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Abstract—In modern financial mathematics, valuing derivatives 

such as options is often a tedious task. This is simply because their 
fair and correct prices in the future are often probabilistic. This paper 
examines three different Stochastic Differential Equation (SDE) 
models in finance; the Constant Elasticity of Variance (CEV) model, 
the Balck-Karasinski model, and the Heston model. The various 
Martingales option price valuation formulas for these three models 
were obtained using the replicating portfolio method. Also, the 
numerical solution of the derived Martingales options price valuation 
equations for the SDEs models was carried out using the Monte Carlo 
method which was implemented using MATLAB. Furthermore, 
results from the numerical examples using published data from the 
Nigeria Stock Exchange (NSE), all share index data show the effect 
of increase in the underlying asset value (stock price) on the value of 
the European Put Option for these models. From the results obtained, 
we see that an increase in the stock price yields a decrease in the 
value of the European put option price. Hence, this guides the option 
holder in making a quality decision by not exercising his right on the 
option. 

 
Keywords—Equivalent Martingale Measure, European Put 

Option, Girsanov Theorem, Martingales, Monte Carlo method, option 
price valuation, option price valuation formula. 

I. INTRODUCTION 

INANCIAL derivatives are financial contracts that are 
linked to an underlying asset and through which specific 

financial risks can be traded in a typical financial market. The 
value of a financial derivative is a function of the underlying 
asset and time from whence its price is derived. Since the 
future reference price of the derivative is not known with 
certainty, its value at maturity can only be anticipated or 
estimated. Options which are a type of financial derivative are 
used for several purposes which include risk management, 
hedging, etc. [1]. 

Options allow parties to trade peculiar financial risks to 
other investors that are more willing and ready to 
accommodate such risk. The risk involved in option pricing 
contract can either be traded as itself or by initiating a new 
contract that bears the burden of risks involved in the contract 
[1]. There are basically four types of financial derivatives 
which are swaps, forwards, futures, and options. 

There are many justifications why investors opt for trading 
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in options instead of trading in stocks. One major reason to 
this decision is that it aids mitigation of risks and saves 
transaction costs.  

To value or price financial derivative products such as 
options is one of the most common problems in mathematical 
finance. In order to value an option using the Martingales 
approach, a replicating portfolio is constructed from trade-able 
assets, and the replicating portfolio is assumed to be driven by 
a financing strategy that is self-financing. The portfolio 
replicates the payoff of the financial derivative at expiry, and 
because of no arbitrage, it also replicates the value of the 
financial derivative at every instant before expiry. We then use 
the fact that the numeraire that turns the trade-able assets into 
martingales also turns the replicating portfolio into a 
martingale. The value of the financial derivative is the 
expected value of the payoff at expiry, discounted by the 
numeraire [2]. However, this paper will focus on the use of 
Martingale approach in the valuation of options price which is 
a type of financial derivatives.  

II. THEORETICAL BACKGROUND  

Definition 1 (Risk-neutral measure). A probability measure 
ℙ∗ on Ω is called a risk-neu.tral measure if it satisfies 
 

𝔼∗ 𝑆 |ℱ 𝑒 𝑆 ,      0 𝑢 𝑡 
 

where 𝔼∗ denotes the expectation under ℙ∗. 
Definition 2 (Self-financing portfolio). A portfolio allocation 
𝜉 , 𝜂 ℝ  with price (value) 𝑉  given by 𝑉 𝜉 𝑆

𝜂 𝐴 , 𝑡 𝜖 ℝ I s self-financing if and only if the relation 
𝑑𝑉 𝜂 𝑑𝐴 𝜉 𝑑𝑆  holds, where 𝜉  is the number of shares in 
𝑆  (could be any real number) and 𝜂  is the amount in the 
bank.  
Definition 3 (Numeraires). A numeraire is an asset with 
positive price, namely 𝑁 0 for all 𝑡. Any asset with this 
property can serve as a numeraire. The relative price 𝑆  of an 
asset is its price 𝑆  divided by the numeraire price, so that 

𝑆  and 𝑆 is measured in units of 𝑁. 

Definition 4 (Martingales). An integrable process 𝑋  is 
said to be a martingale with respect to the filtration ℱ if  
 

𝐸 𝑋 |ℱ 𝑋 ,       0 𝑠 𝑡. 
 
Theorem 1 (Fundamental theorem of arbitrage). The 
Fundamental Theorem of Arbitrage asserts that if the market is 
complete, then for each numeraire 𝑁 , there exists a unique 
Equivalent Martingale Measure ℕ such that the relative price 
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of the assets (and consequently, of the replicating portfolio) 

using that numeraire is a martingale. In the other words,  is a 

martingale under ℕ. Hence, 
 

     𝐸ℕ |ℱ     (1) 

III. METHODS 

A. Preliminaries for the Model Formulation  

Proposition 1 [3]. The measure ℙ∗ is risk-neutral if and only 
if the discounted price process 𝑋   ℝ  is a martingale under 
ℙ∗. 
Proof. If ℙ∗ is a risk-neutral measure, we have 
 
𝔼∗ 𝑋 |ℱ 𝔼∗ 𝑒 𝑆 |ℱ 𝑒 𝔼∗ 𝑆 |ℱ 𝑒 𝑆 𝑋 , 0 𝑢

𝑡 
 
hence 𝑋   ℝ  is a martingale. Conversely, if 𝑋   ℝ  is a 
martingale, then 

 
𝔼∗ 𝑆 |ℱ 𝑒 𝔼∗ 𝑋 |ℱ 𝑒 𝑋 𝑒 𝑆       0 𝑢 𝑡 

 
hence the measure ℙ∗ is risk-neutral according to Definition 
1.6. 
Theorem 2. (Girsanov Theorem; [4]). The process 𝑊 𝑊

𝜃 𝑑𝑠 is Brownian motion under the measure ℚ. 
Theorem 3. Let ϕ ,  be an adapted process satisfying 
the Novikov integrability condition 
 

𝐸 𝑒𝑥𝑝 |𝜙| 𝑑𝑡 ∞  

 
and let ℚ denote the probability measure defined by 
 

ℚ

ℙ
𝑒𝑥𝑝 𝜙 𝑑𝑊 𝜙 𝑑𝑠   

 
then 

𝑊 𝑊 𝜙 𝑑𝑠,      𝑡 𝜖 0, 𝑇 ,  
 
is a standard Brownian motion under ℚ. 
Theorem 4. (Martingale Representation Theorem; [4]). 
Suppose that 𝑀  is an ℱ martingale where ℱ  is the 
filteration generated by the 𝑛 dimensional standard 

Brownian motion, 𝑊 𝑊 , … , 𝑊 . If 𝐸 𝑀 ∞ for all 𝑡 

then there exists a unique 𝑛 dimensional adapted stochastic 
process, 𝜙  such that 
 

𝑀 𝑀 𝜙 𝑑𝑊     for all 𝑡 0  
 
where 𝜙 denotes the transpose of the vector, 𝜙 . 

