ISSN: 2517-9934 Vol:1, No:1, 2007

The Number of Rational Points on Elliptic Curves $y^2 = x^3 + a^3$ on Finite Fields

Musa Demirci, Nazlı Yıldız İkikardeş, Gökhan Soydan, İsmail Naci Cangül

Abstract—In this work, we consider the rational points on elliptic curves over finite fields \mathbf{F}_p . We give results concerning the number of points $N_{p,a}$ on the elliptic curve $y^2 \equiv x^3 + a^3 \pmod{p}$ according to whether a and x are quadratic residues or non-residues. We use two lemmas to prove the main results first of which gives the list of primes for which -1 is a quadratic residue, and the second is a result from [1]. We get the results in the case where p is a prime congruent to 5 modulo 6, while when p is a prime congruent to 1 modulo 6, there seems to be no regularity for $N_{p,a}$.

Keywords—Elliptic curves over finite fields, rational points, quadratic residue.

I. Introduction

Let **F** be a field of characteristic greater than 3. The study of rational points on elliptic curves

$$y^2 = x^3 + Ax + B \tag{1}$$

over \mathbf{F}_p is very interesting and many mathematicians starting with Gauss have studied them, see ([9],p.68,[12],p.2). In this paper, a special class of these curves, called Bachet elliptic curves, is studied. These are given with the equation

$$y^2 = x^3 + a^3, (2)$$

where a is an element in the field. We fix the number a and let x vary on Q_p or Q_p' , where these denote the sets of quadratic residues and non-residues, respectively.

In [6], starting with a conjecture from 1952 of Dénes which is a variant of Fermat-Wiles theorem, Merel illustrates the way in which Frey elliptic curves have been used by Taylor, Ribet, Wiles and the others in the proof of Fermat-Wiles theorem. Serre, in [7], gave a lower bound for the Galois representations on elliptic curves over the field Q of rational points. In the case of a Frey curve, the conductor N of the curve is given by the help of the constants in the abc conjecture. In [5], Ono recalls a result of Euler, known as Euler's concordant forms problem, about the classification of those pairs of distinct non-zero integers M and N for which there are integer solutions (x, y, t, z) with $xy \neq 0$ to $x^2 + My^2 = t^2$ and $x^2 + Ny^2 = z^2$. When M = -N, this becomes the congruent number problem, and when M = 2N, by replacing x by x - N in E(2N, N), a special form of

Musa Demirci, Gokhan Soydan and Ismail Naci Cangul are with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, emails: mdemirci@uludag.edu.tr, gsoydan@uludag.edu.tr, cangul@uludag.edu.tr. Nazli Yildiz İkikardes is with the Balikesir University, Department of Mathematics, Faculty of Science, Balkesir-TURKEY. email: nyildiz@balikesir.edu.tr. This work was supported by the research fund of Uludag University project no: F-2004/40 and F-2003/63.

the Frey elliptic curves is obtained as $y^2=x^3-N^2x$. Using Tunnell's conditional solution to the congruent number problem using elliptic curves and modular forms, Ono studied the elliptic curve $y^2=x^3+(M+N)x^2+MNx$ denoted by $E_Q(M,N)$ over Q. He classified all the cases and hence reduced Euler's problem to a question of ranks. In [3], Parshin obtaines an inequality to give an effective bound for the height of rational points on a curve. In [4], the problem of boundedness of torsion for elliptic curves over quadratic fields is settled.

If F is a field, then an elliptic curve over F has, after a change of variables, a form

$$y^2 = x^3 + Ax + B$$

where A and $B \in F$ with $4A^3 + 27B^2 \neq 0$ in F. Here $D = -16\left(4A^3 + 27B^2\right)$ is called the discriminant of the curve. Elliptic curves are studied over finite and infinite fields. Here we take F to be a finite prime field F_p with characteristic p > 3. Then $A, B \in F_p$ and the set of points $(x,y) \in F_p \times F_p$, together with a point o at infinity is called the set of F_p -rational points of E on F_p and is denoted by $E(F_p)$. N_p denotes the number of rational points on this curve. It must be finite.

