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The Number of Rational Points on Elliptic Curves
y2 = x3 + b2 Over Finite Fields

Betül Gezer, Hacer Özden, Ahmet Tekcan, Osman Bizim

Abstract—Let p be a prime number, Fp be a finite field and let Qp

denote the set of quadratic residues in Fp. In the first section we give
some notations and preliminaries from elliptic curves. In the second
section, we consider some properties of rational points on elliptic
curves Ep,b : y2 = x3 + b2 over Fp, where b ∈ F∗

p. Recall that the
order of Ep,b over Fp is p + 1 if p ≡ 5(mod 6). We generalize this
result to any field Fn

p for an integer n ≥ 2. Further we obtain some
results concerning the sum

∑
[x]

Ep,b(Fp) and
∑

[y]
Ep,b(Fp), the

sum of x− and y−coordinates of all points (x, y) on Ep,b, and also
the the sum

∑
(x,0)

Ep,b(Fp), the sum of points (x, 0) on Ep,b.

Keywords—elliptic curves over finite fields, rational points on
elliptic curves.

I. INTRODUCTION

Mordell began his famous paper [8] with the words Math-
ematicians have been familiar with very few questions for so
long a period with so little accomplished in the way of general
results, as that of finding the rational points on elliptic curves.
The history of elliptic curves is a long one, and exciting
applications for elliptic curves continue to be discovered.
Recently, important and useful applications of elliptic curves
have been found for cryptography [4,6,7], for factoring large
integers [5] and for primality proving [2,3]. The mathematical
theory of elliptic curves was also crucial in the proof of
Fermat’s Last Theorem [13].

Let q be a positive integer, Fq be a finite field and let Fq

denote the algebraic closure of Fq with char(Fq) �= 2, 3. An
elliptic curve E over Fq is defined by an equation

E : y2 = x3 + ax + b,

where a, b ∈ Fq and 4a3 + 27b2 �= 0. We can view an elliptic
curve E as a curve in projective plane P2, with a homogeneous
equation y2z = x3 + axz2 + bz3, and one point at infinity,
namely (0, 1, 0). This point ∞ is the point where all vertical
lines meet. We denote this point by O. Let

E(Fq) = {(x, y) ∈ Fq × Fq : y2 = x3 + ax + b}
∪{O}

denote the set of rational points (x, y) on E. Then it is a
subgroup of E. The order of E(Fq), denoted by #E(Fq), is
defined as the number of the rational points on E and is given
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by

#E(Fq) = 1 +
∑

x∈Fq

(
1 +

x3 + ax + b

Fq

)
(1)

= q + 1 +
∑

x∈Fq

(
x3 + ax + b

Fq

)
,

where ( .
Fq

) denotes the Legendre symbol (for further details
on rational points on elliptic curves see [9,10,12]).

Let p be a prime number and let q = pn for integer n > 1.
Let

N = q + 1 − a. (2)

Then a is called the trace of Frobenius and satisfies the
inequality

|a| ≤ 2
√

q (3)

known as the Hasse interval [12, p.91]. Then there is an elliptic
curve E defined over Fq such that #E(Fq) = N if and only
if a satisfies (3) and also satisfies one of the following (see
[12, p.92]):

1) gcd(a, p) = 1
2) n is even and a = ±2

√
q

3) n is even, p is not equivalent to 1(mod 3) and a = ±√
q

4) n is odd, p = 2, 3 and a = ±p(n+1)/2

5) n is even, p is not equivalent to 1(mod 4) and a = 0
6) n is odd and a = 0

The formula (1) can be generalized to any field Fqn for an
integer n ≥ 2. Let #E(Fq) = q + 1 − a and let

X2 − aX + q = (X − α)(X − β). (4)

Then the order of E over Fqn is

#E(Fqn) = qn + 1 − (αn + βn). (5)

II. THE NUMBER OF RATIONAL POINTS ON ELLIPTIC

CURVE y2 = x3 + b2 OVER Fp.

