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The More Organized Proof For Acyclic Coloring Of
Graphs With Δ = 5 with 8 Colors

Ahmad Salehi

Abstract—An acyclic coloring of a graph G is a coloring of its
vertices such that:(i) no two neighbors in G are assigned the same
color and (ii) no bicolored cycle can exist in G. The acyclic chromatic
number of G is the least number of colors necessary to acyclically
color G. Recently it has been proved that any graph of maximum
degree 5 has an acyclic chromatic number at most 8. In this paper
we present another proof for this result.
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I. INTRODUCTION

AProper coloring of a graph G is a coloring of its vertices
such that no two neighbors in G are assigned the same

color. An acyclic coloring of a graph G is a proper coloring
such that the graph induced by two colors α and β is a forest.
The minimum number of colors necessary to acyclically color
G is called the acyclic chromatic number of G and denoted
by a(G). For a family F of graphs, the acyclic chromatic
number of F ,denoted by a(F ) is defined as follow : a(F ) =
max{a(G)forallG ∈ F}.
a(F ) has been determined for several families of graphs

such as planar graphs [4], 1-planar graphs [2],planar graphs
with large girth [3],outer planar graphs [11],product of trees
[9], the graphs with maximum degree 3 [8], [10], the graphs
with Δ = 4 [5], Alon et al [1] showed that
(1):Asymptotically there exist graphs of maximum degree Δ
with acyclic chromatic number in Ω( Δ4/3

(log Δ)1/3 ) .
(2): Asymptotically it is possible to acyclically color any graph
of maximum degree Δ with O(Δ4/3) colors.
(3):Trivial greedy polynomial time algorithm exists that
acycliccally colors any graphs of maximum degree Δ with
Δ2 +1 colors. Fertin and Raspaud [7] proved that nine colors
are enough for acyclic coloring a graph with Δ = 5. Kishore
Yadav etal [12] showed that any graph with Δ = 5 can be
acyclically colored with 8 colors. In this paper we achieve the
above result by another approach which is easier than what
has been presented before.

II. PRELIMINARIES

degree Δ = 5. Let N(u) be the neighbors set of vertex
u and c(u) denoted the color of u. The set of colors are
assigned to vertices in N(u) , denoted by SCN(u). The color
α ∈ {1, 2, 3, 4, 5, 6, 7, 8} is regarded as a free color for u
when:
1) If no color assigned to u , then α /∈ SCN(u).
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2) If u is colored, then α /∈ SCN(u) ∪ {c(u)}.
The set of free colors for u is named f(u). The number of
different colors in the neighbors of u is denoted by dcn(u)
and we define the color list as follow:
Lu = (n1, n2, ..., ndcn(u)) (where n1 ≥ n2 ≥ ... ≥ ndcn(u) )
where an ni represents for a color α in SCN(u) and it is the
number of times ,α is used among the colored neighbors of
u.
The color α is free for u if α ∈ f(u) ,and α is a valid color
for u if 1 ≤ α ≤ 8 and assigning it to u , still results in an
acycliclly coloring. Let α ,β are two distinct colors. A critical
cycle denoted by Cu(α, β) ,is a cycle such as C ,involving u
in which all vertices in C are alternatively colored by α and
β moreover c(u) /∈ {α, β}.We can’t assign the color α and
β to u (since they are not valid colors). A vertex u is called
single if all its neighbors receive distinct colors.

III. ACYCLIC COLORING OF GRAPHS OF MAXIMUM

DEGREE 5

In this section we show that 8 color is enough for acyclically
coloring of any graph with Δ = 5. At first we prove 4 lemmas
and in Theorem 1 we will achieve the goal.

Lemma 3.1: If u is an uncolored vertex and Lu =
(1, 1, 1, 1, 1) then we can color u with a valid color

Proof: Since Lu = (1, 1, 1, 1, 1) so f(u) ≥ 3 and we can
assign one of the color in f(u) such that 1 ≤ c(u) ≤ 8.

Lemma 3.2: If u is an uncolored vertex and Lu =
(2, 1, 1, 1) and 9 /∈ SCN(u) , then we can find a valid color
for u.

Proof: Let N(u) = {v, w, x, y, z} and c(v) = c(w) =
1, c(x) = 2, c(y) = 3 and c(z) = 4,therefore f(u) =
{5, 6, 7, 8}. If we can’t choose a valid color from f(u), then
we must haveCu(1, 5), Cu(1, 6), Cu(1, 7) and Cu(1, 8). This
means that v and w are single vertices. By assigning color 1
to u and eliminating the colors of v and w , we will have
Lv = (1, 1, 1, 1, 1), Lw = (1, 1, 1, 1, 1) and by Lemma 3.1
we can color v and w with a valid color.

