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 
Abstract—Type 2 Diabetes (T2DM) and Alzheimer's disease 

(AD) are two main health problems influencing millions of people in 
the world. Neuron loss and synaptic impairment that interfere with 
cognition and memory cause for the behavioral indications of AD. 
While it is now accepted that insulin has central neuromodulatory 
purpose, it was contemplated for many years that brain is 
insusceptible to insulin, involving its function in memory and 
learning, which are impaired in AD. The common characteristics of 
both AD and T2D are impaired insulin signaling, oxidative stress, the 
excitation of inflammatory pathways and unqualified glucose 
metabolism. This review summarizes how the recognition of these 
mechanisms may lead to the development of alternative therapeutic 
approaches. Here we summarize how the recognition of these 
mechanisms may lead to the development of alternative therapeutic 
approaches. 

 
Keywords—Alzheimer’s disease, diabetes, insulin resistance, 

neurodegenerative. 

I. INTRODUCTION 

D only recently stopped being   narrowly understood as a 
kind of neurodegenerative dementia associated with 

irregularly elevated levels of neurofibrillary tangles and 
amyloid b (Ab) plaques in the forebrain. The contemporary 
definition of AD is broader and includes the 
pathophysiological processes responsible for the gradual onset 
of dementia [1], [2]. Because only a small group of cases are 
the result of inherited genetic causes [3], the etiology and 
pathogenesis of intermittent, late-onset AD are still not fully 
understood. Some studies have drawn the conclusion that AD 
is a kind of diabetes specific to the brain [4], [5]. AD and 
T2DM are both age-related disorders of a largely coincidental 
nature [4]. On the basis of the over two decade-old Rotterdam 
study providing epidemiological evidence of a link between 
dementia and diabetes [6], even more evidence has been 
provided in support of a link between the two conditions. The 
risk of dementia is twice as high for patients with T2DM [7], 
[8]. A further association between diabetes and major 
depressive disorders has also been suggested to highlight the 
link between cognitive dysfunction and AD [9]. Elevated 
glycaemia increases the risk of dementia for non-diabetic 
individuals by 18% and has been linked to a reduced 
hippocampal volume and cognitive decline [10], [11]. The 
occurrence of AD has also been shown to have a positive 
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correlation with hyperinsulinemia and hyperglycemia [12], 
[13].  

T2DM is a complicated metabolic disorder accompanied by 
high levels of glucose in the blood, the increased production of 
hepatic glucose, and the failure of pancreatic β-cells and 
insulin receptor to produce insulin [14]. T2DM is 
characterized by the resistance of peripheral organs to insulin, 
specifically muscle, the liver, and adipose tissues [15]. The 
two primary forms of diabetes, differentiated by etiology, are 
Type 1 diabetes, which involves the complete absence of 
insulin due to the autoimmune destruction of pancreatic b-
cells, and T2DM, which is characterized by the combination 
of insulin resistance and decreased insulin secretion. Insulin 
performs both neurotropic and neuroprotective roles, as well 
as regulates synaptic plasticity in neurons [16], [17], making it 
an important means of modulating cognition (reviewed in 
[18]). Significant epidemiological evidence has also 
established a link between cognitive impairments and both 
types of diabetes [19]. Of note is the impairment of the 
pathway for signaling insulin in AD brains discovered by 
some studies [20], (reviewed in [21]) using a diversity of in 
vivo and in vitro experimental AD models, including non-
transgenic and transgenic animal models [22]-[24]. Overall, 
these conclusions highlight insulin resistance as a common 
molecular mechanism linking AD and diabetes. 