B. The Martingale Approach 

In this approach, options are not part of the traded assets 
𝑆 𝑡 , … , 𝑆 𝑡 , so cannot be priced directly. However, we can 
form a replicating portfolio ∏ 𝑡 ∑ 𝑎 𝑡 𝑆 𝑡  that 
replicates the price of the option at every time, so that 𝑉 Π  

for every 𝑡 0 and 𝑉 Π . Moreover, the portfolio is 
traded since each asset is traded. The Fundamental Theorem 
of Arbitrage (Theorem 1) guarantees that given a numeraire 
𝑁 , each relative asset will be a martingale under the 
corresponding measure ℕ, and consequently, so will 𝑉 𝑁⁄  
since it is a linear combination of martingales. The martingale 
property of 𝑉 𝑁⁄  implies that 

 

                        𝐸ℕ ℱ    (2) 

 

from which the time – 𝑡 price of the derivative, 𝑉 , is 
 

           𝑉 𝑁 𝐸ℕ ℱ       (3) 

 
In the Black-Scholes economy, we have two assets, a stock 

𝑆  that follows the SDE 
 

                 𝑑𝑆 𝑟𝑆𝑑𝑡 𝜎𝑆𝑑𝑊                          (4) 
 
and a fixed bond 𝐵 
 

               𝑑𝑆 𝜇𝑆 𝑑𝑡 𝜎𝑆 𝑑𝑊         (5) 
 

 𝑑𝐵 𝑟𝐵 𝑑𝑡    
 

We apply Girsanov’s theorem so that the process for 𝑑𝑆  
becomes 

 
               𝑑𝑆 𝑟𝑆 𝑑𝑡 𝜎𝑆 𝑑𝑊𝔹       (6) 

 

where 𝑑𝑊𝔹 𝑑𝑊 𝑑𝑡 and 𝐵 exp 𝑟𝑑𝑢 𝑒 .  

We use 𝐵  as the numeraire so that 𝑆  is a martingale 

under 𝔹. The European Put option has payoff 𝑉 𝐾 𝑆 , 
so in accordance with 3 , the time-𝑡 price of the Put is 

 

𝑉 𝐵 𝐸𝔹 ℱ  𝑒 𝐸𝔹 𝐾 𝑆 |ℱ  (7) 

 
We can use the choice of another numeraire. The choice of 

the numeraire, 𝐵 , is arbitrary, and 𝑆  can be used instead. In 

the previous section, we saw that  is a martingale under an 

EMM 𝔹. Now, we have that  is a martingale, but under a 

different measure 𝕊. In 7 , the value 𝑉  of the Put is derived 
from 

 

𝐸𝔹 ℱ .  

 
Equivalently, using 𝑆  as the numeraire, the same value 𝑉  

can be derived from 
 

𝐸𝕊 ℱ   

 
The European Put has payoff,  𝑉 𝐾 𝑆 , so the time-𝑡 

price of the Put is  
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  𝑉 𝑆 𝐸𝕊 1 ℱ 𝑆 𝐸𝕊 ℱ              (8) 

 
Even though the expression in (7) and (8) are different, they 

both produce the same solution [5]. 

C. Derivation of the Model Equations 

1. The CEV Model  

We consider the pricing of European put option in the CEV 
model introduced by [6]. There are two assets; the bank 
account 𝐵 is given by 𝐵 𝑒  and the stock 𝑋 follow the SDE 

 
      𝑑𝑋 𝑟𝑋 𝑑𝑢 𝜎𝑋 𝑑𝑊 ,         𝑋 0    (9) 

 
with constants 𝜎 0 and 𝛼 0. We want to obtain the 
Martingale and PDE formula for the function u. 

To derive the Martingale option price valuation formula for 
the above SDE, we let 𝜙 𝜂 , 𝜉  ,  be portfolio strategy 
with price  

 
𝑉 𝜙 𝜂 𝐵 𝜉 𝑋  

 
and that it satisfies the self-financing condition 

 
𝑑𝑉 𝜙 𝜂 𝑑𝐵 𝜉 𝑑𝑋 𝑟𝑒 𝜂 𝑑𝑡 𝜉 𝑑𝑋  

 
or equivalently  
 

𝑉 𝜙 𝑉 𝜙 𝜂 𝑑𝐵 𝜉 𝑑𝑋   
 

The next is to apply the change in Numeraire. Since the 
price processes are strictly positive, in particular 𝐵 0, one 
can always normalize the market by considering 

 
𝐵 𝐵 𝐵 1 

 
and 

𝑋 𝐵 𝑋 𝑒 𝑋  
 

Hence, we consider the discounted portfolio 
 

𝑉 ∅ 𝐵 𝑉 𝜙 𝑒 𝜂 𝐵 𝜉 𝑋 𝜂 𝜉 𝑋  
 
and applying integration by parts, we have 
 

𝑑𝑉 𝜙 𝐵 𝑑𝑉 𝜙 𝑟𝑒 𝑉 𝜙 𝑑𝑡 𝑑𝐵 𝑑𝑉 𝜙  

𝐵𝑡
1𝑑𝑉𝑡 𝜙 𝑟𝑒 𝑟𝑡𝑉𝑡 𝜙 𝑑𝑡    (10) 

