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Abstract—The Multi-Layered Perceptron (MLP) Neural 

networks have been very successful in a number of signal processing 
applications. In this work we have studied the possibilities and the 
met difficulties in the application of the MLP neural networks for the 
prediction of daily solar radiation data. We have used the Polack-
Ribière algorithm for training the neural networks. A comparison, in 
term of the statistical indicators, with a linear model most used in 
literature, is also performed, and the obtained results show that the 
neural networks are more efficient and gave the best results. 
 

Keywords—Daily solar radiation, Prediction, MLP neural 
networks, linear model 

I.   INTRODUCTION 
HE recent emergence of solar energy as an alternative to 
the more conventional but non-renewable domestic energy 
source has resulted in a demand for quantitative 

information on the size of solar energy sources at specified 
locations. Such data are requested by engineers, architects and 
designers of solar systems as they attempt to make effective 
use of the solar energy that is available. The amount of global 
solar radiation arriving on a horizontal surface is the minimum 
information needed. 

However, in most cases, the users do not have a long 
registration of solar data in a given location, or for many 
locations around the world. Indeed, historical records of 
sufficient details are not available, even the available data are 
of questionable quality and have a number of missing values. 

Being given that the solar radiation is a stochastic process, 
it is shown that the sequences of the daily radiation can be 
described and simulated by models like chain of Markov, or 
Fourier series, by building statistical models [1]. Other 
models, which have attracted the attention, are those, which 
use the recorded data to predict the future observations 
(prediction) [2]. These models are based on the regression 
approach and are called Autoregressive (AR), Autoregressive 
Mobile Averages (ARMA) models. These models are in 
general developed using Second or Higher Order Statistics 
mainly applicable for Gaussian and stationary processes and 
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require, in principle, long-term meteorological data. 
Therefore, it is not always possible to predict the actual solar 
radiation values for a given location. Thus to use these models 
we must perform to a transformation on the original data in 
order to have a Gaussian and stationary time series. 
Unfortunately, this transformation may influence the 
prediction precision because the optimal prediction is built on 
the transformed time series [3]. For this reason we propose to 
use the neural networks to develop a model able to predict the 
daily solar radiation, without recourse to this transformation 
and performing, at the same time, the successful results [4]. 

The field of ANN has a history of some six decades, but has 
found solid application only in the past fifteen years, and the 
field is still developing rapidly. Neural networks have been 
trained to perform complex functions in various fields of 
application including pattern recognition, identification, 
classification, speech and control systems [5]. Among the 
whole of the existing neural networks, we can say that the 
Multi-Layered Perceptron is the structure, which makes it 
possible to carry out the most various applications [6].  

The use of the MLP neural networks for the prediction of 
the solar radiation is undoubtedly related to their conceptual 
specificities. Indeed, these models are flexible systems, which 
do not require any particular assumption on the nature of the 
process binding the input and output variables. Their non-
linear character enables them to approximate as a broad class 
of functions provided that the number of neurons used is 
rather large. These characteristics to which we can add 
faculties of training and of auto-adaptation are obviously 
strongly appreciated for the modelling of complex systems [7]. 

The works that are interested to the prediction of the solar 
radiation are increased quickly. Negnevitsky and Le have used 
the neural networks to generate the hourly solar radiation 
depending on astronomic and meteoroclimatic conditions. 
Alawi and Hinai have used them to predict solar radiation in 
areas not covered by direct measurement instrumentation. The 
input of the network is selected to be the location, month, 
mean pressure, mean temperature, mean vapour pressure, 
mean relative humidity, mean wind speed and mean duration 
of insulation. Mohandes et al used data from 41 collection 
stations in Saudi Arabia. The network inputs are latitude, 
longitude, altitude and sunshine duration. The results obtained 
in these works, show the efficiency of the neural networks to 
predict the global solar radiation [8]. Whereas, this way to 
make confronts to the problem of the absence or rarity of 
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measure of the variables, such as humidity, pressure, wind 
speed, or at least one of them (it is the case of the site of 
Dakhla) at all locations. Even though, the measures of these 
variables exist, they are very expensive. To surmount this 
problem, we propose, in this work, to use a new methodology, 
which permit us to predict, without having to use other 
meteorological variables, the future observations of the global 
solar radiation [9][10]. 

In this work, we applied Multi-Layer Networks (MLP) for 
the prediction of the daily solar radiation measured in a 
horizontal surface on the site of Dakhla in Morocco. The 
training algorithm used to estimate the weights of the neurons 
is the Polak-Ribiere conjugate gradient algorithm [11]. 