Lemma 3.3: if u is a colored vertex with a valid color and
Lu = (2, 1, 1, 1), 9 /∈ SCN(u). Then we can recolor u with
a valid color.

Proof: Let N(u) = {v, w, x, y, z} and c(v) = c(w) =
1, c(x) = 2, c(y) = 3, c(z) = 4 and c(u) = 5,therefore f(u) =
{6, 7, 8}. If we can’t find a valid color from f(u) to change the
color of u ,then we must have Cu(1, 6), Cu(1, 7) and Cu(1, 8).
Now by eliminating the colors of v and w and assigning color
1 to u we have SCN(v) = {1, 6, 7, 8, α} and SCN(w) =
{1, 6, 7, 8, β}. Let us detail the possible cases for α:

3.3.1 If α /∈ {6, 7, 8} then Lv = (1, 1, 1, 1, 1) and with
Lemma 3.1 we can color v with a valid color.

In the following we only consider graphs of maximum
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3.3.2 If α ∈ {6, 7, 8} then Lv = (2, 1, 1, 1) and by
Lemma 3.2 we can color vertex v with a valid color.

We have similar cases for β and we can color w with a valid
color.

Lemma 3.4: if u is a colored with a valid color with Lv =
(2, 1, 1, 1) and one of its neighbors is colored with color 9,
then we can recolor vertex u with a valid color.

Proof: Let N(u) = {v, w, x, y, z} and c(v) = c(w) =
1, c(x) = 2, c(y) = 3, c(z) = 9 and c(u) = 4 therefore f(u) =
{5, 6, 7, 8}. If we can’t find a valid color from f(u) to vertex u
then we must have Cu(1, 5), Cu(1, 6), Cu(1, 7) and Cu(1, 8).
In this case by eliminating the colors of v and w and assigning
color 1 to vertex u , we will have Lv = Lw = (1, 1, 1, 1, 1)
and by Lemma 3.1 we can find valid colors for v and w.
To have acyclic coloring of a graph G with 8 colors, first we
add 5−d(u) new vertices (vertex) for every vertex u ∈ V (G)
and insert edges between u and these new vertices. By the
above operation we get a new graph G′ with the following
properties:

d(u) =
{

5 if u ∈ V (G)
1 otherwise

(1)

If we use the algorithm Fertin and Raspaud [7] for graph G′,
then G′ can be colored acyclically with 9 colors. Then we try
to recolor every vertex of G′ that its color is 9 with a valid
color. Finally by removing all vertices of degree 1 we achieve
the goal.

Theorem 3.1: Let G′ is a graph with maximum degree 5
and acyclically colored with 9 colors and let u be a vertex
such that d(u) = 5 and c(u) = 9 then we can find a valid
color to u.

Proof: Let us detail possible cases:

Case 3.1.1: Lu = (1, 1, 1, 1, 1)
In this case by eliminating the color of u and using
Lemma 3.1, we can find a valid color for u.
Case 3.1.2:Lu = (2, 1, 1, 1)
In this case by eliminating the color of u and using
Lemma 3.2, we can find a valid color for vertex u.
Case 3.1.3:Lu = (3, 1, 1)
Let N(u) = {v, w, x, y, z} and c(v) = c(w) =
c(x) = 1, c(y) = 2, c(z) = 3 and c(u) = 9. These
assumptions imply that f(u) = {4, 5, 6, 7, 8}. If we
can’t choose a color from f(u) to recolor u ,then we
must have Cu(1, 4), Cu(1, 5), Cu(1, 6), Cu(1, 7) and
Cu(1, 8). The above discussion shows that N(v) ∪
N(w) ∪ N(x) − {u} contains two vertices of color
4,two vertices of color 5,two vertices of color 6,two
vertices of color 7 and two vertices of color 8. So we
have at least 10 vertices in N(v)∪N(w)∪N(x)−{u}
such that they are of the same color pairwisly. Now
by the pigeon role principle ,v, w or x has in its
neighbors, 4 of that 10 vertices. This means that v, w
or x is a single vertex. Without loss of generality we
suppose that v is single. By eliminating the color v
and using Lemma 3.1, we can find a valid color
for vertex v such that Lu = (2, 1, 1, 1) and this case
have been treated in case 3.1.2.