In [11], the third author consider the elliptic curves E : y2 =
x3 − t2x over a finite field Fp, where p is a prime number
and t ∈ F∗

p. He obtain some results concerning rational points
on E.

In the present paper we consider the elliptic curves

Ep,b : y2 = x3 + b2 (6)

over Fp. Recall that if p ≡ 5(mod 6), then #E(Fp) = p + 1.
But when p ≡ 1(mod 6), then there is no rule for #E(Fp).
Therefore we assume that p ≡ 5(mod 6) throughout the paper.
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First we give the following theorem.

Theorem 2.1: Let p ≡ 5(mod 6) be a prime. If (p−1, 3) =
1, then the congruence

x3 ≡ b(mod p)

has a solution for each b ∈ Fp, that is every b ∈ Fp is a cubic
residue.

Proof: Let p ≡ 5(mod 6). Then p = 5 + 6q for some
q ∈ Z. Then

(p − 1, 3) = (6q + 4, 3) = 1.

Hence we have either p = 3 or p ≡ 2(mod 3). So if p = 3,
then

03 ≡ 0(mod 3), 13 ≡ 1(mod 3), 23 ≡ 2(mod 3)

in F3. Therefore every b ∈ F3 is a cubic residue.
If p ≡ 2(mod 3), then p = 2 + 3q for q ∈ Z. Therefore the

norm of p is

|p| = pp = (2 + 3q)(2 + 3q) = 9q2 + 12q + 4

and hence

|p| − 1
3

= 3q2 + 4q + 1.

So we have

b
|p|−1

3 = b3q2+4q+1.

Hence bp−1 ≡ 1(mod p) by Fermat’s Little Theorem. So

bp−1 ≡ b3q+2−1 ≡ b3q+1 ≡ 1(mod p).

Consequently

b
|p|−1

3 ≡ (b3q+1)q+1 ≡ 1q+1 ≡ 1(mod p).

Now let 1 ≤ b ≤ p − 1 and let 0 ≤ q ≤ p − 2. Let g be
a primitive root modulo p such that gq ≡ b(mod p). Hence
there are integers u and v such that

3u + (p − 1)v = 1 (7)

since (3, p − 1) = 1. If we take x = uq and y = vq, then (7)
becomes

3x + (p − 1)y = q.

Therefore we get

b ≡ gq(mod p)
≡ gsx+(p−1)y(mod p)
≡ (gx)3(gp−1)y(mod p)
≡ (gx)3(mod p)

since gp−1 ≡ 1(mod p), that is, b is a cubic residue modulo
p. Further 03 ≡ 0(mod p). Therefore all elements of Fp are
cubic residues.

We know that the order of Ep,b : y2 = x3 + b2 over Fp is
#Ep,b(Fp) = p+1. Now we generalize this result to Fpn for
a positive integer n ≥ 2.

Theorem 2.2: Let Ep,b : y2 = x3 + b2 be an elliptic curve
over Fp. Then

#Ep,b(Fpn) =

⎧⎨
⎩

(p
n
2 − 1)2 if n ≡ 0(mod 4)

pn + 1 if n ≡ 1, 3(mod 4)
(p

n
2 + 1)2 if n ≡ 2(mod 4).

Proof: Let Ep,b : y2 = x3 + b2. Then the order of Ep,b

over Fp is #Ep,b(Fp) = p+1. Therefore a = 0 by (2). Then

X2 + p = (X − i
√

p)(X + i
√

p)
= (X − α)(X − β)

for α = i
√

p and β = −i
√

p.
Let n ≡ 0(mod 4), say n = 4k for an integer k ≥ 1. Then

αn + βn = (i
√

p)4k + (−i
√

p)4k

= i4k(
√

p)4k + (−i)4k(
√

p)4k

= p2k + p2k

= 2p2k

= 2p
n
2 .