AD is one of the more common neurodegenerative 
disorders and involves neuronal and progressive memory loss, 
and the buildup of two poorly-soluble abnormal structures in 
the brain: amyloid plaques generated from Ab peptides, 
produced by the c-secretase complex and the b-site amyloid b 
precursor protein (APP) cleavage enzyme 1 (BACE1) from 
the sequential cleavage of the APP [25], and neurofibrillary 
tangles generated from the neuron-enriched, microtubule-
associated protein, tau. The behavioral deficits attributed to 
AD are due to the synaptic dysfunction and death of memory 
and cognition-mediating neurons. The reduced function and 
viability of neurons are mediated by the biological and 
biochemical relationships between tau and Ab, particularly the 
soluble forms that serve as the foundation of plaque and 
tangles [26]. Some researchers have taken the view that the 
reduction in brain insulin signaling found in AD is proof that it 
is a form of T2D known as type 3 diabetes (T3D), especially 
when it is accompanied by evidence of altered CSF insulin 
[20], [27]. This conclusion is misrepresentative and the 
resistance to brain insulin found in AD cases is not T3D, 
although it has been posited that [28] neuronal insulin 
resistance syndrome is feature of AD. 

Apart from the apparent metabolic implications, relatively 
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little was known about the relationships between specific AD 
phenotypes and reduced brain insulin signaling. Oddly, no 
proof of ectopic neuronal cell cycle re-entry (CCR) creating 
new neurons by dividing cells exists. Instead, CCR appears to 
be followed by neuron death accounting for as much as 90% 
of all AD-related neuron loss [29]. The resistance of the brain 
to insulin could indicate a lesion that significantly precluded 
the emergence of AD, or could alternatively occur after 
synaptic function and neuronal life-span have already been 
compromised by signaling processes. While the position of 
T2D as a risk factor for AD [30] presents insulin resistance in 
the brain as a causative factor, virtually nothing is known 
regarding the underlying causative mechanisms. The 
proceeding sections offer a review of contemporary research 
establishing a link between deficiencies in brain insulin 
signaling and the neurotoxic impact of Abs in AD. The 
apparent similarity between the pathways responsible for 
insulin dysfunction in AD and insulin resistance in diabetes 
provides the basis for a discussion of the molecular 
justification for the use of antidiabetic agents in AD treatment. 

II. INSULIN SIGNALING 

Insulin is a b-cell hormone produced by the pancreas to 
counteract elevated glucose levels from feeding. Insulin 
signaling physiologically begins when insulin is recognized 
and then bound to a transmembrane tyrosine kinase receptor, 
the insulin receptor (IR). The IRs, once activated, then 
phosphorylate a preserved group of adaptor proteins known as 
insulin receptor substrates 1 through 4 (IRS-1 through IRS-4) 
[31]. These IRSs then differentiate insulin stimulation into 
various unique pathways, the most important of which is the 
phosphoinositide 3-kinase (PI3K)/murine thymoma viral 
oncogene homolog (Akt)/mammalian target of rapamycin 
(mTOR) pathway, thereby permitting cells to be metabolically 
and transcriptionally reprogrammed [32]. The better-studied 
IRS-1 and IRS-2 substrates can be dissociated from the IR by 
undergoing inhibitory serine phosphorylation (pSer), which 
can also decrease tyrosine phosphorylation (pTyr) [32] 
consequently inhibiting downstream insulin signaling. 
Downstream insulin signaling can also be regulated by 
dephosphorylating tyrosine residues in IR and IRS-1 using the 
protein tyrosine phosphatase 1B (PTP1B) [33]. The central 
nervous system (CNS) is covered in enzyme insulin, IR and its 
substrates [34]. Brain insulin regulates body weight and food 
intake [35], as well as synaptic plasticity and neurotransmitter 
release, [36], thereby making it important for learning and 
memory [37]. Havrankova first highlighted the presence of IR 
in the brain, which has since been confirmed by others [38]. 
Insulin binds to the abundant but selectively-distributed 
insulin receptors (InsRs) in the brain. Studies involving 
rodents have found that the nerve terminals of crucial brain 
regions like the cerebellum, olfactory bulb, cerebral cortex, 
hypothalamus, and hippocampus contain the highest IR 
concentrations [18], [39], [40]. Insulin signaling is of 
particular importance for cognitive function in the 
hypothalamus and the limbic system, and is unaffected by 
changes in peripheral glucose [30]. While insulin is present in 

