International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:11, 2010

The multi-scenario knapsack problem: an adaptive
search algorithm

Mhand Hifi, Hedi Mhalla and Mustapha Michraphy

Abstract—In this paper, we study the multi-scenario knapsack
problem, a variant of the well-known NP-Hard single knapsack
problem. We investigate the use of an adaptive algorithm for
solving heuristically the problem. The used method combines two
complementary phases: a size reduction phase and a dynamic 2-
opt procedure one. First, the reduction phase applies a polynomial
reduction strategy; that is used for reducing the size problem. Second,
the adaptive search procedure is applied in order to attain a feasible
solution. Finally, the performances of two versions of the proposed
algorithm are evaluated on a set of randomly generated instances.

Keywords—combinatorial optimization, max-min optimization,
knapsack, heuristics, problem reduction.

[. INTRODUCTION

In this paper, the max—min optimization of the multi-
scenario knapsack problem (MKP) is investigated. MKP is
a variant of the well-known binary knapsack problem (KP),
an NP-hard combinatorial optimization problem. An instance
of MKP is characterized by a capacity c, a set N of n items,
where each item j € N has a fixed weight w; and the profit
p;? is evaluated under K different possible configurations ou
senarios. The objective of the problem is to determine the
subset of items with respect to the capacity constraint c as
to maximize the minimal value of a set of linear functions.
The mathematical formulation of the MKP can be stated as

follows:
{2 s}
JeEN
Z wir; < ¢

JEN

z; € {0,1}, Vj eN
where z;, j € N, denotes the binary decision variable such
that x; = 1 if the item j is in the solution set, z; = 0
otherwise. Without any loss of generality, we assume that
2 jen Wwj > ¢, and for each item j € N, w; < e All the
senarios are indexed from by £ = 1,..., K. We also assume
that wj, p? (Vk = 1,2,...,K),and ¢ are all nonnegative
integers.

The MKP has a wide range of economic and financial appli-

cations and, this problem is NP-hard since it is a generalization
of the single binary knapsack (Martello and Toth [12], [13]).

Maximize min
1<i<m

(MKP) Subject to

M. Hifi is a Professor at Université de Picardie Jules Verne, Equipe ROAD,
UR MIS, 33 rue Saint Leu, 80000 Amiens, France (hifi@u-picardie.fr).

H. Mhalla is an Associate Professor at Universit¢ de Picardie Jules
Verne, Equipe ROAD, UR MIS, 33 rue Saint Leu, 80000 Amiens, France.
(hedi.mhalla@u-picardie.fr)

M. Michraphy, Université de Picardie Jules Verne, Equipe ROAD, UR MIS,
33 rue Saint Leu, 80000 Amiens, France. (michrafy@fr.ibm.com)

Few published papers treated the resolution of this problem
essentielly to the optimal (Taniguchi et a/ [16], Iida H [8],
Kouvelis and Yu [10], Yu G [20],...), and resolved instances
with only |NV| < 1000 and k < 30.

In this paper, we propose an adaptive dynamic search
algorithm for the MKP. The proposed algorithm can be viewed
as a two-phase approach which combines a reduction instance
procedure to a dynamic two-opt procedure. First, and before
applying the two main phases of the algorithm, the upper and
lower bounds are computed. The first phase of the algorithm
consists in reducing the instance size. The second phase of
the algorithm tries to determine a feasible solution using
an adaptive search algorithm based on a dynamic two-opt
procedure. Both phases are complementary and essential to
the success of the algorithm, and both can re-iterated to try to
improve the given heuristic solution.

The paper is organized as follows. First, Section II presents a
brief literature survey of the max-min multi-scenario knapsack
problem (MKP). Second, the main steps of the heuristic
search algorithm is described in Section III.Third, Section IV
evaluates, on a set of a randomly generated instances, the per-
formance of the algorithm is evaluated. Finally, in conclusion,
we summarize the main results of the paper.