II.   MULTILAYER PERCEPTRON AND THE TRAINING 
ALGORITHMS 

The most common neural network model is the MLP. This 
type of neural network is known as a supervised network 
because it requires a desired output in order to learn. The 
notation R-S1-S2-S refers to a MLP with two hidden layers. 
The first layer have R neurons is called the input layer, the last 
is the output layer equipped with S neurons and the 
intermediate layers are the hidden layers with S1, S2 neurons. 
Each neuron of a layer is connected to all the neurons of the 
following layer (feed-forward neural network) [12].  

We associate a weighting coefficient (synaptic weight) to 
each connection. These weights are stored in the matrices of 
weight noted W1, W2 and W3 (example: R-S1-S2-S network). 
The element (i,j) of a weight matrix represents the connection 
weight connecting neuron i of the downstream layer to neuron 
j of the upstream layer. Each layer (except that of input) is 
connected to a special cell with a constant output of value 1. 
The corresponding weights are stored in a vector called bias 
and noted b1, b2 and b3 in the case of two hidden layers. Each 
neuron i of the first hidden layer computes his input net1[i] 
and his output (its activation) a1[i] as follow: 

                 net1[I ]= <W1[i],p> + b1[i]                          (1) 
                 a1[i] = F1(net1[i])                                      (2) 

Where W1[i] is the ith line of W1, < > is the notation for the 
usual scalar product, p is the input vector and F1 is the 
activation function associates to the first hidden layer, the 
activation functions are non linear and of sigmoid type, i.e: 

                F(x) = )1/(1 xe−+                                                (3) 

The activations stored in the vector a1 are propagated to the 
cells of the following layer. In a similar way, we calculate the 
second activation vector: 

                a2 [i] = F2 (<W2[i],a1> + b2[i])                     (4) 
This mechanism continues to the last layer and makes it 

possible to obtain the output vector t corresponding to the 
input p. The network inputs consist of vectors of size R stored 
in a matrix P with N columns. Each column p of P is 
associated a desired vector q of the output Q with size S stored 
in a matrix Q. The outputs computed by the network are stored 
in a matrix T. 

The required goal, is the learning of associations (p,q): the 
network must restore the desired output q (or an output rather 

close to Q) when the form p is presented as a input. The 
training of the MLP networks consists in computing the 
weights of connections between the neurons in order to 
minimise a square criterion E: 

                 ∑=
=
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For the real applications, we do not know the pace of the 
error function E in the space of the weights, what has as 
consequence when the non-linear training algorithm 
converges; we are never assured that the obtained minimum is 
global. 

Backpropagation algorithm was created by generalizing the 
Widrow-Hoff learning rule to multiple-layer networks and 
non-linear differentiable transfer functions [13].The standard 
backpropagation is a gradient descent algorithm in which the 
network weights are moved along the negative of the gradient 
of the performance function E. 

An iteration of this algorithm can be written: 
                       )()()1( kgkwkw wε−=+                                    (7) 
Where: 

T
nw kwEkwEkg ))(/),...,(/()( 1 ∂∂∂∂= : The gradient error 

evaluated in w(k). 
n:  The number of the connections of the network. 
k : index of the iteration. 

T
n kwkwkw ))(),...,(()( 1= : The weight vector in the iteration k. 

ε : Learning rate ( 0>ε ). 
Parameter ε regulates the size of the gradient step. The 

performance of the algorithm is very sensitive to the proper 
setting of the learning rate. If the learning rate is set too high, 
the algorithm may oscillate and becomes unstable. If the 
learning rate is too small, the algorithm will take too long to 
converge. The greatest disadvantage of this algorithm is that it 
does not even ensure convergence towards a local minimum. 

The changes of research direction are done the ones per 
rapport to the others perpendicularly, which generates 
behaviour oscillatory. We try to attenuate these oscillations by 
the addition of a term of moment: 
           )1()()()1()( −∆+−=−+=∆ kwkgkwkwkw w µε                 (8) 

The additional term privileges the directions of descent 
where the variations of weight are done in the same 
direction )0)()(( >∆∆ kwkw , which causes to filter the 
oscillations of the algorithm. Another improvement consists in 
using a learning rate varying during the training process 
(adaptive) [14]. 