the CNS, virtually none of it is locally produced. Insulin in the 
CNS is gotten from circulation and is able to cross the BBB 
due to a blood-to-brain saturable transport system [41]. The 
regulation of this transport system is performed by 
triglycerides, nitric oxide, hibernation, inflammatory events, 
glucose, obesity and the diabetic state independent of glucose 
[42]. Pancreatic b-cells synthesize most of the insulin that gets 
to the brain [43], while the brain synthesizes a small portion. 
The synthesis of preproinsulin 1 and 2 mRNA and insulin 
occurs in neuronal cells but not in glial cells [44]. The 
importance of insulin for the CNS goes beyond the 
metabolism of glucose. It has also been described as 
neuroprotective [45] and important for neuronal growth and 
survival [46], [47]. One recent study found an increased 
number of peripheral IR biomarkers in the hippocampus of 
AD patients without diabetes [28]. The impact of these studies 
is that the pathology of AD pathology is now understood to 
include defective brain insulin signaling [48]. 

A. Insulin Resistance 

Peripheral metabolic disorders like T2D are characterized 
by decreased cellular responsiveness and insulin signaling 
caused by pro-inflammatory signaling and extended metabolic 
stress [49]. Known as insulin resistance, these pathological 
states exert a negative influence on cell capacity to sustain 
energy homeostasis. Remarkably, similar abnormalities are 
present in AD brains, including neuroinflammation and 
metabolic stress [22], [28], [50], [51]. The combined focus of 
the research was on whether neural changes in an AD brain 
are related to T2DM. Microvascular injury in the brain caused 
by T2DM can generate and/or accentuate the neuropath 
logical symptoms of AD even if it is not directly linked to the 
AD neural substrate [52]. It is therefore conceivable that a 
similar mechanism can be used to explain peripheral insulin 
resistance in T2D and the diminished insulin signaling in AD 
brains. In fact, recent studies have established a link between 
diabetic peripheral insulin resistance and AbO-triggered 
neuropathogenic mechanisms [21], [22]. Hoyer et al. first 
suggested the idea of brain insulin resistance in AD about two 
decades ago [53] when they hypothesized that the reduction in 
brain glucose metabolism is due to the desensitization of 
neuronal IRs. While some [28], [54], but not all [55], studies 
found IR sensitivity to be reduced in the hippocampus and/or 
neocortex of AD brains, no conclusions have been drawn 
about the link to decreased brain glucose metabolism since 
insulin is known to have no independent effect on forebrain 
neuronal glucose absorption [18], [28] and they tested their 
hypotheses using intracerebroventricular (ICV) streptozotocin 
(STZ) in rodents [56]. STZ is a nitrosamide methyl nitroso 
urea associated with the C2 position of D glucose. N-
nitrosoureido is released once it has been metabolized and 
damages DNA by generating reactive oxygen types like nitric 
oxide, hydrogen peroxide, and superoxide [57]. The peripheral 
administration of STZ is a proven source of diabetes mellitus 
accompanied by moderate hepatic steatosis and 
neurodegeneration [58]. Insulin-producing cells like beta cells 
absorb the STZ in pancreatic islets [59] thereby damage the β-
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cell. In fact, long-term cognitive behavioral deficits were 
observed in rats after the ICV injection of STZ, which 
decreases insulin by terminating pancreatic β-cells [60] as 
were neurodegenerative symptoms akin to those in AD 
without the added effect on insulin and peripheral glucose 
levels [54]. Insulin treatment could be used to prevent these 
deficits. Deficits in brain insulin signaling are partially 
responsible for the cognitive impairment in AD and diabetes 
[61]. These conclusions present IR as a common trigger in the 
development of both AD and T2DM. As such, sporadic AD 
(SAD) manifests itself as a form of T3D responsible for even 
more functional and structural brain changes. The available 
data render the application of this model to humans 
questionable as STZ is not widely available to humans. 
Conversely, the hypothesis posits STZ as a compound related 
to nitrosamine and Western societies have experienced an 
increase in exposure to environmental and food-related 
nitrosamines over recent decades [18]. The causal link 
between sub-mutagenic nitrosamine doses in food, e.g. N-
nitrosodiethylamine (NDEA) and IR-related disorders has 
been experimentally proven [39]. Some studies have also 
shown that similar to STZ, even limited low-dose exposure to 
NDEA can cause visceral obesity, cognitive impairment, non-
alcoholic steatohepatitis, T2DM, and AD-type 
neurodegeneration with peripheral and brain IR [61].   