II. RELATED LITERATURE

A few published papers treated the multi-scenario knapsack
problem (MKP). Taniguchi et al [16] proposed an approch
based a pegging using new upper and lower bounds for the
problem, and finally the problem is optimally resolved to the
optimal by a branch-and-bound method applyed to the reduced
problem. The proposed method is able to resolve instances
with only |[A] < 1000 and k < 30. other approches were
developped; essentielly based on a branch-and-bound method
; (Iida H [8], Kouvelis and Yu [10], Yu G [20],...) but these
algorithms are limited to resolve instances with very small
sizes (JA] < 90). The max-min knapsack problems, have
been widely studied, another type is the mAx-min allocation
problem (Brown [2], Kuno et al. [9], Luss [11], Pang and Yu
[14], Tang [15]). A variant of the max- min allocation problem
called knapsack sharing problem was also largely studied, and
different exact and aproximate approches where developped (
Yamada and Futakawa [17], Yamada et al. [18], Hifi et al. [4],
Hifi and Sadfi [3], Hifi et al [6], ...). An other variant of
max-min KP, called the max-min multiple knapsack problem
(M3KP), where n items to be packed in m knapsacks are
considered, was treated in few papers (see Yamada[19], Hifi
and Mhalla[5]). Other variants exist and for more details, the
reader can refer to Hifi et al. [6], and Yamada [19].

1729

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:11, 2010

In this paper, we propose an heuristic algorithm especially
for the instances with important sizes, i.e., the number of the
items are more than 5000 and t number of scenarios are more
50. The main idea of the paper is to find a first solution
with a relatively good quality using a specific lower bound
computational procedure. This solution will be improved all
along the search process.

III. AN ADAPTIVE SEARCH ALGORITHM

We first define the lower and upper bounds of the multi-
scenario knapsack problems. Second, we describe the main
steps of the proposed algorithm.

A. Lower bound

The MKP can be viewed as a series of knapsack problems
with the same capacity c. So to build a good feasible solution
using a greedy algorithm, a specific order will be considered.
Let consider p; = minj<p<x pg? ,V j € N, and for in what is
following items are numbered in the non-increasing order of
r; = p;j/w;. Reposing on this order a greedy solution is built
based on the principle of critical elements. So, This initial
solution is given as follows:

1) let S denotes the binary representation of the solution.
Suppose that s, s < [N/, is a critical element of the
MKP..

2) Fix all items of the left-critical region (of each class) to
“one” and consider that all elements of the right-critical
region as “free”.

Note that the obtained solution (steps 1 and 2 above)

represents a feasible solution for the MKP. Then, the greedy
algorithm, noted HEUR, can be described as follows:

Input: An instance of MKP.
Output: An approximate solution.

Starting.
a) Set the initial capacity to zero, i.e. SumCap = 0; (cumulate
total capacity)
b) Set j = 1, jmin = l,and foreach k € {1, ..., K}, Pi’C =0
and W; = 0,
where Pf (resp. W;) is the cumulate profit of scenario k (resp.
weight) of items picked.
Iteration.
1) If SumCap + w; < c then
set SumCap = SumCap + wj;
2) Set jmin = Jjmin + 1;
3) Letmin = min {PF};
1<k<K

4) Repeat steps 1-3 till j > |N].

Fig. 1. HEUR: an initial solution for the MKP.

B. Upper bound

Now let consider each scenario as a single knapsack prob-
lem. To obtain an upper bound for each subproblem, let
consider the relaxed single knapsack problem using an exact
polynomial algorithm (Dantzig [?], Fayard and Plateau [?]
and Martello and Toth [12]). In what follow let consider the
Dantzig upper bound for the single kanpsack, denoted Uy,
with 1 <k < K.

Result 3.1: Let U,;, be defined as U, = min {Uk}7
1<k<K

then Uiy 1s an uupper bound for MKP.

Observe that the upper bound provided by Theorem 3.1
can be obtained quickly by applying a polynomial algorithm
to solveat each step a relaxed single knapsack problem, and
corresponding to a scenario k, for 1 < k < K.

C. Pegging test

To make the algorithm more efficient an instance reduction
strategy will be applied. In fact, a pegging test using the
previously defined bounds will be very useful to reduce the
instance size by fixing some variables either at 0 or 1. Let :
N1 be the set of the elements fixed to 1, N9 be the set of the
elements fixed to 0, and N’ be the set of non-fixed elements.
Figure 2 describes the main steps of the procedure used for
reducing the size of the original problem, noted PP.

Input: The MKP instance.
Output: The sets N}, N} and N?.

1) Let Z = be the current best solution for the M K P.
2) Vj € N do
IfUB[x; =1] < Z, set x; =0 and j € N
If UB[z; =0] < Z, set x; = 1 and j € N;
3) N/ = N;\ {N} UN}}.

Fig. 2. A Pegging Procedure: PP.

D. An adaptive searcht algorithm

To obtain a better solution a two-opt search procedure
is locally applied on the set of non fixed items denoted
N'.The window width associated to the search zone can be
considered as static or dynamic. The static case means that
for each considered item by the two-opt procedure, only a
fixed number of a neighborhood items can be considered.
So, if no neighborhood limits are fixed we are in the case
of the ordinary two-opt procedure. The dynamic two-opt
procedure, means that the window search is very restricted
in the beginning of the algorithm and if no improvement is
reached we make this window search larger. To make the
search process more efficient; for each item considered by the
dynamic two-opt procedure; a short list momory is created and
which is representing the best neighborhoods.