III.   TRAINING ALGORITHMS 
The previous section presents two backpropagation training 

algorithms: gradient descent, and gradient descent with 
momentum. These two methods are often too slow for 
practical problems. In this section, we describe the Polack-
Ribière algorithm that can converge from ten to one hundred 
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Fig.1 Procedure of training 

times faster than the algorithms discussed previously. This 
faster algorithm belongs to the category of algorithms that use 
standard numerical optimisation techniques. 

A.   The Polack-Ribière Algorithm  
The basic backpropagation algorithm adjusts the weights in 

the steepest descent direction (negative of the gradient). In this 
direction the performance function is decreasing most rapidly. 
It turns out that, although the function decreases most rapidly 
along the negative of the gradient, this does not necessarily 
produce the fastest convergence. In the conjugate gradient 
algorithms a search is performed along conjugate directions, 
which produces generally faster convergence than steepest 
descent directions. 

The Backpropagation algorithm is used to calculate 
derivatives of performance E with respect to the weight and 
bias variables w . Each variable is adjusted according to the 
following equation:  

)()()()1( kskkwkw α+=+                                (9) 
Where s(k) is the search direction. The parameter )(kα is 

selected to minimize the performance along the search 
direction. 

The first search direction is the negative of the gradient of 
performance: 

)0()0( wgs −=                                           (10) 
In succeeding iterations the search direction is computed 

from the new gradient and the previous search direction 
according to the formula: 

)1()()()( −+−= kskkgks w γ ( 1≥k )                 (11) 
The parameter )(kγ  can be computed in several different 

ways. For the Polak-Ribière variation of conjugate gradient it 
is computed according to: 

>−−<>−−<= )1(),1(/)(),1()()( kgkgkgkgkgk wwwwwγ   (12) 

B.   Procedure of Training and Criteria of Error 
In this section, we present the plan of the used training 

procedure (fig.1). We have employed for the learning phase 
the Polack Ribière backpropagation algorithm who belongs to 
the conjugate gradient algorithms type. The phases of 
initialisation and perturbation of the weights are done 
according to the following procedure: We start by perturbing 
randomly several times the origin of the space of the weights, 
what generates a cloud of points. We mark the point that 
minimises the error function E. This point will be the centre of 
a new perturbance whose amplitude is smaller than the 
previous, and so on. This procedure stops after a number of 
perturbances fixed of advance and keeps the last centre like 
initial point for the training procedure. The training algorithm 
(Polak-Ribière) stops after stabilisation on a local minimum 
(in practice less than 1000 iterations are sufficient). The 
procedure retains the best configuration of weight obtained 
starting from the kmax initialisations (kmax = 50). 

The criteria selected to measure the performances of the 
neural networks are as follows: 

MSE = 2
1

))(ˆ)((1 iYiYN
N

i
∑ −
=

                 (13) 

RMS = MSE                                (14) 

NER = )(Y
RMS
σ                                  (15) 

MAPE = ∑ −
=

N

i
iYiYN 1
)(̂)(100               (16) 

Where Y is the original time series, Ŷ is the predicted time 
series and N is the size of the time series Y. 

The choice of an error criterion as measure of the 
performance is a delicate point because it depends directly on 
the problem to treat. Many studies compare the performances 
of the networks on the basis of the Mean Square Error (MSE) 
and the Root Mean Square (RMS) criterion. But these criteria 
inform us only at the "distance" separate the predicted series 
from the observed series. The major disadvantage of these 
measurements is the dependence on the used scale, what 
makes them not very reliable in practice. The Normalised 
ERror (NER) Criterion normalise the RMS per rapport to the 
measuring unit and thus removes the disadvantage. Contrary 
to the RMS error, the Mean Absolute Percentage Error 
(MAPE) criterion penalises less heavily the large errors 
committed by the network [15]. 
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Fig. 2  Annual variation of daily global solar radiation 

C.  The Structure of the Network 
Being given that there are no (or very little) theoretical 

results usable practically for the determination of neural 
network architecture, it became usual to proceed empirically 
on the matter. A commonly allowed empirical rule is that the 
number of weights in the network cannot exceed the tenth of 
the number of the training example. Recent developments 
based on the study of the dimension confirm the 
recommendation of Widrow [16]. Moreover, generally we use 
one or two hidden layers, although theoretically, only one 
hidden layer allows already having the property of universal 
approximator. We construct various networks with one and 
two layers hidden by holding account of the Widrow remark. 
The architecture that will be retained is that which gives the 
best results on the validation set (Cross-Validation 
Technique). 