The discovery that Ab Oligomers (AbOs) provoked the 
rapid and wide-ranging redistribution of IRs into the somatic 
cytoplasm from the surfaces of cultured neuron dendrites 
through the entry of calcium into the dendrites via NMDA 
receptors provided one of the earliest insights into neuronal 
insulin insensitivity [62]. It is unlikely that this process is 
dependent on the synthesis and degradation of proteins as it 
occurs < 30 mins after exposing the neurons to AbOs; it is 
more likely a reflection of the increase in the IR endocytosis to 
exocytosis ratio. While it is not yet known which mechanism 
is responsible for the altered IR trafficking, the functional 
repercussion is that the IRs are secluded from the extracellular 
space and cannot be accessed by the ligands to which they 
need to bind to begin insulin signaling. In addition to this IR 
sequestration, AbOs also decrease neuronal insulin signaling 
by inducing the secretion of aberrant tumor necrosis factor-a 
(TNFa) in cultures containing neurons, which are then bound 
to neuronal TNFa receptors and cause the stress kinase c-Jun 
Nterminal kinase (JNK) to activate [63]. The activated JNK 
causes IRS-1 serine phosphorylation (IRS-1pSer), thereby 
blocks insulin signaling and leads to peripheral insulin 
resistance [49]. Similarly, it was recently discovered that 
AbOs initiate the irregular activation of the TNF-a/JNK 
pathway and IRS-1 inhibition in principal hippocampal 
neurons [22], as well as in the hippocampi of cynomolgus 
monkeys subjected to ICV infusions of AbOs. The inhibition 
of IRS-1 was also proven in the brain of an AD model using a 
transgenic mouse [22]. Demonstrating the increased IRS-
1pSer [22], [28] and activated JNK in AD brains postmortem 
was the most important step in ensuring these findings were 
clinically relevant. Microglia are a source of the TNFa behind 
this process. While AbOs are known to regularly target 

neurons, they also affect microglia. TNFa was discovered to 
be secreted when primary microglia were exposed to AbOs, 
and in turn motivate the activation of JNK in primary neurons 
[64]. Since microglia are common components of primary 
neuron cultures, it is probable that  some of the deficiencies in 
neuronal insulin signaling that are resulting from the exposure 
of primary neurons to AbOs, was triggered by TNFa derived 
from the microglia. Primary neuron cultures are also 
significantly populated with astrocytes, which are another 
potential source of TNFa in cultures treated with AbO [65].  

III. IR REDUCTION IN AD 

In an effort to determine if exposing neurons to AbOs in 
vivo influences insulin signaling in any other ways, western 
blotting and quantitative RTPCR were used in measuring 
protein and IR mRNA in human brain tissue samples [20]. To 
test brain insulin resistance in AD, tests were run and due to 
diabetic conditions, cases with a history of diabetes were 
excluded [28], [66]. IRS-1 was the first molecule in this 
signaling pathway showing severe dysfunction, which, 
accordingly, seems to be a central factor in brain insulin 
resistance. The subsequent ex vivo stimulation studies [67] 
have shown that brain insulin resistance can develop early in 
AD, even in the absence of diabetes. In contrast, basal (i.e., 
not insulin stimulated) levels of activated or suppressed forms 
of those molecules below the IR were all increased in the same 
AD cases [28]. Unlike insulin resistance, IGF-1 resistance was 
severe, even at the level of the hormone receptor. The 
significance of this phenomenon remains to be determined.  