Case 3.1.4:Lu = (4, 1)
Let N(u) = {v, w, x, y, z}, c(v) = c(w) =
c(x) = c(y) = 1, c(z) = 2 and c(u) = 9
then f(u) = {3, 4, 5, 6, 7, 8}. If we can’t find
a valid color from f(u) for u , then we must
have Cu(1, 3), Cu(1, 4), Cu(1, 5), Cu(1, 6), Cu(1, 7)
and Cu(1, 8). If one of the vertices v, w, x or y is
single, then by eliminating the color of this vertex
and applying Lemma 3.1 for it we can find a
valid color such that Lu = (3, 1, 1) and this case
was handled above. Now suppose that none of the
vertices v, w, x and y are single. Since we have 6
critical cycles involving u therefore there exist in
N(v) ∪ N(w) ∪ N(x) ∪ N(y) − {u} 12 vertices
such that their colors are from the set {3, 4, 5, 6, 7, 8}
and they are of the same color pairwisly. Whereas
none of the vertices {v, w, x, y} are single ,so the
colors which assigned to the neighbors of one of
them (consider v) are {3, 4, 5, α, 9}. We have two
cases for α. Either α ∈ {3, 4, 5} or α = 9 (because
v isn’t a single vertex). If α ∈ {3, 4, 5} (consider
α = 3 ) then by using Lemma 3.4 for v ,we have
c(v) ∈ {2, 6, 7, 8, α}. We have two cases for c(v). If
c(v) ∈ {6, 7, 8, α} then Lu = (3, 1, 1) and this case
was treated. Now suppose c(v) = 2 and 6,7 and 8
aren’t valid colors for v. suppose that two vertices s
and t are neighbors of v such that c(s) = c(t) =
3. By this assumption {6, 7, 8} ⊂ SCN(t) and
{6, 7, 8} ⊂ SCN(s)(because we can’t choose 6 and
7 and 8 for v ). Now we recolor vertex v with color
1,since we have Cu(1, 3) ,then in neighbors of vertex
s or t (consider t ) we have two vertices such that
their colors are 1(one of them is v ). Since 3 ∈ f(t)
and 3 /∈ SCN(v) so we can recolor vertex t with
color 3 and this yields Lv = (1, 1, 1, 1, 1),therefore
we can recolor v such that Lu becomes (3, 1, 1). If
α = 9 then we can color vertex v with color 6 and
we have Lu = (3, 1, 1) and this case was handled
above.
Case 3.1.5: Lu = (5)
Let N(u) = {v, w, x, y, z} and c(v) = c(w) =
c(x) = c(y) = c(z) = 1 and c(u) =
9 then f(u) = {2, 3, 4, 5, 6, 7, 8}. If we can’t
find a valid color from f(u) for u , then
we must have Cu(1, 2), Cu(1, 3), Cu(1, 4), Cu(1, 5),
Cu(1, 6), Cu(1, 7) and Cu(1, 8). This means that we
have at least 14 vertices in N(N(u)) − {u} such
that their colors are from the set {2, 3, 4, 5, 6, 7, 8}
and they are of the same color pairwisly. We have
two cases:

Case a: One of the neighbors of u (consider
v ) contains 4 vertices from that 14 vertices
as its neighbors.
In this case vertex v is a single vertex and
we can recolor it such that Lu = (4, 1) .
Case b: None of the vertices in N(u) con-
tains 4 vertices from that 14 vertices as its
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neighbors.
In this case there exist a vertex in N(u)
such that it contains 3 vertices from that
14 vertices as its neighbors. Suppose that
this vertex is v. Without loss of generality
we can assume SCN(v) = {2, 3, 4, α}. If
α ∈ {2, 3, 4} or α = 9 then we can recolor
vertex v such that Lu = (4, 1) .

Case 3.1.6:Lu = (2, 2, 1)
Let N(u) = {v, w, x, y, z} and c(v) = c(w) =
1, c(x) = c(y) = 2, c(z) = 3 and , then f(u) =
{4, 5, 6, 7, 8}. If there is no valid color in f(u) for u
then we have some critical cycles. All critical cycles
are of the two following types Cu(1, α), 4 ≤ α ≤ 8
or Cu(2, β), 4 ≤ β ≤ 8. We can consider two
following cases. Other possibilities can be considered
in the similar way.