 
If we assume that  
 

𝑑𝑉 𝜙 𝜂 𝑑𝐵 𝜉 𝑑𝑋 , 
 
i.e., 𝜙 is self –financing, then 
 

𝑑𝑉 𝜙 𝑒 𝑟𝜂 𝑒𝑟𝑡𝑑𝑡 𝜉 𝑑𝑋 𝑟 𝜂 𝜉 𝑋 𝑑𝑡 
𝑟𝑒 𝑒 𝜂 𝑑𝑡 𝑒 𝜉 𝑑𝑋 𝑟𝜂 𝑑𝑡 𝑟𝜉 𝑒 𝑋 𝑑𝑡 

𝑟𝜂 𝑑𝑡 𝑒 𝜉 𝑑𝑋 𝑟𝜂 𝑑𝑡 𝑟𝜉 𝑒 𝑋 𝑑𝑡 
 

𝑑𝑉 𝜙 𝜉 𝑒 𝑑𝑋 𝑟𝜉 𝑒 𝑋 𝑑𝑡 𝜉 𝑒 𝑑𝑋 𝑑 𝑒 𝑋
𝜉 𝑑𝑋  

 

which yields that 𝑉 𝜙  is self-financing. Note that, in the 
discounted market, a self-financing portfolio is written in 
integral form as 
 

     𝑉 𝜙 𝑉 𝜙 𝜉 𝑑𝑋 ,       𝑡 𝜖 ℝ   (11) 
 
Then, we need to show that (11) is a martingale under 𝔹. So, 
by Girsanov’s Theorem, we can define a probability measure 
𝔹 and the process 

 

𝑊 𝑡 𝑊 ,  
 
is a Brownian motion under 𝔹. Now given 

 
𝑑𝑋 𝑟𝑋 𝑑𝑡 𝜎𝑋 𝑑𝑊  

 

if we now compute 𝑑𝑋 , we get  
 

𝑑𝑋 𝑑 𝑒 𝑋 𝑟𝑒 𝑋 𝑑𝑡 𝑒 𝑑𝑋 𝑟𝑋 𝑑𝑡
𝑒 𝑟𝑋 𝑑𝑡 𝜎𝑋 𝑑𝑊 𝑟𝑋 𝑑𝑡 𝑟𝑒 𝑋 𝑑𝑡 𝜎𝑋 𝑒 𝑑𝑊

𝑟𝑋 𝑑𝑡 𝑟𝑋 𝑑𝑡 𝜎𝑋 𝑒 𝑑𝑊   

 
𝑑𝑋 𝜎𝑋 𝑑𝑊  

 
or in explicit form, let 

 

ln 𝜎𝑋 𝑑𝑊   

 
Next, we now seek the solution of the above by applying 

the Ito’s formula. Setting, 
 

𝑌 𝑡 ln 𝑋 ,   𝑓 0 , 𝑓 , 𝑓   

 

Noting that, 𝑢 𝑡 𝜇𝑋 ,   𝑣 𝑡 𝜎𝑋  and so we have 
 

𝑑 ln 𝑋 0 0 𝜎𝑋 𝑑𝑡 𝜎𝑋 𝑑𝑊 ⇒

  𝑑 ln 𝑋 𝑑𝑡   

 

𝑑 ln 𝑋 𝜎 𝑑𝑡 𝜎𝑑𝑊 .  
 

Integrating both side of the above equation, we have 
 

ln 𝑋 ln 𝑋 𝜎 𝑑𝑡 𝜎𝑑𝑊   

ln 𝑋 ln 𝑋 𝜎 𝑡 𝜎𝑊   
 

since 𝑊 0. Taking exponential of both sides, we have 
 

𝑒 𝑒   
 

𝑋 𝑒 . 𝑒   
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∴   𝑋 𝑋 𝑒𝑥𝑝 𝜎𝑊 𝑡                  (12) 

 
We now go ahead to show that the above solution in 12  is 

a Martingale under 𝔹. We want to find a measure 𝔹 such that 
under 𝔹, the discounted stock price that uses 𝐵  as the 
numeraire is a martingale. 

We write 
 

𝑑𝑋 𝑟 𝑋 𝑑𝑡 𝜎𝑋 𝑑𝑊𝔹 
 

where,𝑊𝔹 𝑊 𝑡 applying Girsanov Theorem  

Using 𝐵  as the numeraire, the discounted stock price 

𝑋  and 𝑋  will be a martingale. Applying Ito’s Lemma to 

𝑋  which follows the SDE, we have  
 

             𝑑𝑋 𝑑𝐵 𝑑𝑋                       (13) 

 
All terms involving the second order derivatives are zero. 
Expanding (13), we have 
 

𝑑𝑋 𝑑𝐵 𝑑𝑋 𝑟 𝐵 𝑑𝑡 𝑟 𝑋 𝑑𝑡

𝜎𝑋 𝑑𝑊𝔹 𝑟 𝑋 𝑑𝑡
𝔹

⇒   𝑑𝑋 𝜎𝑋 𝑑𝑊𝔹  

 
The solution to the SDE is, 
  

𝑋 𝑋 𝑒𝑥𝑝 𝑡 𝜎𝑊𝔹 .  
 

To show that 𝑋  is a martingale under 𝔹, we consider the 
expectation under 𝔹 for 𝑠 𝑡, hence we have, 

 

𝐸𝔹 𝑋 |ℱ 𝑋 exp 𝜎 𝑡 . 𝐸𝔹 exp 𝜎𝑊𝔹 |ℱ

𝑋 exp 𝜎 𝑡 𝜎𝑊𝔹 . 𝐸𝔹 exp 𝜎 𝑊𝔹 𝑊𝔹 |ℱ   
 

at time 𝑠 we have that 𝑊𝔹 𝑊𝔹 is distributed as 𝑁 0, 𝑡  
which is identical in distribution to 𝑊𝔹  at time zero. Hence, 
we can write 
 

𝐸𝔹 𝑋 |ℱ 𝑋 exp 𝜎 𝑡 𝜎𝑊𝔹 . 𝐸𝔹 exp 𝜎 𝑊𝔹 |ℱ   
 
Now, the moment generating function (mgf) of a random 

variable 𝑋 with normal distribution 𝑁 𝜇, 𝜎  is given as 
 

𝐸 𝑒 exp 𝜇𝜙 𝜙 𝜎   

 

Under 𝔹, we have that 𝑊𝔹  is 𝔹- Brownian motion and 
distributed as 𝑁 0, 𝑡 𝑠 . Therefore, the mgf of 𝑊𝔹  is 

 

𝐸𝔹 𝑋 |ℱ 𝑋 exp 𝜎 𝑡 𝜎𝑊𝔹 . exp 𝜎 𝑡 𝑠   

 
where 𝜎 𝜙 and we can then write 
 

𝐸𝔹 𝑋 |ℱ 𝑋 exp 𝜎 𝑡 𝜎𝑊𝔹 𝑒𝑥𝑝 𝜎 𝑡 𝑠   

 