In fact one expects to have at most 2p+1 points (together with o)(for every x, there exist a maximum of 2 y's). But not all elements of F_p have square roots. In fact only half of the elements of F_p have a square root. Therefore the expected number is about p+1.

Here we shall deal with Bachet elliptic curves $y^2 = x^3 + a^3$ modulo p. Some results on these curves have been given in [8], and [11].

A historical problem leading to Bachet elliptic curves is that how one can write an integer as a difference of a square and a cube. In another words, for a given fixed integer c, search for the solutions of the Diophantine equation $y^2 - x^3 = c$. This equation is widely called as Bachet or Mordell equation. This is because L. J. Mordell, in twentieth century, made a lot of advances regarding this and some other similar equations. The existance of duplication formula makes this curve interesting. This formula was found in 1621 by Bachet. When (x, y)is a solution to this equation where $x, y \in Q$, it is easy to show that $\left(\frac{x^4-8cx}{4y^2}, \frac{-x^6-20cx^3+8c^2}{8y^3}\right)$ is also a solution for the same equation. Furthermore, if (x,y) is a solution such that $xy \neq 0$ and $c \neq 1$, -432, then this leads to infinitely many solutions, which could not proven by Bachet. Hence if an integer can be stated as the difference of a cube and a square, this could be done in infinitely many ways. For example if ISSN: 2517-9934 Vol:1, No:1, 2007

we start by a solution (3,5) to $y^2 - x^3 = -2$, by applying duplication formula, we get a series of rational solutions $(3,5), (\frac{129}{10^2}, \frac{-383}{10^3}), (\frac{2340922881}{7660^2}, \frac{113259286337292}{7660^3}),$ Let $N_{p,a}$ denote the number of rational points on (2) modulo p. When $p \equiv 1 \pmod{6}$, there is no rule for $N_{p,a}$. In this paper, we calculate $N_{p,a}$ when $p \equiv 5 \pmod{6}$. First we have

Lemma 1.1: If $p \equiv 5 \pmod{12}$, then $-1 \in Q_p$, and if $p \equiv 11 \pmod{12}$, then $-1 \in Q'_p$.

II. Calculating $N_{p,a}$ when $p \equiv 5 \pmod{6}$ is prime.

Theorem 2.1: Let $p \equiv 5 \pmod{6}$ be prime and $a \in Q_p$ be fixed. Then for $x \in Q_p$

$$N_{p,a} = \frac{p-3}{2}.$$

Proof: When $x \in Q_p$, it is well-known that

$$N_{p,a} = \sum_{x \in Q_p} (1 + \chi(x^3 + a^3))$$

$$= \sum_{x \in Q_p} 1 + \sum_{x \in Q_p} \chi(x^3 + a^3)$$

$$= \frac{p-1}{2} + \sum_{x \in Q_p} \chi(x^3 + a^3)$$

$$= \frac{p-1}{2} + \sum_{x \in Q_p} \chi(a^3 x^3 + a^3),$$

as the set of a^3x^3 's is the same as the set of x^3 's when $p \equiv 2$ (mod 3). Hence using the multiplicativity of χ , we have

$$N_{p,a} = \frac{p-1}{2} + \chi(a^3) \cdot \sum_{x \in Q_p} \chi(x^3 + 1)$$
$$= \frac{p-1}{2} + \sum_{x \in Q_p} \chi(x^3 + 1)$$

as $\chi(a^3) = \chi(a) = 1$ for $a \in Q_p$. Then we only need to show

$$\sum_{x \in O_n} \chi(x^3 + 1) = -1. \tag{3}$$

Note that, as $x \in Q_p$, x takes $\frac{p-1}{2}$ values between 1 and p-1. Therefore we can write (3) as