So

#Ep,b(Fpn) = pn + 1 − (αn + βn)
= pn + 1 − 2p

n
2

= (p
n
2 − 1)2

by (5).
Let n ≡ 1(mod 4), say n = 1 + 4k. Then

αn + βn = (i
√

p)4k+1 + (−i
√

p)4k+1

= i4k+1(
√

p)4k+1 + (−i)4k+1(
√

p)4k+1

= i(
√

p)4k+1 − i(
√

p)4k+1

= 0

So #Ep,b(Fpn) = pn + 1.
Let n ≡ 2(mod 4), say n = 2 + 4k. Then

αn + βn = (i
√

p)4k+2 + (−i
√

p)4k+2

= i4k+2(
√

p)4k+2 + (−i)4k+2(
√

p)4k+2

= −p2k+1 − p2k+1

= −2p2k+1

= −2p
n
2 .

So #Ep,b(Fpn) = pn + 1 + 2p
n
2 = (p

n
2 + 1)2.

Finally, let n ≡ 3(mod 4), say n = 3 + 4k. Then

αn + βn = (i
√

p)4k+3 + (−i
√

p)4k+3

= i4k+3(
√

p)4k+3 + (−i)4k+3(
√

p)4k+3

= −i(
√

p)4k+3 + i(
√

p)4k+3

= 0

So #Ep,b(Fpn) = pn + 1.

Example 2.1: Let E11,2 : y2 = x3 + 4 be an elliptic curve
over F11. Then the order of E11,2 over F11n is

#E11,2(F11n) =

⎧⎪⎪⎨
⎪⎪⎩

214329600 for n = 8
2357947692 for n = 9
285311670612 for n = 11
25937746704 for n = 10.
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Let [x] and [y] denote the x−coordinates and y−coordinates
of the points (x, y) on Ep,b, respectively. Then we have the
following results.

Theorem 2.3: The sum of [x] on Ep,b is

∑
[x]

Ep,b(Fp) =
∑

[x]

(
1 +

(
x3 + b2

Fp

))
.x

Proof: We know that

(
x3 + b2

Fp

)
=

⎧⎨
⎩

0 if x3 + b2 = 0
1 if x3 + b2 ∈ Qp

−1 if x3 + b2 /∈ Qp.

Let
(

x3+b2

Fp

)
= 0. Then x3+b2 = 0. Hence the cubic equation

x3 + b2 = 0 has only one solution x = 3
√−b2. Therefore

y2 ≡ 0(mod p) ⇔ y ≡ 0(mod p).

So for such a point x, we have a point (x, 0) on Ep,b. Therefore
we get (x + 0).x = x is added to the sum.

Let
(

x3+b2

Fp

)
= 1. Then x3 + b2 is a square in Fp. Let

x3 + b2 = t2 for any t ∈ F∗
p. Then

y2 ≡ t2(mod p) ⇔ y = ±t(mod p),

that is, for any point (x, t) on Ep,b, the point (x,−t) is also on
Ep,b. Therefore for each point (x, y), we have (1+1).x = 2x
is added to the sum.

Let
(

x3+b2

Fp

)
= −1. Then x3+b2 is not a square in Fp. Then

the equation y2 ≡ x3 + b2(mod p) has no solution. Therefore
for each point (x, y) we have (1 + (−1)).x = 0.

Theorem 2.4: The sum of [y] on Ep,b is

∑
[y]

Ep,b(Fp) =
p2 − p

2
.

Proof: Let Ep,b : y2 = x3 + b2 be an elliptic curve over
Fp. The cubic equation x3+b2 = 0 has a solution x = 3

√−b2.
For the other values of x, we have both x and −x. One of
these gives two points. The one makes x3 +b2 is a square, i.e.(

x3+b2

Fp

)
= 1. There are p−1

2 points x in Fp such that x3 + b2

is a square. Let x3 + b2 = t2 for any t ∈ F∗
p. Then we have

y2 ≡ t2(mod p) ⇔ y ≡ ±t(mod p).

Hence y = t and y = p − t. So the sum of these values of y
is t + (p − t) = p. We know that there are p−1

2 points x in
Fp such that y2 = x3 + b2 is a square. Therefore, the sum of
ordinates of all points (x, y) is pp−1

2 , that is

∑
[y]

Ep,b(Fp) =
p2 − p

2
.