𝐸𝔹 𝑋 |ℱ 𝑋 exp 𝜎 𝑡 𝜎𝑊𝔹   
 

∴  𝐸𝔹 𝑋 |ℱ 𝑋  
 

We thus have that  
 

𝐸𝔹 𝑋 |ℱ 𝑋  
 

which shows that 𝑋  is a 𝔹 martingale. Hence, we have that 
 

𝑉 𝜙 𝑉 𝜙 𝜉 𝑑𝑋 𝑉 0 𝜉 𝜎𝑋 𝑑𝑊   
 

and 𝑉 𝜙  is a stochastic integral with respect to a Brownian 
motion under 𝔹. Hence, under the integrability condition as 
stated in Theorem 2, we have 
 

𝐸𝔹 𝜉 𝜎𝑋 𝑑𝑡 ∞  
 

Hence, we have shown that 𝑉 𝜙  is a martingale under 𝔹. 
Now since,  

 

𝑉 𝜙 𝑉 𝜙 𝜉 𝑑𝑋    𝑡 𝜖 ℝ   
 

is a martingale under 𝔹, it follows from the martingale 
properties of 𝑉 𝜙  under 𝔹 that, 
 

𝑉 𝜙 𝐸𝔹 𝑉 |ℱ 𝑒 𝐸𝔹 𝑉 |ℱ  𝑒 𝐸𝔹 𝐶|ℱ   (14) 
 
where 𝐶 is a contingent claim, 𝑢 𝑇, 𝑋 . Note that 𝜙
𝜂 , 𝜉  ,  hedges the claim 𝐶, i.e. we have 𝑉 𝐶 ⟹  𝑉

𝑢 𝑇, 𝑋 . Hence 14  becomes 
 

                    𝑉 𝑒 𝑉     𝑒 𝐸𝔹 𝑢 𝑇, 𝑋 |ℱ           
 

Since the process 𝑋   ℝ  has the Markov property, the 
value 

 
    𝑉 𝑒 𝐸𝔹 𝜙 𝑋 |ℱ 𝑢 𝑡, 𝑋      (15) 

 
here 𝜙 𝑋 𝑢 𝑇, 𝑋  of the portfolio at 𝑡 𝜖 0, 𝑇  can be 
written from (15) as a function 𝑢 𝑡, 𝑋  of 𝑡 and 𝑋 . Given the 
payoff function, 
 

𝑢 𝑇, 𝑋 𝐾 𝑋  
 
Hence, 15  becomes 
 

𝑢 𝑡, 𝑋 𝑒 𝐸𝔹 𝐾 𝑋 |ℱ  
 

         𝑢 𝑡, 𝑋 𝐸𝔹 𝑒 𝐾 𝑋 .        (16) 

2. Black-Karasinski Term Structure Model 

Let us consider another example which is the pricing of a 
zero coupon bond in the term structure model of [7]. They 
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describe the short rate 𝑟 by the SDE 
 
𝑑 𝑙𝑜𝑔𝑟 𝜑 𝑢 𝑙𝑜𝑔𝜇 𝑢 𝑙𝑜𝑔𝑟 𝑑𝑢 𝜎 𝑢 𝑑𝑊 , 𝑟 0   (17) 

 
with deterministic functions 𝜑, 𝜇, 𝜎. The price at time t of a 
zero coupon bond with maturity 𝑇 is then 
 

𝐸 𝑒𝑥𝑝 𝑟 𝑑𝑠 |ℱ 𝑢 𝑡, 𝑟   
 

by the Markov property of 𝑟 and we want to obtain a 
Martingale and PDE option price valuation formula for the 
function u. 

To derive the Martingale option price valuation formula for 
the above SDE, we let 𝜙 𝜂 , 𝜉  ,  be portfolio strategy 
with price  

 
𝑉 𝜙 𝜂 𝐵 𝜉 𝑋  

 

and that it satisfies the self-financing condition 
 

𝑑𝑉 𝜙 𝜂 𝑑𝐵 𝜉 𝑑𝑋 𝑟𝑒 𝜂 𝑑𝑡 𝜉 𝑑𝑋    
 
or equivalently  
 

𝑉 𝜙 𝑉 𝜙 𝜂 𝑑𝐵 𝜉 𝑑𝑋   
 

Now we are given that, 
 

𝑑 𝑙𝑜𝑔𝑟 𝜑 𝑢 𝑙𝑜𝑔𝜇 𝑢 𝑙𝑜𝑔𝑟 𝑑𝑢 𝜎 𝑢 𝑑𝑊  
 

Let 𝑙𝑜𝑔𝑟 𝑋  and 𝑙𝑜𝑔𝜇 𝑢 𝑙𝑜𝑔𝑟 𝑀  we have 
 

𝑑𝑋 𝜑 𝑡 𝑀 𝑑𝑡 𝜎 𝑡 𝑑𝑊  
 

If we now compute 𝑑𝑋 , we get 
 
𝑑𝑋 𝑑 𝑒 𝑋 𝑟𝑒 𝑋 𝑑𝑡 𝑒 𝑑𝑋 𝑟𝑒 𝑋 𝑑𝑡

𝑒 𝜑 𝑡 𝑀 𝑑𝑡 𝜎 𝑡 𝑑𝑊 𝑟𝑋 𝑑𝑡 𝑒 𝜑 𝑡 𝑀 𝑑𝑡
𝑒 𝜎 𝑡 𝑑𝑊 𝑟𝑋 𝑑𝑡 𝜑 𝑡 𝑀 𝑑𝑡 𝜎 𝑡 𝑑𝑊   

 
𝑑𝑋 𝜑 𝑡 𝑀 𝑟𝑋 𝑑𝑡 𝜎 𝑡 𝑑𝑊  

let 𝜑 𝑡 𝑀 𝑟𝑋 𝑍  
 

Hence, we have 
 

𝑑𝑋 𝑍 𝑑𝑡 𝜎 𝑡 𝑑𝑊   (18) 
 

or in explicit form, let  
 

ln 𝑑𝑡 𝜎𝑑𝑊   

 
Next, we now seek the solution by applying the Ito’s 

formula. Setting 
 

𝑌 𝑡 ln𝑋 , 𝑓 0, 𝑓 ,  𝑓   

 

