication between processors
in an interconnection network, panpositionable hamiltonicity
allows more flexible communication in a hamiltonian network.
It is easy to see that the panpositionable hamiltonian property
inherits the hamiltonian property and advances it further [8].

The article is organized as follows. In Section 2, we
introduce the graph terminologies and notations used in this
paper, the precise definition of Qﬁ, and two lemmas. In Section
3, we study the panpositionability of Q¥, where k > 3 is an
odd integer and n > 2 is an integer. In Section 4, we study the
panpositionability in the bipartite version of Q¥, where k > 4
is an even integer and n > 2 is an integer. Our conclusion is
given in the last section.

II. PRELIMINARIES

For the graph definitions and notations we follow [9].
G = (V,E) is a graph if V is a finite set and E is a
subset of {{u,v}|{u,v} is an unordered pair of V'}. We say
that V' is the vertex set and E is the edge set of G. Two
vertices w and v are adjacent if {u,v} € E. A path is
represented by a finite sequence of vertices (vg, v1, V2, ..., Un ),
where every two consecutive vertices are adjacent. If P
is a path represented by (vg,v1,v2,...,0,), then we define
inv(P) = (Upn,Vn—1,Un—2, ..., Vo). The length of a path P is
the number of edges in P. We write the path (vg, vy, ..., v,)
as (Vo, U1, eey Vs—1, Pr, Vig1, ooy Vi1, P2, Ve 1, ..., Up), Where
P = (vs,vs541,..,v) and Py = (vj,vj41,...,v¢). We use
dg(u,v) to denote the distance between u and v in G, i.e.,
the length of the shortest path between u and v in G. A cycle
is a path of at least three vertices such that the first vertex is
the same as the last vertex. A hamiltonian cycle of G is a cycle
that visits every vertex of G exactly once. We use d¢(u,v)
to denote the distance between u and v in a cycle C of G,
i.e., the length of the shorter path between w and v in C. A
hamiltonian graph is a graph with a hamiltonian cycle.

A hamiltonian path in a graph G is a path joining two
distinct vertices u and v of GG that visits every vertex of G
exactly once. A graph G is hamiltonian-connected if there is a
hamiltonian path joining any two distinct vertices of G. Note
that any (nontrivial) bipartite graph cannot be hamiltonian-
connected, whereas a bipartite graph is hamiltonian laceable
if there exists a hamiltonian path joining every two vertices
which are in distinct partite [10].
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The concept of hamiltonian panpositionability was first
proposed by S. Kao etc. [7]. A hamiltonian graph G is
panpositionable if for any two different vertices v and v of G
and any integer [ with dg(u,v) <1 < @, there exists
a hamiltonian cycle C' of G with d¢(u,v) = [. A graph
G = (VoUV4, E) is bipartite if V(G) = VoUV; and E(G) is
a subset of {{u,v}|u € Vo,v € V1}. A hamiltonian bipartite
graph G is bipanpositionable if for any two different vertices
uw and v of G and any integer [ with dg(u,v) <1 < @
and (I — dg(u,v)) is even, there exists a hamiltonian cycle C
of G with d¢(u,v) = 1.

The k-ary n-cube, Qf‘l, is defined for all integers £ > 2 and
n > 1. The subclass Q2 is the well-studied hypercube family.
The subclass Q¥ with k& > 3 is defined as the cycle of length
k. The k-ary n-cube, Q,,, for k > 3 and n > 2 is defined as
follows. Let u € V(QF) be represented by (ug, u1, .., Un_1),
where 0 < u; < k — 1. u and v are adjacent if and only
if |lu; —v;| =1 or k—1 for some ¢ and u; = v; for any
0 <j <n—1with j # 4. It is shown that Q¥ is bipartite if
k is even [11]. Here we mention some properties of Q¥ that
will be used in this article.

It is known that QF is vertex-symmetric and edge-symmetric.
Moreover, given any two distinct vertices (u1,u2) and (vy, va)
of @k, there is an automorphism of Q% mapping (u1,us)
and (vy,v2) to (m,0) and (0,n). Each vertex of QF is
represented by a n-bit tuple, and we will call the dth-bit
the dth dimension. We can partition QX over dimension d
by fixing the dth element of any vertex tuple at some value
a, for every a € {0,1,.. k— 1} This results in k copies
Qd et Qd TP de e 1 of Q,L 1, with corresponding ver-
tices in Qd,gfl’ Qd’nfl, s Qd’,,h1 joined in a cycle of length
k (in dimension d) [6]. It is proven in [11], [12] that QZ
is hamiltonian connected for odd k and QF is hamiltonian
laceable for even k.