Theorem 2.5: Let Ep,b denote the set of the family of all
elliptic curves over Fp. Then

∑
b∈F∗

p

#Ep,b(Fp) =
p2 − 1

2
.

Proof: Note that there are p−1
2 elliptic curves Ep,b : y2 =

x3 + b2 over Fp, and also the order of Ep,b over Fp is p + 1,

i.e. #Ep,b(Fp) = p + 1. Therefore the total number of the
points (x, y) on all elliptic curves Ep,b in Ep,b over Fp is

∑
b∈F∗

p

#Ep,b(Fp) = (p + 1)
p − 1

2
=

p2 − 1
2

.

We can give the following two theorems for the rational
points (x, 0) on Ep,b.

Theorem 2.6: Let Ep,b : y2 = x3 + b2 be an elliptic curve
over Fp, and let (x, 0) be a point on Ep,b. Then

x ∈ Qp ⇔ p ≡ 1(mod 4)

and

x /∈ Qp ⇔ p ≡ 3(mod 4).

Proof: Let (x, 0) be a point on Ep,b and let x ∈ Qp.
Then x3 ≡ −b2(mod 4) since 0 ≡ x3 + b2(mod 4), and x3 =
x2.x ∈ Qp. Note that −b2 ∈ Qp if and only if −1 ∈ Qp, and
hence p ≡ 1(mod 4).

Conversely, let p ≡ 1(mod 4), and let (x, 0) be a point on
Ep,b. Then x3 ≡ −b2(mod 4). Since −1 ∈ Qp and b2 ∈ Qp,
we have x3 ∈ Qp and hence x ∈ Qp.

The second assertion can be proved as in the same way that
the first assertion was proved.

Theorem 2.7: Let Ep,b : y2 = x3 + b2 be an elliptic curve
over Fp, and let (x, 0) be a point on Ep,b.

1) If p ≡ 1(mod 4), then∑
(x,0)

Ep,b =
∑

t∈Qp

t

=
p(p − 1)(p + 1)

24

2) If p ≡ 3(mod 4), then∑
(x,0)

Ep,b =
∑

t/∈Qp

t

=
p(p − 1)(11 − p)

24
.

Proof: 1) Let p ≡ 1(mod 4). Then we proved in Theorem
2.6 that there exits only one point x ∈ Qp such that (x, 0) is
a point on Ep,b. We know that there are p−1

2 elements in Qp.
Therefore there are p−1

2 points (x, 0) on Ep,b. Consequently
the sum of x−coordinates of all points (x, 0) on Ep,b is equal
to the sum of all elements in Qp, that is

∑
(x,0)

Ep,b =
∑

t∈Qp

t. (8)

Let Up = {1, 2, · · · , p − 1} be the set of units in Fp. Then
then taking squares of elements in Up, we would obtain

Qp = {1, 4, 9, · · · , (p − 1
2

)2}.

Then the sum of all elements in Qp is

1 + 4 + 9 + · · · + p2 − 2p + 1
4

=
p(p − 1)(p + 1)

24
. (9)
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(8) and (9) yield that∑
(x,0)

Ep,b =
∑

t∈Qp

t

=
p(p − 1)(p + 1)

24
.

2) Let p ≡ 3(mod 4). Then there exits a point x /∈ Qp such
that (x, 0) is a point on Ep,b. We know that there are p−1

2

elements in Up − Qp. Therefore there are p−1
2 points (x, 0)

on Ep,b. Consequently the sum of x−coordinates of all points
(x, 0) on Ep,b is equal to the sum of all elements in Up −Qp,
that is ∑

(x,0)
Ep,b =

∑
t∈Up−Qp

t. (10)

We proved as above that the sum of all elements in Qp is

p(p − 1)(p + 1)
24

.