Noting that 𝑢 𝑡 𝜇𝑋 𝑍 𝑋  and 𝑣 𝑡 𝜎𝑋 . So by the 

Ito’s formula, we have 
 

𝑑 ln𝑋 ̃_𝑡 0 𝜎 𝑋 𝑑𝑡 𝜎𝑑𝑊 𝑍 𝑋 . 𝑋

𝜎 𝑋 . 𝑋 𝑑𝑡 𝜎𝑑𝑊   

 

𝑑 ln𝑋 𝑍 𝑑𝑡 𝜎𝑑𝑊   

 
integrating both sides from 𝑡𝜀 0, 𝑡  we have 

 

ln𝑋 𝑙𝑛𝑋 𝑍 𝑑𝑡 𝜎𝑑𝑊   
 

ln𝑋 ln𝑋 𝑍 𝑡 𝜎𝑊   

 

Since 𝑊 0, taking exponential of both sides, we have 
that 

 

𝑒 𝑒   
 

𝑋 𝑒 . 𝑒   
 

             ∴ 𝑋 𝑋 𝑒𝑥𝑝 𝑍 𝑡 𝜎𝑊 𝑡   (19) 
 

The next step is to check if the above solution in (19) is a 
martingale. We want to find a measure 𝔹 such that under 𝔹, 
the discounted stock price that uses 𝐵  as a numeraire is a 
martingale. We write  

 

𝑑𝑋 𝜑𝑀 𝑑𝑡 𝜎𝑑𝑊𝔹 
 

where, 𝑊𝔹 𝑊 𝑡 applying Girsanov Theorem  using 𝐵  

as the numeraire, the discounted stock price 𝑋  and 𝑋  

will be a martingale. Applying Ito’s Lemma to 𝑋  which 
follows the SDE, we have  
 

             𝑑𝑋 𝑑𝐵 𝑑𝑋     (20) 

 
all terms involving the second order derivatives are zero. 
Expanding (20) we have 
 

𝑑𝑋 𝑑𝐵 𝑑𝑋  𝑟 𝐵 𝑑𝑡 𝜑𝑀 𝑑𝑡 𝜎𝑑𝑊𝔹

𝜑𝑀 𝑑𝑡
𝔹

  

 

         𝑑𝑋 𝑋 𝑟 𝑑𝑡 𝜑𝑀 𝑑𝑡 𝜎𝑑𝑊𝔹  (21) 
 

𝑑𝑋 𝑍 𝑑𝑡 𝜎𝑑𝑊𝔹 
 

where 𝑍 𝜑𝑀 𝑋 𝑟 . 
The solution to the SDE in (21) is given as 
 

𝑋 𝑋 𝑒𝑥𝑝 𝑍 𝑡 𝑡 𝜎𝑊 .  
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To show that 𝑋  is a martingale under 𝔹, we consider the 
expectation under 𝔹 for 𝑠 𝑡, hence we have, 

 

𝐸𝔹 𝑋 |ℱ 𝑋 exp 𝑍 𝑡 𝑡 . 𝐸𝔹 exp 𝜎𝑊𝔹 |ℱ

𝑋 exp 𝑍 𝑡 𝑡 𝜎𝑊𝔹 . 𝐸𝔹 exp 𝜎 𝑊𝔹 𝑊𝔹 |ℱ   
 
at time 𝑠 we have that 𝑊𝔹 𝑊𝔹 is distributed as 𝑁 0, 𝑡  
which is identical in distribution to 𝑊𝔹  at time zero. Hence, 
we can write 

 

𝐸𝔹 𝑋 |ℱ 𝑋 exp 𝑍 𝑡 𝑡 𝜎𝑊𝔹 . 𝐸𝔹 exp 𝜎 𝑊𝔹 |ℱ   
 

Now, the moment generating function (mgf) of a random 
variable 𝑋 with normal distribution 𝑁 𝜇, 𝜎  is given as 

 

𝐸 𝑒 exp 𝜇𝜙 𝜙 𝜎 .  
 

Under 𝔹, we have that 𝑊𝔹  is 𝔹- Brownian motion and 
distributed as 𝑁 0, 𝑡 𝑠 . Therefore, the mgf of 𝑊𝔹  is 

 

𝐸𝔹 exp 𝜎𝑊𝔹 exp 𝜎 𝑡 𝑠   

 
where 𝜎 𝜙 and we can then write 
 

𝐸𝔹 𝑋 |ℱ 𝑋 exp 𝑍 𝑡 𝑡 𝜎𝑊𝔹 . exp 𝜎 𝑡 𝑠   

𝐸𝔹 𝑋 |ℱ 𝑋 exp 𝑍 𝑡 𝑡 𝜎𝑊𝔹 𝑋 .  
 

We thus have that  
 

𝐸𝔹 𝑋 |ℱ 𝑋  
 

which shows that 𝑋  is a 𝔹 martingale. Hence, we have that 
 

𝑉 𝜙 𝑉 𝜙 𝑍 𝑑𝑠 𝜎 𝑠 𝑑𝑊   
 

and 𝑉 𝜙  is a stochastic integral with respect to a Brownian 
motion under 𝔹. Hence, under the integrability condition as 
stated in Theorem 2, we have 
 

𝐸𝔹 𝑍 𝜎 𝑡 𝑑𝑡 ∞  

 

Hence, we have shown that 𝑉 𝜙  is a Martingale under 𝔹. 
Now since, 

 

𝑉 𝜙 𝑉 𝜙 𝑍 𝑑𝑠 𝜎 𝑠 𝑑𝑊 ,       𝑡𝜀ℝ  
 
is a Martingale under 𝔹 it follows from the Martingale 
properties of 𝑉 𝜙  under 𝔹 that, 
 

𝑉 𝜙 𝐸𝔹 𝑉 ℱ 𝑒 𝐸𝔹 𝑉 |ℱ  𝑒 𝐸𝔹 𝐶|ℱ (22) 
 

where 𝐶 is a contingent claim, 𝑢 𝑇, 𝑋 .  
Note that 𝜙 𝜂 , 𝜉 ,  hedges the claim 𝐶, i.e. we 

have 
 

𝑉 𝐶 ⇒ 𝑉 𝑢 𝑇, 𝑋  
 
Hence, we have  (22) that  

 
𝑉 𝑒 𝐸𝔹 𝑢 𝑇, 𝑋 |ℱ  

 
Since the process 𝑋 ℝ  has Markov property, the value 
 

 𝑉 𝑒 𝐸𝔹 𝜙 𝑋 |ℱ 𝑢 𝑡, 𝑋    (23) 
 
of the portfolio at 𝑡𝜀 0, 𝑇  can be written from 8  as a 
function 𝑢 𝑡, 𝑋  of 𝑡 and 𝑋 . Given the payoff function 
𝑢 𝑇, 𝑋 𝐾 𝑋 1, for zero coupon bonds. Hence 
(23) becomes 

 
𝑢 𝑡, 𝑋 𝑒 𝐸𝔹 𝐾 𝑋 |ℱ ⇒ 𝑢 𝑡, 𝑋

𝑒 𝐸𝔹 1 |ℱ  
 

𝑢 𝑡, 𝑋 𝐸 𝑒  

 
But 𝑋 𝑙𝑜𝑔𝑟 , hence, 

 

𝑢 𝑡, 𝑋 𝐸 𝑒 ℱ .   