Note that the length of a path between u and v in QF, where
k > 5 is an odd integer, can not be arbitrary. For example,
in 3, for any two vertices u and v and d(u,v) = 1, there
exists no path P between u and v with |P| = 2. In fact,
we have the following observation. Given two vertices u =
(U0, U1y ey Up—1) and v = (Vg, V1, ..., Up_1) of QF. Define the
number m; = min{|u; —v;|, k—|u;—v;|}, where 0 < i < n—1.
Let s = max{m; : 0 < ¢ < n — 1}. Then there exists no path
between u and v with length r = d(u,v) —s+k —s—2] =
d(u,v)+k—2s—2l, where [ is an integer and 1 <[ < %—s.
Consequently, we modify the concept of panpositionability of
QF by saying that QF is nearly-panpositionable if for any
two distinct vertices = and y of QF and for any integer I’ with
d(z,y) <U' < L;m and I' ¢ {r:r =d(u,v)+k—2s—2l
forl1 <1< g — s}, there exists a hamiltonian cycle C' of
QZ with d¢(z,y) = I'. Therefore, in this article, we want to
prove that 2 is panpositionable, Qﬁ is nearly-panpositionable
if £ > 5 is an odd integer, and is bipanpositionable if k > 4
is an even integer. First of all, we prove the following two
lemmas.

Lemma 1. Let k be an integer with k > 3. For any path P
with length 2 in Q5, there exists a hamiltonian cycle of Q%
that contains P.

(0,3) (0.5)
(Oa 0) _O (07 6)
(1,4)
(b)
@
(3,1)
Ct— (3,4)
&4,3)
Q3
(6,0) (6,6)

Fig. 1. (a) f25(1,4) and (b) 1% ,(0,5).

(0,0) (0,6)
1L
O (15)
(2.4)
3.2 (3,4)
(5,2) (5,5)

Q:

(6,0) (6,6)

Fig. 2. H“ (1 1), where @ = (4, —2,—1) and b= (4, -3,2).

Proof: Let ¢, r,i be nonzero integers, TZI =5

a = (al,ag,...,ai) and g = (bl,bQ,...,bl’). If ¢ = 0, then
s = 0. Similarly, if » = 0, then ¢ = 0. To construct the
required hamiltonian cycles, we define some path patterns in
the following.

ff(xvy) = ((x,y),(ers-l,y),(ers-Qy) (.I'+
e @ty +t1) (@t ey+t-2), (@ +oy+r):

hf‘gzv y) = <f9(m7 y)7 f6($7 y+ T)>;

HE (2,y) = (b (2, 9), by (2 + ar,y + bo), By (@ 4 ar +

as,y + bl + b2)7 “eey ]'LZ: (‘T + Zi),;ll an, Y + Zfl;ll bn)>'

1 =t

Please see Fig. 1 and Fig. 2 for an illustration. Fig. 1 is
examples of f25(1,4) and h*,(0,5). Note that f24(1,4) =
((1,4),(2,4),(3,4),(3,3),(3,2),(3,1)) and h',(0,5) =
(£9,(0,5), f2(0,3)) = ((0,5),(0,4),(0,3),(1,3),(2,3), (3
(4, 3)). Fig. 2 is an example of H&B(l, 1), where @ = (4, —

- 1) db= (4 —3,2). Note that

) (l (1 1), h_§(5 5),hy " (3,2))
< :5), f ( )7 o (5,
=<(171)(1 )( )( (
5,4),(5,3), (5,2), (4,2), ( 2),(3,3
Let P = (u,x,v), where u = (u1,us
QL. We have following cases.

>J>o/‘\

—~

—

=
p

=

Case 1. k is odd.

Case 1.1. Either w1 = wv; or us v
u=(0,0), v =(2,0) and P = (u,(1,0),v).
Let a; = (=1)¥2 — k), for i < k — 1 and a; = O0;
b= (0,—1,—1,...,—1). There exists a hamiltonian
cyce ¢ = {((0,0),P,(2,0), f£=3(2,0), Hﬁ (0K

2. W.L.O.G., let
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(0 0) 611)37 (07 6)
|
(2,0)
a1 =5
e
(6.0) 662
Fig. 3. Examples of Case 1.1 and Case 1.2.1 for k = 7.
(0,0) <by— (0,6)
T
(1,0)
a2 a1 =5
4=a
e
(|
6.0) (6,6)

Fig. 4. An Example of Case 1.2.2 for k = 7.