Therefore the sum of all elements in Up − Qp is

p(p − 1)
2

− p(p − 1)(p + 1)
24

=
p(p − 1)(11 − p)

24
. (11)

Applying (10) and (11) we conclude that∑
(x,0)

Ep,b =
∑

t/∈Qp

t

=
p(p − 1)(11 − p)

24
.

Theorem 2.8: Let b ∈ Qp be a fixed number. Then the order
of Ep,b over Fp is

#Ep,b(Fp) =
p − 3

2
for x ∈ Qp.

Proof: Let b ∈ Qp be fixed and let x ∈ Qp. Recall that
the order of an elliptic curve E over a finite field Fp is given
in (1) as

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))
(12)

=
∑

x∈Qp

1 +
∑

x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)
.

Note that the set of b2x3’s and the set of x3’ s are same when
p ≡ 2(mod 3), that is,

∑
x∈Qp

(
x3 + b2

Fp

)
=

∑
x∈Qp

(
b2x3 + b2

Fp

)
.

Therefore we can rewrite (12) as

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))
(13)

=
∑

x∈Qp

1 +
∑

x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2x3 + b2

Fp

)
.

The last sum over x ∈ Qp can be rearranged as
∑

x∈Qp

(
b2x3 + b2

Fp

)
=

∑
x∈Qp

(
b2(x3 + 1)

Fp

)

=
(

b2

Fp

) ∑
x∈Qp

(
x3 + 1

Fp

)
.

Therefore we can rewrite (13) as

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))
(14)

=
∑

x∈Qp

1 +
∑

x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2(x3 + 1)

Fp

)

=
p − 1

2
+

(
b2

Fp

) ∑
x∈Qp

(
x3 + 1

Fp

)
.

Note that b2 ∈ Qp, that is,
(

b2

Fp

)
= 1. Therefore (14) becomes

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))
(15)

=
∑

x∈Qp

1 +
∑

x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2(x3 + 1)

Fp

)

=
p − 1

2
+

(
b2

Fp

) ∑
x∈Qp

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + 1

Fp

)
.

Note that x takes p−1
2 values between 1 and p − 1 since x ∈

Qp. So we can rewrite (15) as

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))
(16)

=
∑

x∈Qp

1 +
∑

x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2(x3 + 1)

Fp

)

=
p − 1

2
+

(
b2

Fp

) ∑
x∈Qp

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + 1

Fp

)
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=
p − 1

2
+

∑
1≤x≤p−1

(
x3 + 1

Fp

)
.

On the other hand,
(

(p−1)3+1
Fp

)
= 0 for x = p − 1. Hence

(16) becomes

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))
(17)

=
∑

x∈Qp

1 +
∑

x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2(x3 + 1)

Fp

)

=
p − 1

2
+

(
b2

Fp

) ∑
x∈Qp

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
1≤x≤p−1

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
1≤x≤p−2

(
x3 + 1

Fp

)
.

We know that all elements of Fp are cubic residues by
Theorem 2.1. Consequently the set of consisting of the values
of x3 is the same with the set of values of x. So we can rewrite
(17) as

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))
(18)

=
∑

x∈Qp

1 +
∑

x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2(x3 + 1)

Fp

)

=
p − 1

2
+

(
b2

Fp

) ∑
x∈Qp

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
1≤x≤p−1

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
1≤x≤p−2

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
1≤x≤p−2

(
x + 1
Fp

)
.

It is proved in [1, p.128] that, the number of consecutive
pairs of quadratic residues in Fp is given by formula

ηp =
(p − 4 − (−1)

p−1
2 )

4
. (19)

Hence we have two cases:
Case 1: Let p ≡ 1(mod 4). Then by the Chinese remainder

theorem we get p ≡ 5(mod 12). So (−1)
p−1
2 = 1. Therefore

ηp =
p − 5

4
(20)

by (19). Further −1 ∈ Qp since p ≡ 5(mod 12). So there are

p − 1
2

− 1 =
p − 3

2

values of x between 1 and p − 2 lying in Qp. Further p−5
4

values of x+1 are also in Qp by (20). Consequently there are
p−5
4 times +1 and p−3

2 − p−5
4 = p−1

4 times −1. So

p − 5
4

− p − 1
4

= −1.