It is clear that both of these procedures exit with a feasible
solution for the MKP.

If a solution is at hand, the pegging test and the two-opt
procedures are applied again, and the algorithm stops if, 1)
no better solution is reached or ii) if a certain time limit is
reached. The performed algorithm considers only the first case,
that means that the algorithm exits if the pegging procedure
can not fixe more items or if the solution performed by the
adaptive two-opt procedure is not better than the current best
solution.

Figure 3 describes the main steps of the adaptive heuristic
algorithm for the max—min multi-scenario knapsack problem
(MKP), noted AH.

1730

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:11, 2010

Input: an instance of the MKP.
Output: a feasible solution S(M K P) of value V.S(MKP).

Phase 1. Initialization step
- Index the scenarios objets from 1 to K
- Index the set of elements from 1 to |V|;
1) Let S(MKP) : represents a feasible solution of the prob-

lem with value V. S(MKP), provided by applying HEUR.

2) Compute the Upin-
3) Let S/(MKP) = S(MKP).

Phase 2. Iterative step

While (S'(MKP) > S(MKP)) Do

a S(MKP) = S'(MKP)

b) Apply the Pegging test procedure for reducing the
problem size, and obtain No, Niand N7
e) Apply the Dynamic or static search procedure for to

obtain a better solution S’ (MKP);

EndDo
Exit with S"(MKP) realizing the value V.S’ (M K P).

Fig. 3. An adaptive heuristic algorithm for the MKP (AH).

IV. EXPERIMENTAL PART

In this section we evaluate the performance of the adaptive
search algorithm (denoted AH) on a series of randomly
generated instances following the problems generator used by
Taniguchi ef al[16]. The algorithm is tested on two set of
problem instances with different densities and sizes.. The first
set contains the “strongly correlated" instances, and the second
set is composed of the “uncorrelated" ones. The optimal
solutions of these instances are unknown. To evaluate the
behavior of AH, we then compare its solution to the best
upper bound computed by the algorithm. The given average
runtime of the algorithm is obtained on ten generated instances
with The same properties. Both algorithms were tested the
static version (with large windows width) and the dynamic
ones. Both algorithms were coded in C++ and tested on an
UltraSparc-II (450Mhz and with 2Gb of RAM).

Since all the previous algorithms are limited to resolve small
sized instances, then we decided to show a comparative study
on both medium and large sized instances.

TABLE I
PERFORMANCE OF AH ON THE “STRONGLY CORRELATED” INSTANCES
Groupe Tstar Tpyn GAPgray GAPpyN %
5000.50.C 32 27 0.75 0.76
5000.100.C 34 30 0.50 0.51
10000.50.C 165 163 0.87 0.88
10000.100.C 185 178 0.71 0.71
15000.50.C 228 215 0.93 0.98
15000.100.C 241 233 1.25 1.20
20000.50.C 249 227 0.70 0.70
20000.100.C 276 245 0.31 0.33
25000.50.C 501 453 0.59 0.6
\ 25000.100.C 511 494 0.59 0.59

Table I summarizes the behavior of both exact algorithms
on the first set of problem instances. Column indicates the
instance’s name: we considered the set of instances CmcC,
..., FmC which correspond to the “strongly correlated" with

the number of scenarios k varying in the integer interval
[50,...,100] and the number of items varying in the integer
interval [5000, 25000]. the instances are denoted as follows:
|N|.k. Column 2 (resp. colomn 3) contains the runtime
(measured in seconds) that needs the static version (resp.
the dynamic version) of AH for reaching the performed
solution. Column 5 (resp. colomn 3) tallies the relative GAP
in percent, between the best solution and the best upper
bound given by algorithm This Gap is computed as follows:
(100 * [Zbest - Umin]/[Zbest)-

From Table I, we can observe that the static version of AH
outperforms on almost all the instances if we consider the
GAP. both of GAPs are very close, so that means that the
produced solutions are very close too. When we consider the
CPU, we can clearly see that the dynamic version of the algo-
rithm outperforms the static one on all the instances. Indeed,
for all treated “strongly correlated" instances the runtime of the
dynamic algorithme is able to realize a significant acceleration.