1),(0,0)). Please see Fig. 3 for an illustration.
The hamiltonian cycle in Fig. 3 is C =
<(070)7P7 (270)7fél(270)7Hg7(076)7 (070)> and H;7(07 6) =
(h§(0,6), h=5(5,6), 5% 1(0,5), h=3(5,4), h 1(0,3), h =} (5,2),
h?,(0,1)).

Case 1.2. u; # v1,us # va. WL.O.G,, let u = (0,0) and
v=(1,1).

Case 1.2.1. P = (u, (0,1),v), where k > 3.

The hamiltonian cycle is the same as in Case 1.1. Please see
Fig. 3 for an illustration.

Case 1.2.2. P = (u, (1,0),v), where k = 3.

The hamiltonian cycle is C =
((0,0), P, (1, 1), f{(1,1), £25(0,2),(2,0), (0,0)).

Case 1.2.3. P = (u, (1,0),v), where k > 5.

Let a; = (=1)"(2 — k), fori < k—2, ap—1 = 4 — k
and a, = k — 3; b = (0,—-1,—1,...,—1). There exists
a hamiltonian cycle C = ((0,0), P, (0,1), f)_,(k —
Ll),Hgk(O,k — 1),(0,0)). Please see Fig. 4 for an
illustration. The hamiltonian cycle in Fig. 4 is C =
((0,0), P, (0,1),f§(6,1),Hg7(0,6),(0,0)) and Hg7(o, 6) =
(h(s)(oa 6),h:?(576),hil(0,5)7h:?(5,4)7h571(0,3),h:?(5,2),
hti(2,1)).

Case 2. k is even.
Case 2.1. Either u; = vy or ug = vo. WL.O.G,, let u = (0, 0)
and v = (2,0) and P = (u, (1,0),v).

Let a; = (=12 — k), for 3 < i <
aq = k — 3, as = 1 — k£ and Af+1 =

>

.

0
3=a;
Qs
(5.0) 5.5 5.5

Fig. 5. Examples of Case 2.1 and Case 2.2.1 for k = 6.

(0,0) (0,5)
Case 2.2.2 I
(1,0)
‘ a=-5
as;=—2
3=as
Q 6
2

(5,0) b=d——(5,5)

Fig. 6. An Example of Case 2.2.2 for k = 6.

b= (0,k —1,-1,-1,...,—1). There exists a hamiltonian
cycle ¢ = {(0,0), P, (2,0),H§:k+1(2,0),(0,0)>. Please see
Fig. 5 for an illustration. The hamiltonian cycle in Fig. 5
is ¢ = ((0,0), P, (2,0), H (2,0),(0,0)) and H} (2,0) =
(h3(2,0), h5®(5,0), k% 1(0,5), hZ1(4,4), k% (0,3), h21(4,2),
h?1(0,1)).

Case 2.2. u; # v1,us # va. WL.O.G., let v = (0,0) and
v=(1,1).

Case 2.2.1. P = (u,(0,1),v)

The hamiltonian cycle is the same as in Case 2.1. Please see
Fig. 5 for an illustration.

Case 2.2.2. P = (u,(1,0),v)

Let a; = (=1%k — 2), for 2 < i < k — 2,
a1 = 1—k apy = 4—kanda, = k—3 b =
(k—2,—1,-1,...,—1). There exists a hamiltonian cycle C' =
((0,0), P, (1,1),(0,1), Hgk(kfl, 1), (0,0)). Please see Fig. 6
for an illustration. The hamiltonian cycle in Fig. 6 is C' =
((0,0), P, (1,1), (0, 1)?H56(57 1),(0,0)) and Hgﬁ(5v 1) =

<h4i5(57 1)7 hil(()v 5)7 h:il(47 4)? hil(ov 3)7 h:%(47 2)7 hil(27 1)>

The lemma is proved. |
To facilitate our derivation in the following, we define
some path patterns. We shall use zg, 7,25, ..., Tpa1_;

to denote the k™! vertices of Qlj’flf1 for some d.