Case a: We have Cu(1, 4), Cu(1, 5),
Cu(1, 6) and Cu(1, 7)
In this case the vertices v and w are single
and we can find a valid color for vertex v
which is neither 2 nor 3. After changing
the color of v with a new color we have
Lu = (2, 1, 1, 1) and this case was handled
above.
Case b: We have Cu(1, 4), Cu(1, 5),
Cu(1, 6) and Cu(2, 7), Cu(2, 8) .
By this assumptions we have SCN(v) =
{4, 5, 6, 9, α}. We have some cases for α.
If α /∈ {4, 5, 6, 9}, then the vertex v is a
single vertex and we can recolor it such
that Lu becomes (2, 1, 1, 1). If α = 9, we
can recolor v with color 7, then Lu =
(2, 1, 1, 1). Let α ∈ {4, 5, 6}. Without loss
of generality we can assume α = 4, then
Lv = (2, 1, 1, 1) , by using Lemma 3.4 for
vertex v we have c(v) ∈ {2, 3, 7, 8, α = 4}.
We have three possible cases such as c(v) ∈
{7, 8, α = 4} or c(v) = 2 or c(v) = 3. If
c(v) ∈ {7, 8, α = 4} then Lu = (2, 1, 1, 1)
and this case was treated above. If c(v) = 2
then Lu(3, 1, 1) and this case was handled
above.
Let c(v) = 3 and 2,7 and 8 aren’t valid
colors for v. Suppose that two vertices s and
t are neighbors of v such that c(s) = c(t) =
4. By this assumption {2, 7, 8} ⊂ SCN(t)
and {2, 7, 8} ⊂ SCN(s) (because we can’t
choose 2 and 7 and 8 for v ). Now we
recolor vertex v with color 1, since we have
Cu(1, 4), then in neighbors of vertex s or
t (consider t ) we have two vertices such
that their colors are 1(one of them is v ).
Since 3 ∈ f(t) and 3 /∈ SCN(v) so we can
recolor vertex t with color 3 and this yields
Lv = (1, 1, 1, 1, 1) therefore we can recolor
v such that Lu becomes (2, 1, 1, 1).

Case 3.1.7: Lu = (3, 2)
Let N(u) = {v, w, x, y, z}, c(v) = c(w) = 1
and c(x) = c(y) = c(z) = 2, then f(u) =
{3, 4, 5, 6, 7, 8}. If we can’t find a valid color for u
from f(u) then we have 6 critical cycles containing
u. Each cycle needs two vertices from N(N(u)) −
{u} of the same color. Therefore there exist at least
12 vertices in N(N(u))−{u} such that their colors
are from {3, 4, 5, 6, 7, 8} an they are of the same
color pairwisly. We detail two possible cases:

Case a: There exist a vertex inN(u) such
that it contains 4 vertices from that 12
vertices as its neighbors.
This vertex is a single vertex and we can
recolor it. If this vertex is v or w then Lu

becomes (3, 1, 1) and if this vertex is x or
y or z then we have Lu = (2, 2, 1).
Case b: It doesn’t exist a vertex in N(u)
such that it contains 4 vertices from that 12
vertices as its neighbors.
In this case there is a vertex such that it
contains 3 vertices from 12 vertices as its
neighbors (consider v or x ). First sup-
pose that this vertex is v. We can assume
SCN(v) = {3, 4, 5, 9, α} (other cases for
SCN(v) can be handle by similar way). If
α /∈ {3, 4, 5, 9} then v is single and we
can recolor it such that Lu = (3, 1, 1). If
α ∈ {3, 4, 5} then Lv = (2, 1, 1, 1) and by
applying Lemma 3.4 for v, to recolor it, we
will have Lu = (3, 1, 1) (if c(v) �= 2 ) or
Lu = (4, 1) (if c(v) = 2). If α = 9 then we
can assign color 6 to v and Lu = (3, 1, 1).
Now suppose that x contains 3 vertices
from those 12 vertices as its neighbors.
By this assumption, we have SCN(x) =
{3, 4, 5, 9, α}, If α /∈ {3, 4, 5, 9} then x is
a single vertex an after recolor it, we will
have Lu = (2, 2, 1). If α ∈ {3, 4, 5} (let
α = 3 ) then Lx = (2, 1, 1, 1) and by using
Lemma 3.4 to recolor x, we have c(x) �= 1
or c(x) = 1. If c(x) �= 1 then Lu = (2, 2, 1).
Now suppose that c(x) = 1 and none of
the colors in f(x), isn’t valid color for x.
Let s, t are two neighbors of x such that
their colors are α = 3 (consider t ). Since
c(x) = 1 and we had Cu(2, 3), therefore
SCN(t) = {2, 6, 7, 8, 1} (6, 7, 8 are in f(x)
but not valid, c(x) = 1). In this case we re-
color x with color 2 and this action implies
that Lt = (2, 1, 1, 1). Because 1 ∈ f(t) and
1 /∈ SCN(x), we can assign color 1 to t
and obtain Lx = (1, 1, 1, 1, 1). Finally we
can recolor x such that Lu = (2, 2, 1) .
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IV. CONCLUSION

In this paper, we have shown that any graph of maximum
degree 5 can be acyclically colored with 8 color. As far as
lower bounds are concerned. We know that a(K6) = 6 then for
F family of graphs with maximum degree 5 we have a(F ) ≥
6. Closing the gap between those two bounds is a challenging
open problem. In particular, we strongly suspect that the upper
bound of 8 is not tight.
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