3. Heston Stochastic Volatility Model 

We consider the Heston stochastic volatility model with two 
assets 𝐵 and 𝑆. The bank account 𝐵 is given by 𝐵 𝑒  where 
r is the instantaneous riskless interest rate. The stock 𝑆 
satisfies the SDE 

 

𝑑𝑆 𝜇𝑆 𝑑𝑡 𝑣 𝑆 𝑑𝑊 ,     𝑆 0 
     

where the volatility 𝑣 is itself stochastic and given as in [8] by 
 

    𝑑𝑣 𝜅 𝜃 𝑣 𝑑𝑡 𝜎 𝑣 𝑑𝑊 ,       𝑣 0        
 

for non-negative constants 𝜅, 𝜃, 𝜎. The process 𝑆 and 𝑣 are 
defined on a filtered probability space Ω, ℱ, ℱ , 𝔹  and 

𝑊  𝑎𝑛𝑑 𝑊  are 𝐵 Brownian motions with instantaneous 

correlation 𝑑𝑊 𝑑𝑊 𝜌𝑑𝑡.  
We want to obtain the Martingale and PDE option price 

valuation formula for the function u. 
To derive the Martingale options price valuation formula 

for the above SDE, we let 𝜙 𝜂 , 𝜉  ,  be portfolio 
strategy with price  

 
𝑉 𝜙 𝜂 𝐵 𝜉 𝑋  

 
and that it satisfies the self-financing condition 
 

𝑑𝑉 𝜙 𝜂 𝑑𝐵 𝜉 𝑑𝑋 𝑟𝑒 𝜂 𝑑𝑡 𝜉 𝑑𝑋   
 
or equivalently, 
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𝑉 𝜙 𝑉 𝜙 𝜂 𝑑𝐵 𝜉 𝑑𝑋   
 

We are also given that the riskless investment (bank 
account) is given by  

 
𝐵 𝑒  

 
Now under the Black-Scholes model, the Martingale 

options price of a financial derivative is given by 
 

𝑉 𝑁 𝐸ℕ ℱ                                  (24) 

 
With numeraire 𝑁  as the bond with constant interest rates,  
 

𝐵 𝑒  
 

Hence, the above becomes with 𝑁 𝐵  and  
 

 𝑉 𝑢 𝑢 𝑆 , 𝑡 𝑒 𝐸𝔹 𝑢 𝑆 ,𝑇 ℱ  (25) 
 

where 𝔹 is the measure under which the discounted stock 
price  
 

𝑒 𝑆  is a Martingale.  

 
But, we know that the value of the option is the expected value 
of the payoff at expiry, discounted by the numeraire. The 
European Put option has payoff, 

 
𝑢 𝑢 𝑇, 𝑆 𝐾 𝑆 , 

 

So, in accordance with (25), the time – 𝑡 price of the Put 
option for the Heston’s model is given as 

 

𝑢 𝑢 𝑡, 𝑆 , 𝑣 𝐵 𝐸𝔹 ℱ   

 

𝑢 𝑒 𝐸𝔹 𝐾 𝑆 |ℱ   
 
Since the process 𝑋 ℝ  has Markov property, the value 

of the Martingale option price valuation formula is given by 
 

 𝑢 𝑢 𝑡, 𝑆 , 𝑣 𝑒 𝐸𝔹 𝐾 𝑆 |ℱ  (26) 

IV. NUMERICAL SOLUTIONS 

A. Derivation of Monte Carlo Scheme for Martingales 
Option Price Valuation Formulas  

Let us consider the SDE given by the CEV model, 
 

 𝑑𝑋 𝑟𝑋 𝑑𝑡 𝜎𝑋 𝑑𝑊 , 𝑥 0       (27) 
 
where r is the interest rate which is assumed to be constant, 𝜎 
is the volatility rate, 𝛼 is the elasticity, and 𝑊  is the standard 
Brownian motion process. The value parameter of European 
Put option at 𝑡𝜖 0, 𝑇  is then given by 
 

𝑢 max  𝐸 𝑒 𝐾 𝑋   (28) 
 

The payoff function of the above equation is given as  
 

𝑃 𝑋 , 𝑡 𝐾 𝑋  
 

We denote 𝑋 𝑋 𝑡 𝑡 ; 𝑖𝜖 0,1,2, … , 𝑀  as the state of 
asset price process at the 𝑖𝑡ℎ exercise opportunity. The Euler-
Maruyama scheme discussed by Wu, in [8] can be used to 
approximate the asset price process in (27) over the time 
interval 0, 𝑇  given by  

 

   𝑋 𝑋 𝑟𝑋 ∆𝑡 𝜎𝑋 ∆𝑊   (29) 
 

𝑋 𝑥,    𝑛 0,1,2, … , 𝑁 1               
 

where ∆𝑡  and ∆𝑊 𝑊 𝑊  is the independent 

Brownian increment which follows a normal distribution 
𝑁 0, √∆𝑡 . The discretized process 𝑋  given in this way is 
essentially a Markov chain. 

We know that for a European Put option, the payoff 
function is given as 

 
            𝑌 𝑃 𝑋 max 𝐾 𝑋 , 0   (30) 

 
where 𝑋 𝑋 𝑇  is the price of the underlying stock at the 
time 𝑇 when the option expires and (30) produces one possible 
option value at expiration of the option. The overall aim is to 
determine the correct and fair price of the option at the time 
the holder and the writer enter into the contract [9]. 