For simplicity, 'denvote QS:;_L as Qi’il. Let the path
p(al,ap) = (wh, 2, ,2h,,...,2p) and a; = (a + ¢ mod
k"~1). For example, if k"~! = 64, then p(zfy,2s) =
(T60: T61: Toas Thss Th, T1, ). It is known that there exists a
hamiltonian cycle in Q% _, [4]. Thus «, and z ,, are adjacent

and so are % and z%tL.

Lemma 2. Let k be an integer with k > 3. For any path P
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inv(p(z},33)) | p(af,ad) inv(p(ad,ad)) | p(ad,ad)
Poa) )
0 1 2 3 I
) 3 z3 z3
9 3 3 T3 3
750 RIS B s I 3 sa
n—1 n—1 n—1 n—1 n—1

Fig. 7. An Example of Case 1 with k = 5.

with length 2 in QF, there exists a hamiltonian cycle of QF
that contains P.

Proof: The lemma will be proved by mathematical
induction. By Lemma 1, the statement holds for Q%. Using
the induction hypothesis, we assume that the statement holds
for Qﬁ_l,where n > 3. Now we want to prove that the
lemma is true for QF. There are three cases.

Case 1. P is in Q¥ . WL.O.G., let i = 0.
By the induction hypothesis, there exists a hamiltonian cycle
CY of Q" that contains P. Let P = (x0,29,29) and
C0 = (af,P,29,23,...,20,_._,, ). Since Q%_, is hamil-
tonian [4], let the hamiltonian cycles in QF_; be C* =
(xh, @y, @y, 2k, by xh).
1) k is odd. Then the hamiltonian cycle is
C = (29, P, a9, 29, 3,23, ...,k p(ah=t b
inv(p(x{j_2,:17]2“_2)),17(1’{2_3,365_3),inv(p(x4_ 7$§_4))7
o (23, 23), inv (p(a], 23)), p(2§, 20), 20).
2) k is even. Then the hamiltonian cycle is
C = (29, P29, 29, 3,23, .., a8~ inv(p(ah =1, 25=1)),
p(xiiZ’ 112672)7 lnv(p(1:2737 "1"1573))7])(‘7:{4674’ x12€74)7 tey
p(af, 23), inv(p(xi, £3)), p(, 25), 20)-
Please see Fig. 7 for an illustration, where the hamiltonian

: s 3 — (20 0 .0 1 .2 .3 .4 4 .4
CyClC n Flg Tis C = <x07P7 .1'2,I3,I3,1}3,$3,I3,p(1§4,$2)7

inv(p(a3, 3)), p(23, 23), inv(p(x], 23)), p(al, x0), xJ).

Case 2. P passes through two Qﬁfl. W.L.O.G., those two are
k,0 k1
Q,~, and Q,4.
Let P = (x(,29,21). In [11], [12], it has been shown that
there exists a hamiltonian path (z%,p(x%, x}), z5) in Q%" .
1) k is odd. Then the hamiltonian cycle is
C = (29, Pat,a?, a3 b, . a1 p(ah=t okt
. k-2 k-2 k-3 k-3 - k—4 k—4
1HV(p(§2 25'7::0 ))7p1(‘r21 71’0 0 ),(1)11\/'(%))(1’2 va ))7
-"ap(I27 1'0), lIlV(p(l’z, xO))ap(I% .To), IO)'
2) k is even. Then the hamiltonian cycle is

C :k <'§8»57 Z-r},$%,CE?,f%,g...,gf’fg_l,inv(kp(f]g_]j,ibg_l)),
p(x2_ 7x0_ ),an(p($2_ 7560_ ))7]7(172_ 77;0_ )7“-7

p(a3, ), inv(p(xg, 23)), p(23, 20), 7).
Please see Fig. 8 for an illustration, where the hamiltonian
cycle in Fig. 8 is C = (29, P, z1, 2%, 23, inv(p(z3, 3)),

p(a3, 23), inv(p(az, 25)), p(23, 0), 20)-

Case 3. P passes through three Qﬁfl.
It is known that we can partition Q% over dimension d by
fixing the dth element of any vertex tuple at some value a, for

2 3
z z
5.1 1 5,2 1 53

T
1 5.0
-1 -1 n-1 n—1

Fig. 8.  An Example of Case 2 with k = 4.