TABLE II
PERFORMANCE OF AH ON THE “UNCORRELATED” INSTANCES
Groupe Tsrar Tpyn GAPgrar% GAPRyy %
5000.50 26 24 0.35 0.36
5000.100 24 20 0.35 0.35
10000.50 145 123 0.43 0.43
10000.100 175 151 0.24 0.25
15000.50 200 175 0.13 0.13
15000.100 227 179 0.25 0.25
20000.50 219 187 0.28 0.29
20000.100 227 193 0.34 0.35
25000.50 279 213 0.35 0.36
25000.100 306 249 0.29 0.29

Now let consider, Table II shows the behavior of both
versions of the algorithm AH on the second set of instances
containing the uncorrelated instances. Table II displays the
same informations as for Table I , i.e., the GAPs and the
runtime of both versions of the algorithm.

From Table II, we can observe that the same phenomenon is
realized. Indeed, we can clearly see that the dynamic version
of the algorithm outperforms the static one if we consider the
runtime, and the inverse if we consider the GAP.

V. CONCLUSION

We proposed an heuristic algorithm for solving the MKP.
First, we showed how bounds can be computed by resolving
a series of relaxed single knapsack problems. Second, we
presented the procedure of pegging test. Third, we showed
how a 2-opt search strategie can be adapted and applied for
reaching a high quality solution for the problem. Finally, an
experimental part has been presented in which we evaluated
the performance of the proposed algorithm on a set of problem
instances. On these problem instances, we proved experimen-
tally the effectiveness of the proposed algorithm.

REFERENCES

[1] Brown JR. The knapsack sharing, Operations Research, 1979; 27:341-
355.

1731

[2

—

Kl
[4

finar}

[5]
[6

—_

[7
(8]
[9]

—

[10]

(1]

[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:11, 2010

Brown JR. Solving knapsack sharing with general tradeoff functions,
Mathematical Programming, 1991; 5:55-73.

Hifi M., Sadfi S. The knapsack sharing problem: an exact algorithm,
Journal of Combinatorial Optimization, 2002;6:35-54.

Hifi M., Sadfi S., Sbihi A. An efficient algorithm for the knapsack shar-
ing problem, Computational Optimization and Applications, 2002;23:27-
45.

Hifi M., MHalla H. Variante du knapsack contraint : méthode exacte,
2010, ROADEF conference.

Hifi M., MHalla H., Sadfi S. An exact algorithm for the knapsack sharing
problem, 2005, vol. 32, No 5, pp. 1311-1324.

Horowitz E., Sahni S. Computing partitions with applications to the
knapsack problem, Journal of ACM, 1974;21:277-292.

lida H. 4 note on the max—min 01 knapsack problem, Journal of
Combinatorial Optimization 1999;3:89-94.

Kuno T., Konno H., Zemel E. 4 linear-time algorithm for solving
continuous maximum knapsack problems, Operations Research Letters,
1991;10:23-26.

Kouvelis P,Yu G. Robust discrete optimization and its applications,
Dordrecht: Kluwer Academic Publishers; 1997.

Luss H. Minmax resource allocation problems: optimization and para-
metric analysis, European Journal of Operational Research, 1992;60:76-
86.

Martello S., Toth P (eds.). Knapsack problems: algorithms and computer
implementation, John Wiley and Sons, 1990.

Martello S, Toth P. Upper bounds et algorithms for hard 0-1 knapsack
problems, Operations Research, 1997;45:768-778.

Pang JS., Yu CS. 4 min-max resource allocation problem with substi-
tutions, European Journal of Operational Research, 1989;41:218-223.
Tang CS. A max-min allocation problem: its solutions and applications,
Operations Research, 1988;36:359-367.

Taniguchi, F., Yamada, T., Kataoka, S., Heuristic and exact algorithms
for the maxmin optimization of the multi-scenario knapsack problem,
Computers and Operations Research, 2008; 35: 2034-2048.

Yamada T., Futakawa M. Heuristic and reduction algorithms for
the knapsack sharing problem, Computers and Operations Research,
1997;24:961-967.

Yamada T., Futakawa M., Kataoka S. Some exact algorithms for the
knapsack sharing problem, European Journal of Operational Research,
1998;106:177-183.

T. Yamada. Max-Min Optimization of the multiple knapsack problem: An
implicit enumeration approch, E. Kozan, A. Ohuchi eds., ”Operations
Research/Management Science at Work: Applying Theory in the Asia
Pacific Region”, Kluwer Academic Publishers, pp. 351-362, 2002.

Yu G. On the max—min 01 knapsack problem with robust optimization
applications, Operations Research 1973;44:407-15.

1732

