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 
Abstract—This paper is focused on the CFD simulation of the 

radiaxial pump (i.e. mixed flow pump) with the aim to detect the 
reasons of Y-Q characteristic instability. The main reasons of 
pressure pulsations were detected by means of the analysis of 
velocity and pressure fields within the pump combined with the 
theoretical approach. Consequently, the modifications of spiral case 
and pump suction area were made based on the knowledge of flow 
conditions and the shape of dissipation function. The primary design 
of pump geometry was created as the base model serving for the 
comparison of individual modification influences. The basic 
experimental data are available for this geometry. This approach 
replaced the more complicated and with respect to convergence of all 
computational tasks more difficult calculation for the compressible 
liquid flow. The modification of primary pump consisted in inserting 
the three fins types. Subsequently, the evaluation of pressure 
pulsations, specific energy curves and visualization of velocity fields 
were chosen as the criterion for successful design. 
 

Keywords—CFD, radiaxial pump, spiral case, stability.  

I. INTRODUCTION 

HE tested radiaxial pump shows the considerable pressure 
pulsations accompanied with the strong noise for the flow 

rates lower than 0.4QBEP. This fact makes almost impossible to 
determine experimentally the dependence of the specific 
energy on the flow rates close to shut-off point. Likewise, 
after relatively short running period the strong wear of blades 
occurs due to the cavitation damage. 

The above mentioned problem can be solved in two basic 
ways – the modification of primary hydraulic system or the 
complete new design. Obviously it is reasonable first to check 
the actual arrangement and to propose the modifications to 
suppress the pressure pulsations [1]. To do it, it is necessary to 
detect the reasons of pulsation and Y-Q characteristic 
instability [2]. It is shown, that it is feasible to make the 
analysis of the whole machine – the impeller, the spiral, the 
discharge throat and the suction space in view of energy 
dissipation. By dividing the machine into three main parts and 
by determination of the dissipation function curve the 
contribution can be estimated of the individual functional 
elements to the instability. 

New design of any hydrodynamic pump [3]-[5] is not an 
easy task. The ways how to achieve it are usually well 
protected know-how of every specialist department. However, 
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in many cases it is possible to use only basic relations and 
laws that are able to define the scope and possibilities of the 
new design. Some problems that can be connected with 
operation of hydraulic machine can be also avoided using the 
simple analytical and semi-empirical approaches. To the most 
important parameters belong the delivery head, the stability of 
Y-Q characteristic curves and related undesirable pressure 
pulsations. 

Original and modified designs of radiaxial pumps with the 
same design parameters will be used to demonstrate the above 
mentioned possibilities. First the disadvantages will be 
outlined and then possible solutions will be illustrated. Pump 
operation will be simulated by means of CFD software. 
Experimental characteristic curve is at disposal for the 
problematic pump. 

II.  STABILITY CONDITIONS 

It is well known, that for the stable specific energy (head) 
curve (Y-Q characteristic) following condition [6] is valid in 
the whole range of operation 
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By the analysis of the pump power output and the specific 

energy it can be derived that the condition of the instability [7] 
needs to be valid for Q = 0 
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where 2 DH is the dissipation function depending on the flow 
rate. Due to problems with the exact expression of the strain 
rate tensor vij the balance of power inputs and outputs (3) was 
used as well 
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From the experiences it is known that the unstable curve of 

dissipation cans generally look as in Fig. 1. 
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Similar to Fin 1 and Fin 2 the static pressure difference at 
the pump inlet and pump outlet (Figs. 14, 15) and also the Y-
Q characteristic curve (Fig. 16) were evaluated. Because in 
this case the steady pressure difference around the average 
value for Q = 0.25 QBEP was not reached during the 
computation, the curve for pressures during rotation of the 
impeller is displayed (Fig. 14). 