U v U v
\T ——
(@) (b) © ®
U vl v
\—‘K — —
© @ —@®

Fig. 9. Illustrations of Lemma 3.

every a € {0,1,...,k — 1}. In this case, P = (u,x,v) passes
through three Qﬁfl, i.e., u, z and v have the same value in at
least one element of vertex tuple. Hence this case is equivalent
to Case 1.

By the mathematical induction, the lemma is proved. @H

III. THE PANPOSITIONABILITY OF Q,’,j, WHERE k > 3 1S AN
ODD INTEGER AND 7 > 2 IS AN INTEGER.

Lemma 3. Q3 is a panpositionable hamiltonian graph.

Proof: There are two cases: Case 1. u = (0,0) and v =
(1,0); Case 2. u = (1,0) and v = (0, 1). By brute force, we
construct the required hamiltonian cycles. Please see Fig. 9.

|

Theorem 1. Q3 is a panpositionable hamiltonian graph.

Proof: The theorem is proved by mathematical induction
using Lemma 3 as base case. The detailed derivation is
skipped. |

Lemma 4. Let k be an odd integer with k > 5. Then Q5 is
nearly-panpositionable.

Proof: The proof is by brute force and hence is skipped.
|

Theorem 2. Let k be an odd integer with k > 5. QF is nearly-
panpositionable hamiltonian.

Proof: We will prove the theorem using the mathematical
induction. By Lemma 4, Q} is nearly-panpositionable
hamiltonian. With the induction hypothesis, we assume
that QF_, is nearly-panpositionable hamiltonian for some
n > 3. We need to show that QF is nearly-panpositionable
hamiltonian. Let w,v € @QF and I be an integer with
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U3 P32
h? .
1 f 3
2y > £}
D |
1 Ly 2
2 =
Jl o
: u
3 43
(g Rl ) (. 4)
o ¥ o o
Fig. 10. U3 forr =3 and I’ = 9.
d<i< 1l d=d
<Ii< . where d = dgk (u, v).

Case 1. u,v € Q¥ . WL.O.G., let i = 0.
L (wv)=d.

Case 1.1. d <1 < K=

By the induction hypothesm there exist a hamlltoman cycle
Cl = (ah,2i, .. a}, .,al, . |, x}) in Q * for u =
and v = z9. Then we have the hamiltonian cycle C' =
(2, p(8, 7)), 27, 27, . ..,xf p(@ 7x§2

1 k—1 2
k=3 3),inv(p(arf+1 ,mf 04)),

Obviously, ko

v0,] ! 1)7inv(p(xf+_1,
7)), p(mH—l » Ly

. ! ] . 5 7p(m12+1>w12—1)7
v (p(zy 1, 7-1))s P(T74 15 T 1), T0)-

k
Case 1.2, &° _1+1<l< ‘Q L,
By the 1nduct10n hypothesis, for any two vertices =,y €
V( ﬁ 1) and 1 < " < k"~ —1 there exists a hamiltonian cy-
cle C of Q¥ with de(z,y) = I'. We set & = 2}, and y = 2,
then the hamiltonian cycle will be (2§, p(z, zjn-1_ 1), 20)-

Split the hamiltonian cycle into two pathes LY and L}, by
letting Lj, = p(z§, z},) and L, = p(z}, 1, 24u-1_y)-

In [12], it is shown that for all z,y € Q" |, there exists
a hamiltonian path H® of Q ; between z and y. Define
H' = p(hj, hin_y_ )Wlthac—hlandy—h,cnl . By
Lemma 2, for any path with length 2 denoted by (tg, f ,té),
there exists a hamiltonian cycle T% = (t}, p(to,tkn 11),t0)
of Qn'—l; Let ty = hi,, t1 = hi, Zip1 = Rign—1_1»
hy = z,’cn,l , and . Then there is a umque path U* =
(th, (t5, t5), h;;l, (h;;ﬁ,h;: -
hffl,p(hffl,h;f ), t%). For example, let r = 3 and l’ = 9,
then U? = <t§,p(t§,t8),hg,p(h hkn 1_ ) Z}OvLév
Zn-1_y, b, p(h3, h3),t3). Please see Flg. 10 for an illustra-
tion.