The construction of the various networks used follows the 
following diagram:  

The networks with only one hidden layer were constructing 
by successively adding two additional neurons on this one. 
This technique, which has of course the advantage of 
decreasing the number of architecture to be validated, is 
founded on the intuitive idea that the addition of two neurons 
instead of only one will not generate too large differences in 
performances between two architectures consecutively 
constructed. 

For the networks with two hidden layers, we considered 
only the triangular structures, those for which the number of 
neurons on a layer is superior to the one of the following layer. 
This choice is justified by their frequent use in the literature. 

IV.   APPLICATION TO SOLAR PROCESS 
It is needed, in practice, for a solar system designer to use 

daily or hourly radiation sequences recorded during many 
years. But in most cases we do not have a long registration of 
solar data in a given location. For many locations around the 
world, historic records of sufficient detail are either not 
available or the available data are not good quality and have 
an appreciable number of missing values. To solve this 
problem, it is necessary to have an empirical model to 
generate or predict data having similar features than measured 
data. For this reason we consider in this work a set of data 
representing the daily solar radiation recorded during three 
years on a horizontal surface at Dakhla in Morocco. The set of 
training and the one of validation are constructed from the 
measurements of two years. The measurements of the third 
year are left for the test phase. 

In fig.2, we represent the times series of daily solar 
radiation data recorded over one year (Y(t) t=1,…,365). We 
can remark easily a non-linear “progression”, which indicates 
that this time series come from a “non stationary” process. 
Thus, to use the second or the high order statistics to model 
this process, we need to make the time series stationary. 

Unfortunately, this transformation is responsible, in many 
cases, of some errors in the prediction or the generation of the 
data. Furthermore, this transformation may cause the loss of a 

part of useful information. 
 

A.  Inputs and Outputs of the Network 
Each pattern of training is constituted of ν delayed values 

)( τktY − )10( −≤≤ νk  and the corresponding desired 
output )( τ+tY . The parameterτ is the sampling period of the 
time series and represents the number of days separating two 
consecutive observations of the time series. The minimal value 
of τ  is imposed by the structure of the database and is equal 
to one day in our case. 

We use a neural network as predictor of orderν : from ν  
values )(tY , )( τ−tY ,…, ))1(( τν −−tY , we try to estimate )( τ+tY . 
For the moment, we take the value of the delay time τ to one 
day and the width of window ν  to 5 days. Each displacement 
of the window on {Y(t)} generates an additional training 
pattern (Sliding Window Technique, Time Delay Neural 
Network). 

B.  Results and Discussion 
The table I, presents the obtained results on the validation 

set for eight selected networks. We remark that the network 
most efficient is network 5-3-2-1. We notice also that the 
differences in performances between the selected networks go 
from 0.7% to 7% for RMS, from 5% to 11% for NER and for 
4% to 13% for MAPE. With regard to the convergence speed 
we note that the Polak-Ribière algorithm converges quickly 
(see table. I). Indeed, it needs less than 10 s to converge and 
the time of convergence increases proportionally with the 
number of neurons in the hidden layers. 
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Once the appropriate network is selected and its parameters 

are estimated, the identified MLP neural network model is 
used for the test data. In fig.3, we present the evolution of 
measured and predicted times series of the daily solar 
radiation. We notice that the two time series have the same 
behaviour.  

To show the impact of the initialisation method on the 
training, we represent on the fig.4 the evolution of the MSE 
calculated, for the network 5-3-2-1 on the Training set for 50 
different initialisations of the weights. The maximum 
deviation obtained is 5 % which is considerable.  

In order to have an idea on the influence of the following 
parameters: the size of the window (ν ) and the period of 
sampling (τ ). We have preceded a modification of the values 
of these parameters, the tables II and III show the obtained 
results. 

TABLE II 
INFLUENCE OF THE DELAY (τ ) ON THE RESULTS 

τ  1 2 3 4 5 

MSE 0.1812 0.2815 0.2919 0.3181 0.3011 

According to the table II and table III, we notice that the 
parameterτ do not have a great influence on the results except 
for τ =1. This can be due to the lack of information at the time 
sampling higher than 1. Whereas for the second parameter (ν ) 
we note that more the size of the window is large more the 
results are better. This can be explained by the fact that there 
is more information in the input of the networks what enables 
it to better predict the daily solar radiation. 