To estimate price of the Put option of the CEV model in 
(27) using the Monte Carlo method, we consider a collection 
of 𝑀 stock prices at expiration generated by using (27). That is  

 

𝑋 𝑋 𝑇 ,     𝑘 1, … , 𝑀  
 

Option pricing theory requires that the average value of the 
payoffs,   

 

𝑃 𝑋 , 𝑘 1, … , 𝑀  
 
be equal to the compounded total return obtained by investing 
the option premium 𝑃 𝑥 , at rate 𝑟 over the life of the option. 
Hence we have, 
 

𝑃 𝑥 max 𝐾 𝑥 , 0 , 𝑘 1, … , 𝑀 ⇒  ∑ 𝑃 𝑥

1 𝑟∆𝑡 𝑃 𝑥 (31) 
 

Solving (31) for 𝑃 𝑥  yields the Monte Carlo estimate for 
the option price given as 

 

     ∴ 𝑃 𝑥 1 𝑟∆𝑡 ∑ 𝑃 𝑥   (32) 

 

So the Monte Carlo estimate 𝑃 𝑥  is the present value of 
the average of the payoffs computed using rules of compound 
interest. Equation (32) is the general Monte Carlo estimate 
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formula for computing the estimate 𝑃 𝑥  9 . Similarly, for 
the Black- Karasinski model given below as 

 
 𝑑 𝑙𝑜𝑔𝑟 𝜑 𝑢 𝑙𝑜𝑔𝜇 𝑢 𝑙𝑜𝑔𝑟 𝑑𝑢 𝜎 𝑢 𝑑𝑊 (33) 

 
𝑑 𝑙𝑜𝑔𝑟 𝜑 𝑡 𝑙𝑜𝑔𝜇 𝑡 𝑑𝑡 𝜑 𝑡 𝑙𝑜𝑔𝑟 𝑑𝑡 𝜎 𝑢 𝑑𝑊  

 
Let 𝑙𝑜𝑔𝑟 𝑋  and 𝜑 𝑡 𝑙𝑜𝑔𝜇 𝑡 𝑀 . Therefore, we have 

 
𝑋 𝑀 𝑑𝑡 𝜑 𝑡 𝑋 𝑑𝑡 𝜎 𝑡 𝑑𝑊   (34) 

 
The discretized form of (34) using the Euler-Maruyama 

scheme over time interval 0, 𝑇 is given by 
 

  𝑋 𝑋 𝑀 ∆𝑡 𝜑𝑋 ∆𝑡 𝜎∆𝑊    (35) 
 

𝑋 𝑥,      𝑛 0,1,2, … , 𝑁 1 
 

We can then repeat the steps for the computation of Monte 
Carlo estimator 𝑃 𝑥  as enumerated above for that of the CEV 
model. 

Finally, we consider the Heston’s model given as 
 

   𝑑𝑆 𝑟𝑆 𝑑𝑡 𝑣 𝑆 𝑑𝑊     (36) 
 

    𝑑𝑣 𝜅 𝜃 𝑣 𝜆𝑣 𝑑𝑡 𝜎 𝑣 𝑑𝑊      (37) 
 

𝑑𝑊 𝑑𝑊 𝜌𝑑𝑡              
 
where 𝜃 the long-term running is mean of the variance 
process, 𝜅 is the speed of mean-reversion of the variance 
process and 𝜌 is the instantaneous correlation between the 
state process and the volatility process. 

To perform a standard Monte Carlo simulation in the above 
model, we will split the time to maturity 𝑇 into 𝑁 steps with 
step size 𝛿𝑡 (i.e. 𝑇 𝑁𝛿𝑡 . Then, we have a time-stepping 
scheme using the Euler-Maruyama time-stepping with the 
initial value 𝑆 , 𝑣  of 

 

 𝑆 𝑆 1 𝑟𝛿𝑡 𝑣 𝜌𝑁 , 1 𝜌 𝑁 , √𝛿𝑡      (38) 
 

 𝑣 𝑣 𝜅 𝜃 𝑣 𝜆𝑣 𝛿𝑡 𝑣 𝜎𝑁 , √𝛿𝑡    (39) 
 

where 𝑁 ,  are realization of two independent 𝑁 0,1  
variables. Then 𝑀 realizations of the stock priceA paths 
𝑆 ,

,  and the variance paths 𝑣 ,
,  are simulated 

following the necessary steps required for the computation of 
Monte Carlo estimator 𝑃 𝑥  as stipulated above. 

B. Numerical Examples 

Empirical data obtained from the NSE will be used to plot 
some graphs to investigate the effect of increase in the 
underlying asset (i.e. positive correlation) on the option value 
(price) for the three financial models examined in this paper. 
The parameter values are shown in Tables I-III Computer 
programs coded in MATLAB were used for solving the 

systems of the derived Monte Carlo scheme in (29), (35) and 
(38) … (39). The graphs for the various parameter values for 
the CEV model in Table I, the Black-Karasinski model in 
Table II, and the Heston model in Table IIII are presented in 
Figs. 1-6, respectively. 

 
TABLE I 

PARAMETER VALUES FOR THE CEV MODEL [10] 
Cases  

Parameters 1 2 3 

𝐾 200 200 200 

𝑑𝑋 1 1 1 

𝑋 20 40 60 

𝑇 1 1 1 

𝛼 0.2 0.2 0.2 

𝑑𝑇 0.1 0.1 0.1 

𝑟 0.1 0.1 0.1 

𝜎 0.5 0.5 0.5 

 
TABLE II 

PARAMETER VALUES FOR THE BLACK-KARASINSKI MODEL [10] 

Cases  
Parameters 1 2 3 

𝐾 200 200 200 

𝑑𝑋 1 1 1 

𝑋 20 40 60 

𝜑 0.2 0.2 0.2 

𝑇 1 1 1 

𝛼 0.2 0.2 0.2 

𝑑𝑇 0.1 0.1 0.1 

𝑟 0.1 0.1 0.1 

𝜎 0.5 0.5 0.5 

 
TABLE III 

PARAMETER VALUES FOR HESTON MODEL [10] 