2 i— 2—2
) Zl’+17L kn 1_

k-1

5~ such that
—m+7r- k"1 40" +1=10 WLO.G, let u = z)
0 . For simplicity, denote ¢, ,_, as

n—1_
k 1 —-m

2 X 2
) as vj. If r is even,

Let m and 7 be integers and 0 < r <
||
2
and v =z

asvjand 2°,,_,
1 _m—1 s -m

letti = UO, th =0, 21" = ac(l,” and ;.7 = 7" There is

U I'kn 1

Fig. 11.

59"~ 1_17
R

An Example of Case 1.2 with k =9 and | =

a hamiltonian cycle

C

<$8,x(1)7 anLT ap(xqvx};"ﬁfl%i (p(xq 17
Tpnti ) )p(ar e ) inv(p(ey % 2 ),
v

--,p(fﬁ, l’knfl_l)a inv(p(x%, xllc" 1—1)) p(x(l)v U(O))

Uk717,0k72 ...,’UT+4,UT+3 ,U6+4 an(p( r+4 r+4))

P, ), v (o], 0 0)), p(op T, v5”>,.
o202, i (o o

1),I8>.

I
)
oy

D>l plafniy

—'m+27

xgn—l_

Please see Fig. 11 for an illustration, where m = 0, r = 2,
" = 8 and the hamiltonian cycle is

¢ = <‘r87x(1)7x(2)7Lgvp(z%xg"*l—l)vinv(p(x%vmgl)nfl—l))v
p(vZ7U(7))71nV(p(U§7vg)) vl7p( 9"*171+2 15871471),
).

If 7 is odd, let t§ = v}, th = vi, 2§™" = 207" and 2,7, | =

27", There is a hamiltonian cycle

C = (xg,x(lh...,mS,Ll,H inv(p(xy, Thn-1_1)), p(z]~ t
932;711_ ,iHV(P(W’{ 2 xk:gl_l))ap(x1 3 xk'n:jl )

Case2.uc Q" ,ve Qk
For any vertex = in Q
vertex 20

)
-y iIlV(p(I?, xk"—l—l))vp(l‘%a x%"—l—l)v an(p(I%,
1)

Thno1_1)),p(28,0]),v vknfl_l,vkn*l_a...,vr+4,
U™ op ™ plot op ™), inv (p(of 2, 0577)),
(v, vpT0), mv(p(v”'7 et ),

P 20" ) v (o} e,

U?,p($2n7171 7wkn*171)718>'
Pl

—m—+2

and ¢ # j. WL.O.G,, leti = 0.
1, there exists a corresponding
. Set u = xo and v = md,, where d’ is the length

930
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An Example of Case 2.1 with k =7 and I =3 - 771 4+ 11.

of the shortest path between zJ and v = 29 in QZ’El.

Note that for all ¢ < k — 1, there is a hamiltonian cycle
C" = (zf, .., xly, @y sy) In Q.

Case 2.1. [ — d is even.
Let 0 <7 < %21 be an integer, d + 2(t —d') +r- k"' =1,
d<t<k™l'—lande=k—-—1-r.

Let r be an odd integer. We have the hamiltonian cycle C =
(29, 1‘371, :rgfz, - I187T, inv(p(x’ffr, xz;"] 71)),p(x1f77'+1,
o ) v (p(ay TR ), play T ),
inv(p(ef %, 2% ), p(ey 2 ), inv(p(ay
II;}*}—l))’ I%p(l‘g, «TS/,I),p(l’g/, x(t))’ inV(p(ﬁ}i/, 17%))7 1'3/,

oy @y e @G v (p(aS, 3G y), p(aG L 25 ),
inV(P(mgffp ngfl))vp(mgfflv :U;’i_?)l)v ) inv(p(l‘gl 1 mg'—l))7
p(sz,_H,1‘31_1),inv(p(.rtl+1,mé,_ﬂ),p(m&_h178),1'0>.
Please see Fig. 12 for an illustration, where r

d 5, t 7 and the hamiltonian cycle is
<$87 :L'87 ‘rgv 1‘6, inv(p(x‘ll, $$n7171))7p(1'?7 x?nflfl)v inV(p(x
29,1 _4)), 21, p(2, 29), inv(p(es, 27)), 23, 23, inv(p(23, 23)),
p(xg, 23), inv(p(z§, x})), p(ag, 25), ).