$$\sum_{x \in Q_p}^{p-1} \chi(x^3 + 1) = -1.$$

For x = p - 1, $\chi((p - 1)^3 + 1) = 0$. Then (3) becomes

$$\sum_{x \in Q_n}^{p-2} \chi(x^3 + 1) = -1.$$

First, let $p \equiv 5 \pmod{12}$. Then as we can think of p as $p \equiv 2$ $(mod \ 3)$, all elemets of \mathbf{F}_p are cubic residues. Therefore the set consisting of the values of x^3 is the same with the set of values of x. Therefore the last equarray becomes

$$\sum_{x \in O_n}^{p-2} \chi(x+1) = -1. \tag{4}$$

Recall that the number of consecutive pairs of quadratic residues in \mathbf{F}_p is given by the formula

$$n_p = \frac{1}{4}(p-4-(-1)^{\frac{p-1}{2}}),$$

see ([1], p.128).

There are two cases to consider.

A) Let $p \equiv 1 \pmod{4}$. Then by the Chinese reminder theorem we know that $p \equiv 5 \pmod{12}$. Here, $-1 \in Q_p$ by lemma 1. Hence

$$n_p = \frac{p-5}{4}. (5$$

By lemma 1, there are $\frac{p-1}{2}-1=\frac{p-3}{2}$ values of x between 1 and p-2 lying in Q_p . By (5), $\frac{p-5}{4}$ of the values of x+1 are also in Q_p . Finally, in (4), there are $\frac{p-5}{4}$ times +1 and $\frac{p-3}{2} - \frac{p-5}{4} = \frac{p-1}{4}$ times -1, implying the result.

B) Let $p \equiv 3 \pmod{4}$. Then $-1 \in Q_p'$ and by the Chinese reminder theorem we have $p \equiv 11 \pmod{12}$. Similarly to A), we deduce

$$n_p = \frac{p-3}{4}$$
.

By lemma 1, there are $\frac{p-1}{2}-0=\frac{p-1}{2}$ values of x between 1 and p-2 lying in Q_p , as $p-1\in Q_p'$. For such values of x, there are $\frac{p-3}{4}$ values of x+1 also in Q_p . Therefore in (4), there are $\frac{p-3}{4}$ times +1 and $\frac{p-1}{2}-\frac{p-3}{4}=\frac{p+1}{4}$ times -1, implying the result.

We already have shown that the number $N_{p,a}$ is $\frac{p-3}{2}$ when a and x belong to Q_p . Authors, in [11], showed that, excluding the point at infinity, the total number of rational points on (2) is p. Therefore we can easily deduce the following:

Theorem 2.2: Let $p \equiv 5 \pmod{6}$ be prime and $a \in Q_p$ be fixed. Then for $x \in Q_p'$

$$N_{p,a} = \frac{p+3}{2}.$$

Proof: Immediately follows from Theorem 2 and the

This concludes the calculation of $N_{p,a}$ when $a \in Q_p$. Now we consider the other possibility.

Theorem 2.3: Let $p \equiv 5 \pmod{6}$ be prime and $a \in Q_p'$ be fixed. Then for $x \in Q_p$

$$N_{p,a} = \frac{p-1}{2}.$$

Recall that

$$N_{p,a} = \frac{p-1}{2} + \sum_{x \in Q_p} \chi(x^3 + a^3).$$

Lemma 2.1: a) Let $p \equiv 5 \pmod{12}$ be prime. Then $a \in$ $Q_p \Longleftrightarrow p - a \in Q_p.$

b) Let $p \equiv 11 \pmod{12}$ be prime. Then $a \in Q_p \iff$

Proof: a) Let $p \equiv 5 \pmod{12}$ be prime. Then

$$(\frac{p-a}{p}) = (\frac{-a}{p}) = (\frac{-1}{p})(\frac{a}{p}),$$

where $(\frac{\cdot}{p})$ denotes the Legendre symbol modulo p. By lemma 1, we have $-1 \in Q_p$ and hence $(\frac{-1}{p}) = +1$. Therefore if $a \in Q_p$, we have $(\frac{p-a}{p}) = +1$; i.e. $p-a \in Q_p$. b) Similarly follows.