Cases  
Parameters 1 2 3 

𝑲 200 200 200 

𝑺 20 40 60 

𝑽 1 1 1 

𝝀 1 1 1 

𝜿 2 2 2 

𝑻 1 1 1 

𝜽 0.2 0.2 0.2 

𝜼 0.2 0.2 0.2 

𝒓 0.1 0.1 0.1 

𝝈 0.5 0.5 0.5 

𝝆 0.8 0.8 0.8 

V. RESULTS AND DISCUSSION 

In this section, we will discuss the result of our numerical 
experiments carried out by increasing the value of the 
underlying assets for the CEV, Black-Karasinski, and Heston 
models respectively at various parametric values. The 
parameter values for the experiments are shown in Tables I-
III. The graphs, plotted using these values, are shown in Figs. 
1-6. In the curves, blue represents the value of the Option at 
expiry, green represents half a year before expiration, and red 
represents one year before expiration that is when the contract 
is signed. 
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Fig. 1 Put Option Price, Expiration Time and Stock Price at the 
following Parameter values: 𝑋 20: 100;  𝐾 200;  𝑇 1;  𝜶

0.2;  𝑡 0;  𝑟 0.1;  and 𝜎 0.5 for CEV model 
 

 

Fig. 2 Put Option Price against the Stock Price 𝑋  at the following 
Parameter values ∶ 𝑋 20: 100;  𝐾 200;  𝑇 1;  𝑡 0; ; 𝑟

0.1;  𝜎 0.5 and 𝛼 0.2 for the CEV model 
 

 

Fig. 3 Put Option Price, Expiration Time and Stock Price at the 
following Parameter values: 𝑋 20: 100;  𝐾 200;  𝑇 1;  𝜑

0.2;  𝑡 0;  𝑟 0.1;  and 𝜎 0.5 for Black-Karasinski model 
 

 

Fig. 4 Put Option Price against the Stock Price 𝑋  at the following 
Parameter values: 𝑋 20: 100;  𝐾 200;  𝑇 1;  𝜑 0.2;  𝑡

0;  𝑟  0.1;  and 𝜎 0.5 for Black-Karasinski model. 
 

 

Fig. 5 Put Option Price, Expiration Time and Stock Price at the 
following Parameter values: 𝑆 20: 100;  𝐾 200;  𝑉 0.2;  𝜆

1;  𝜅 2;  𝑇 1; ;  𝜃 0.2;  𝑟 0.1;  𝜎 0.5 𝑎𝑛𝑑 𝜌
0.8 for the Heston model 

 

 

Fig. 6 Put Option Price against the Stock Price 𝑆  at the following 
Parameter values: 𝑆 20: 100;  𝐾 200;  𝑉 0.2;  𝜆 1;  𝜅
2;  𝑇 1;  𝜃 0.2;  𝑟 0.1;  𝜎 0.5 and 𝜌 0.8 for the Heston 

model 
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A. Experiment One 

In this case, we looked at the situation where the underlying 
asset (stock price) value,  𝑋 or 𝑆 20 for the CEV, Black-
Karasinski, and Heston models, respectively. The result 
displayed in Figs. 1-6 showed that the value of the European 
Put option price using the Monte Carlo method has values of 
160 for the CEV model, 172 for the Black-Karasinski model 
and 142 for the Heston model respectively.  

B. Experiment Two  

Also, we reviewed the situation where the underlying asset 
(stock price) value,  𝑋 or 𝑆 40 for the CEV, Black-
Karasinski, and Heston models, respectively. The result 
displayed in Figs. 1-6 showed that the value of the European 
Put option price using the Monte Carlo method has values of 
140 for the CEV model, 164 for the Black-Karasinski model 
and 120 for the Heston model respectively.  

C. Experiment Three  

Finally, we investigated the scenario where the underlying 
asset (stock price) value,  𝑋 or 𝑆 60 for the CEV, Black-
Karasinski and Heston models respectively. The result 
displayed in Figs. 1-6 showed that the value of the European 
Put option price using the Monte Carlo method has values of 
120 for the CEV model, 150 for the Black-Karasinski model 
and 110 for the Heston model respectively.  

VI. CONCLUSION  

In this paper, we have derived the Martingale European Put 
Options valuation formulas for three SDE models in finance 
which are the CEV model, the Black-Karasinski term structure 
model and the Heston model. The Monte Carlo method of 
numerical solution for the derived Martingales option price 
valuation formulas for the three distinct SDE models was used 
in the implementation of numerical experiments. From this 
study, we observed that the Martingales approach presents 
option price valuation formulas in form of conditional 
expectations of the payoff function discounted by the 
numeraires. Furthermore, numerical experiments, using 
published data from the NSE show that as the price of the 
underlying asset (stock price) increases, the value of the 
European Put option decreases. Hence, the right to sell at a 
fixed price (Puts) will become less valuable and the buyer 
decides not to exercise his right on the options by allowing the 
option to expire.  

REFERENCES 
[1] Statistics Department –International Monetary Fund (1998). Eleventh 

Meeting of the IMF Committee on Balance of Payments Statistics on 
Financial Derivatives. Washington, D.C., October 21-23, 1998.  

[2] Heath, D. & Schweizer, M. (2000). Martingales versus PDEs in Finance: 
An Equivalence Result with xamples. Journal of Applied Probability 37, 
947-957 Equivalence Result with Examples. A Journal of Applied 
Probability, 37, 947-957 

[3] Privault, N. (2016). Notes on Stochastic Finance. Chapter 6 on 
Martingale Approach to Pricing and Hedging, December 20, 2016. 

[4] Haugh, M. (2010). Introduction to Stochastic Calculus. Financial 
Engineering: Continuous-Time Models. 

[5]  Rouah, F. D. (2017). “Four Derivations of the Black ScholesPDE”. 
http://www.frouah.com/finance%20notes/Black%20Schooles%20PDE.p

df  
[6] Cox, J. C. (1975). The Constant Elasticity of Variance Option Pricing 

Model. Journal of Portfolio Management, Special Issue December, 
1996, 15-17. 

[7] Black, F. & Karasinski, P. (1991). Bond and Option Pricing when Short 
Rates are Lognormal. Financial Analysts Journal, July-August 1991, 52-
59. 

[8] Wu, Z. (2012). Pricing American Option using Monte Carlo Method. A 
thesis submitted for the degree of Master of Science in Mathematics and 
Computational Finance, St Catherine’s College, University of Oxford. 

[9] Lu, B. (2012). Monte Carlo Simulations and Option Pricing. 
Undergraduate Mathematics Department, Pennsylvania State University, 
2012. 

[10] http://www.nse.com.ng/market_data-site/trading-statistics-site/other-
market-information/weekly- report 