Therefore
∑

1≤x≤p−2

(
x + 1
Fp

)
= −1.

So (18) becomes

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))

=
∑

x∈Qp

1 +
∑

x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2(x3 + 1)

Fp

)

=
p − 1

2
+

(
b2

Fp

) ∑
x∈Qp

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
1≤x≤p−1

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
1≤x≤p−2

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
1≤x≤p−2

(
x + 1
Fp

)

=
p − 1

2
− 1

=
p − 3

2
.

Case 2: Let p ≡ 3(mod 4). Then by the Chinese reminder
theorem we get p ≡ 11(mod 12). So (−1)

p−1
2 = 1. Therefore

ηp =
p − 3

4
(21)

by (19). Further −1 /∈ Qp since p ≡ 11(mod 12). So there are

p − 1
2

− 0 =
p − 1

2
values of x between 1 and p − 2 lying in Qp since p − 1 /∈
Qp. Further p−3

4 values of x + 1 are also in Qp by (21).
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Consequently, there are p−3
4 times +1 and p−1

2 − p−3
4 = p+1

4
times −1. So

p − 3
4

− p + 1
4

= −1.

Therefore
∑

1≤x≤p−2

(
x + 1
Fp

)
= −1.

So (18) becomes

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))

=
∑

x∈Qp

1 +
∑

x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2x3 + b2

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
b2(x3 + 1)

Fp

)

=
p − 1

2
+

(
b2

Fp

) ∑
x∈Qp

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
x∈Qp

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
1≤x≤p−1

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
1≤x≤p−2

(
x3 + 1

Fp

)

=
p − 1

2
+

∑
1≤x≤p−2

(
x + 1
Fp

)

=
p − 1

2
− 1

=
p − 3

2
.

Hence in two cases we have

#E(Fp) =
p − 3

2
.

Now we can give the following theorem for x ∈ Up − Qp

without giving its proof since it is similar.

Theorem 2.9: Let b ∈ Qp be a fixed number. Then the order
of Ep,b over Fp is

#Ep,b(Fp) =
p + 3

2
for x ∈ Up − Qp.

Theorem 2.10: Let p ≡ 5(mod 6) and let b ∈ Up − Qp be
a fixed number. Then the order of Ep,b over Fp is

#Ep,b(Fp) =
p − 1

2
for x ∈ Qp.

Proof: Note that b ∈ Qp if and only if −b ∈ Qp when
p ≡ 5(mod 12) and b ∈ Qp if and only if −b ∈ Up−Qp when
p ≡ 11(mod 12). By (1), we get

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)
.

Case 1: Let p ≡ 1(mod 4). Then by the Chinese remainder
theorem we get p ≡ 5(mod 12). Then the order Qp is p−1

2
which is an even number. So we have(

x3 + b2

Fp

)
= 1

for exactly half of the values of x ∈ Qp, and(
x3 + b2

Fp

)
= −1

for exactly other half of the values of x ∈ Qp. So
∑

x∈Qp

(
x3 + b2

Fp

)
= 0.

Therefore

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+ 0

=
p − 1

2
.

Case 2: Let p ≡ 3(mod 4). Then by the Chinese reminder
theorem we get p ≡ 11(mod 12). Then p−1

2 is odd. It is easily
seen that (

x3 + b2

Fp

)
= 0

for x = −b. Further(
x3 + b2

Fp

)
= 1

for exactly p−3
4 values of x ∈ Qp, and(

x3 + b2

Fp

)
= −1

for exactly p−3
4 values of x ∈ Qp. So

∑
x∈Qp

(
x3 + b2

Fp

)
= 0.

Therefore

#E(Fp) =
∑

x∈Qp

(
1 +

(
x3 + b2

Fp

))

=
p − 1

2
+

∑
x∈Qp

(
x3 + b2

Fp

)

=
p − 1

2
+ 0

=
p − 1

2
.
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