Lemma 2.2: For
$$x = p - a$$
, $\chi(x^3 + a^3) = (\frac{x^3 + a^3}{p}) = 0$.

ISSN: 2517-9934 Vol:1, No:1, 2007

Now we have two cases to consider because of the lemma 6.

(i) Let $p\equiv 5\pmod{12}$ be prime. Then $|\varphi_p|=\frac{p-1}{2}$ is even. Then for exactly half of the values of $x\in Q_p,\, \chi(x^3+a^3)$ is +1 and for the other half, $\chi(x^3+a^3)=-1$. Then

$$\sum_{x \in Q_n} \chi(x^3 + a^3) = 0.$$

(ii) Let $p\equiv 11\pmod{12}$. Then $\frac{p-1}{2}$ is odd. By lemma 6 only for $x=p-a,\,\chi(x^3+a^3)=0$, and the rest is divided into two as in (i) that is there are $\frac{p-3}{4}$ quadratic and $\frac{p-3}{4}$ non-quadratic residues together with 0, implying

$$\sum_{x \in Q_p} \chi(x^3 + a^3) = 0.$$

Connecting (i) and (ii), we get Let $p \equiv 5 \pmod{6}$ be prime. Then

$$\sum_{x \in Q_p} \chi(x^3 + a^3) = 0.$$

This theorem completes the proof of Theorem 4.

REFERENCES

- [1] Andrews, G. E., Number Theory, Dover Publications, (1971), ISBN 0-486-68252-8.
- [2] Washington, L. C., Elliptic Curves, Number Theory and Cryptography, Chapman&Hall/CRC, 2003.
- [3] Parshin, A. N., The Bogomolov-Miyaoka-Yau inequality for the arithmetical surfaces and its applications, Seminaire de Theorie des Nombres, Paris, 1986-87, 299-312, Progr. Math., 75, Birkhauser Boston, MA, 1998.
- [4] Kamienny, S., Some remarks on torsion in elliptic curves, Comm. Alg. 23 (1995), no. 6, 2167-2169.
- [5] Ono, K., Euler's concordant forms, Acta Arith. 78 (1996), no. 2, 101-123.
- [6] Merel, L., Arithmetic of elliptic curves and Diophantine eqnarrays, Les XXemes Journees Arithmetiques (Limoges, 1997), J. Theor. Nombres Bordeaux 11 (1999), no. 1, 173-200.
- [7] Serre, J.-P., Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.
- [8] Demirci, M. & Soydan, G. & Cangill, I. N., Rational points on the elliptic curves $y^2=x^3+a^3\,(mod\,p)$ in F_p where $p\equiv 1(mod6)$ is prime, Rocky J.of Maths, (to be printed).
- [9] Schmitt, S. Zimmer, H. G., Elliptic Curves A Computational Approach, Walter De Gruyter, (2003), ISBN 3-11-016808-1
- [10] Schoof, R., Counting points on elliptic curves over finite fields, Journal de Théorie des Nombres de Bordeaux, 7 (1995), 219-254.
- [11] Soydan, G. & Demirci, M. & Ikikardeş, N. Y. & Cangül, I. N., Rational points on the elliptic curves $y^2=x^3+a^3\ (mod\ p)$ in F_p where $p\equiv 5\ (mod\ 6)$ is prime, (submitted).
- [12] Silverman, J. H., The Arithmetic of Elliptic Curves, Springer-Verlag, (1986), ISBN 0-387-96203-4.
- [13] Silverman, J. H., Tate, J., Rational Points on Elliptic Curves, Springer-Verlag, (1992), ISBN 0-387-97825-9.