C.  MLP Neural Networks vs. Regression Model 
The prediction is very useful in solar energy applications 

because it permits to generate solar data for locations where 
measurements are not available. This section compares the 
quality of prediction using the identified MLP neural network 
techniques and linear ARMA model. 

To identify the linear ARMA model able to generate solar 
data with similar character than those recorded; we use the 
Box-Jenkins procedure. This methodology is composed in 
three stages: the model identification, the parameters estimate 
and the model validation.  

The first stage consists on determining the ARMA model 
order on the basis of the graphs of the Autocorrelation 
Functions (ACF) and the Partial Autocorrelation Function 
(PACF). In the second stage we estimate the model 
parameters, several methods are employed in the literature, the 
method of least squares is the simplest and mostly used. The 
third stage aims at to know if the model chosen in the 
identification stage can be considered as valid. In the 
affirmative case, the residual time series is a realisation of a 

TABLE I 
THE PERFORMANCES OF THE MLP NEURAL NETWORKS ON THE 

VALIDATION PHASE 
Networks Time(s) RMS NER MAPE% 

5-0-1 4.42 0.4551 0.1629 31.96 

5-2-1 5.94 0.4452 0.1593 31.55 

5-4-1 6.22 0.4437 0.1588 30.33 

5-6-1 6.84 0.4366 0.1562 30.05 

5-8-1 9.55 0.4546 0.1627 31.69 

5-3-2-1 8.48 0.4256 0.1503 29.83 

5-4-2-1 9.93 0.4424 0.1583 30.49 

5-4-3-1 9.31 0.4433 0.1586 30.18 

TABLE III  
INFLUENCE OF THE WINDOW SIZE   (ν ) ON THE RESULTS 

ν  2 3 4 5 6 

Network 2-4-2-1 3-3-2-1 4-4-2-1 5-5-3-1 6-5-4-1 

MSE 0.2268 0.1944 0.1908 0.1834 0.1671

Fig. 3 measured and predicted daily solar radiation 

Fig. 4 MSE after training of the neural network 
starting from 50 different initialisations of the 

weights 
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white noise [17]. 

Before using the Box-Jenkins method to identified a ARMA 
linear model it is necessary to transform the time series of the 
daily solar radiation (Y(t)) to a stationary process using 
differentiation operator p∇ (differentiation operator of order 

p). 
After filtering the low frequency component witch is 

responsible of the non stationarity of the time series Y(t) 
(differentiation of the time series Y(t)), the time series 
obtained Z(t) seems to be stationary (Z(t) = p∇ Y(t) with p 

=1). The methodology of the Box-Jenkins is then applied on 
the Z (t). 

The pace of the ACF and PACF functions does not permit 
to identify only one model. So we brought to consider several 
models. In order to choose the most adequate model we 
compute the Akaike Information criterion (AIC).  

The Table IV presents five selected models and their 
corresponding AIC criterion. According to this table, we can 
conclude that the most adequate model is the Moving Average 
(MA) of order 2. 

The identified linear model (MA (2)) is then used to 
generate the daily solar radiation data measured on the site of 
Dakhla. The comparison between the regression model and the 
identified MLP neural network model proves the superiority 
of the MLP neural network in the prediction of the daily 
global solar radiation. Indeed, the value of the RMSE = 0.56 
kw/m^2 gives by the MLP neural network model is less of 
10% of this produces by the regression model. 

V.   CONCLUSION 
In this paper we have studied the possibilities of the MLP 

neural networks for the prediction of daily solar radiation. 
Several architectures were tested by explaining the difficulties 
related to the manipulation of these models. The Polack-
Ribière algorithm is employed for the identification of the 
parameters of the networks. The performances obtained were 
compared on the basis of criterion RMS, NER and MAPE. 

A new approach is proposed for the prediction of the future 
observations of the daily solar radiation, without using other 
meteorological variables. This new methodology can be used 
in unfavourable conditions, in terms of limited amount of 
available data, performing successful results. So we can 
conclude that the MLP neural networks are able to fit the daily 
solar radiation data, and can be used to fill missing data in 
daily solar radiation databases. Additionally, the proposed 
model can be generalized and used in different locations. 

In order to have an idea about the impact of the sampling 
period and the window size parameters on the precision of the 
prediction, we carried out a modification of these parameters; 
the results show that the two parameters influence the 

prediction capacity of the MLP neural networks. 
A comparison between the MLP neural networks and the 

conventional model MA is then performed. The obtained 
results show that the MLP neural networks, and thus the new 
methodology improve the accuracy of the prediction 
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