 

 

Fig. 14 Difference of the static pressures between the pump inlet and 
the pump outlet, Fin 3, Q = 0.25 OBEP 

 

 

Fig. 15 Difference of the static pressure between the pump inlet and 
the pump outlet, Fin 3, Q = QBEP 

 
It is obvious, that the size of pressure pulsations remained 

practically unchanged. The specific energy curve (Fig. 16) is 
slightly different, but the results are still unacceptable. 

IX. PRESSURE AND VELOCITY FIELD AT THE IMPELLER INLET 

To complete all information about the flow character inside 
the radiaxial pump the impeller itself was investigated too. 
The special attention was given to the inlet part. However, 
regarding to the possibilities coming from the used 
preprocessor GAMBIT it was not possible to create a system 
of planes in the impeller, which would suitably follow the 
meridional shape. Therefore, the relative velocities (Figs. 17, 
18) and values of static pressures for pressure lower than 
saturation vapour pressure (Figs. 19, 20) will be displayed in 

the cylindrical cuts. The flow QBEP and 0.25 QBEP are 
monitored in the cut stretching through the centre of blade 
leading edge (r = 90 mm). During the flow analysis in the 
impeller another operating points as well as another 
cylindrical cuts (near the hub r = 50 mm, near the shroud r = 
125 mm) were evaluated. However, neither the relative 
velocities curves nor the static pressure curves show different 
character from that presented in the following figures. 
 

 

Fig. 16 Specific energy (Fin 3, Pump 1) and measured 
characteristic curves 

 

 

Fig. 17 Relative velocities at the blade leading edge, r = 90mm, 
Q = 0.25 QBEP 

 
It is obvious, that for the flow rates near QBEP the angle of 

attack (the angle of relative velocity vectors) is the same as the 
inlet angle of blades. However, the magnitudes of the relative 
velocity vectors are too high. This is documented also by the 
pressures distribution and by the considerable risk of 
cavitation near the blade leading edges. Nevertheless, the 
cavitation can contribute to instability itself. 

The scale defined in Figs. 19, 20 does not have of course 
any foundation from the physical point of view (one – phase 
CFD simulation), it only encloses the assumed cavitation area. 
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Fig. 18 Relative velocities at the blade leading edge, r = 90mm, Q = 
QBEP 

 

 
 

Fig. 19 Static pressures near the blade leading edge, r = 90 mm, Q = 
0.25 QBEP 

 

 

Fig. 20 Static pressures near the blade leading edge, r = 90mm, Q = 
QBEP 

X. CONCLUSION 

The modifications of the spiral case and the suction area of 
the pump did not avoid the strong pressure pulsations. Despite 
the effort it was not possible to prevent the undesirable 
secondary flows that are typical for this pump type. Because 
of small distance between the impeller and the spiral case 
nose, it is not possible to place the distributor (guide vanes) 
into the spiral case, which could contribute to the stabilization 
of the Y-Q curve.  

The dissipation function seems to be very significant for 
evaluation of the pump performance. This function cannot 
provide the answer to the way how to modify the hydraulic 
design, but it helps in detection of the problematic functional 
areas. Also from the curves of this function it can be estimated 
the rate that the impeller, the spiral case, the inlet and outlet 
pipe contribute to the undesirable hydraulic losses. However 
the fact that the individual parts of the pump influence each 
other cannot be ignored. 

 The study of dissipation on the base of CFD analysis is 
described in this paper. Without this instrument we would 
only be able to determine the shape of dissipation function of 
the whole pump. Nevertheless, it is possible to obtain the idea 
of whole design quality. The advantage is also the simplicity 
of this curve, which is evaluated based on the knowledge of 
hydraulic efficiency and power input or power output. CFD 
enables to obtain dissipation also in the individual design 
components. 

As mentioned in article, it was not possible to find an easy 
way for appropriate modification of the radiaxial pump 
primary design. However, in the beginning it was essential to 
properly pinpoint the reasons of instability and pressure 
pulsations. Therefore any instruments suitable for diagnostics 
of the pump behaviour are very welcome. 
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