Let r be an even integer. We have the hamiltonian cycle C' =

..y

(1‘8, 1‘(];'71, :rgfz, - legf",p(m’fﬂ", m’,:;f1,1)7 inv(p(x’ff'"ﬂ,
ngff_ll))ap(xllcir+27 "Ellz;—rljfl)ﬂ inv(p(xllciﬂ%a xl]z;f;r_gl))a o
p(wlf_27 $£Zfl_1)7 inV(p(xk_lv 'rk_:7llf.1_1))7 x(fvp(x% .%'2/,1),
Py, ), 0 (Pl 1)), % o s sy (1 )

inv(p(S., 2570), p(as Fy, 262 inv(p(a 2y, 2572), s

p(zi’-kl’ 1’3’—1)’ inv(p(xtlJrl’ xtli’—l))v p(fﬂgﬂ ) 178)7 g)-

Case 2.2. [ — d is odd.

By the induction hypothesis, there exists a hamiltonian cycle
D' = (yh, yi, s Yhin—s) in Q’;’i’l such that =} = y, xfj, =y
and the length I’ of the path joining yj to yj, in Q¥ is the
smallest integer when I’ — d’ is odd. Let 0 < r < % be an
integer, d+1' —d' +2(t =) +r- k"1 =1, d <t <k""!1-1
ande=k—1—r.

Let r be an odd integer. We have the hamiltonian cycle C =
W v o e vo invp(yr Ty ), p(ur
y]]z;—rfr_ll)a inv(p(yllcir+27 yZ;fffl))vp(yf7T+3’ y:;ffrfl), e
inv(p(yy =yt ) P2 ) inv(p(yy ™yt
Y0, (Y8 Y1) YL U9 ) IV (DYl Y8)) s ity s Y o0 Ui
v (p(yf 1y -1)) P 1 i) inv(p(yi 3w 3))s
p(yifiv y;:?i)’ ) iIlV(p(yl3,+1, 3/13’—1))71’(1/12'+17 y12'—1)7

v (p(Yts1: Yb—1))s PYL41:90): 90)-

)

Let 7 be an even integer. We have the hamiltonian cycle C' =

Whryo s o P Tyl ) v (p(yr T
ylg;fj—ll))vp(ylf_r+2> Z/Z:ﬁ?l), inv (p(yF=""3, ?/;]:;fl-’—_Sl)), i

Pt g ) iV (p(y ™y ) y8 P (U3 yE ),
P Y ) 0V (D(Y s YE)) s Yo oo Yl oo Ui P(Yfr 15 Yo 1)
inv (p(y5 3, ye ) PRS2 ve =), v (p(ye s YD), oo
p(yl2’+l7 yl%—l)v inv(p(ytlJrh yll’—l))vp(y?+1’ y8)7 yg)

By the mathematical induction, the theorem is proved. H

IV. QF IS BIPANPOSITIONABLE, WHERE k > 4 IS AN EVEN
INTEGER AND 7 > 2 IS AN INTEGER.

Lemma 5. Let k be an even integer with k > 4. Then Q5 is
bipanpositionable.

Proof: The proof is by brute force and hence is skipped.
]

Theorem 3. Let k be an even integer with k > 4. QF is
bipanpositionable hamiltonian.

Proof: We will prove the theorem using the mathematical
induction. By Lemma 5, Q% is bipanpositionable hamiltonian.
With the induction hypothesis, we assume that Q,’fhl is
bipanpositionable hamiltonian for some n > 4. We need to
show that Q¥ is bipanpositionable hamiltonian. Note that Q2
is bipanpositionable [7]. Therefore, Q% = @32, is bipanposi-
tionable. It suffices to prove the cases for k£ > 6.

The proof is similar to Theorem 2, so we’ll skip it. Readers
can follow the similar techniques in Theorem 2 to construct
the required hamiltonian cycles. |

V. CONCLUSIONS

In this paper, we prove that the k-ary m-cube Q3 is
panpositionable hamiltonian and QZ is nearly-papositionable
for any odd integer k > 5. Moreover, we prove that Q¥ is
bipanpositionable hamiltonian for any even integer k > 4. It
is known that the hypercube, @2, is bipanpositionable [7].
Thus QF is bipanpositionable for all even integers k > 2.

The panpositionability of any k-ary n-cube has been com-
pletely studied and the result is optimal in the sense that given
any two vertices v and v, there exists no more hamiltonian
cycle on which d¢(u,v) equals any of the numbers we miss
in the nearly-panpositionable Q* when k is odd.
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