A. Inflammation  

Inflammation is an important characteristic of diabetes and 
AD is of vital importance for the pathogeneses of both 
disorders [49], [68] and has been posited as an auto 
inflammatory disease [69]. Similar inflammatory processes are 
believed to take place in the brain, as well as surrounding 
tissue [40], [70]. Patients with T2D have been reported as 
having higher circulating levels of chemokines, cytokines, and 
acute-phase proteins [71], [72], as well as a reduced IL-1 
receptor antagonist, higher level of b-cell IL-1b, and local 
inflammation in the pancreatic islet, evidenced by the 
increased number of islet-associated macrophages [73]. AD 
has similarly been associated with a wide selection of 
inflammatory and immune pathways with post-mortem brains 
displaying significantly unregulated levels of pro-
inflammatory chemokines, cytokines, and complement 
proteins. Impartial microarray research has also highlighted 
the increased expression of inflammation-related genes [74], 
[75]. Furthermore, a number of studies have genetically 
confirmed inflammation to be a powerful driver of AD 
pathology in mouse models based on a review by [76]. A 
methodical review of epidemiological studies provides 
evidence of an association between a reduced risk of AD and 
the consumption of non-steroidal anti-inflammatory drugs 
(NSAIDs) [77].  
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B. mTOR Deregulation in AD 

In mammals, the target of rapamycin (mTOR) is a serine/ 
threonine kinase. The functional forms of mTOR are 
integrated into one of two multi-protein, membrane-associated 
complexes: mTOR, mLST8 and raptor assemble in mTORC1 
and mTOR, mLST8 and rictor in mTORC2 (reviewed in [78]). 
These two complexes are collectively responsible for how 
cells react to extracellular cues, such as growth factors, 
insulin, and nutrients like glucose and amino acids [79]. 
mTORC1 is primarily involved in controlling cell growth, 
while the major function of mTORC2 is survival and 
proliferation [80]. mTORC1 mainly functions by activating 
S6K and ATF4 and inhibition of 4EBP [81], while mTORC2 
operates by activating SGK, PKC and Akt [82]. By testing 
cultured mouse neurons and transgenic mice, it was 
discovered that CCR requires the activation of both mTORC1 
and mTORC2 by AbOs to proceed, and that mTORC1 
activation is required for tau phosphorylation at S262 [83]. 
The AbO-facilitated activation of mTORC1 was discovered to 
be unconventional. While mTORC1 is typically activated at 
the lysosomal surface by other stimulants, thereby resulting in 
autophagy suppression [79], mTORC1 activation by AbOs 
occurs at the plasma membrane. Interestingly, this 
mislocalized mTORC1 activation is dependent on both the 
presence of tau and its mTORC1-dependent phosphorylation 
at S262 [83]. AbOs consequently instigate a toxic feedback 
loop between mTORC1 and tau, in which the former must 
induce tau phosphorylation at S262 to enable the latter gather 
at the plasma membrane, rather than the lysosomes. Tau 
phosphorylation at this site is likely catalyzed by S6K, rather 
than by mTORC1 directly; S6K is phosphor-activated by 
mTORC1 and phosphorylates tau at S262 [84]. Finally, it is 
possible to inhibit CCR by stimulating lysosomal mTORC1 
using one of numerous experimental manipulations – like 
adding insulin to the culture medium [85] – while AbOs 
simultaneously activate mTORC1 at the plasma membrane. 
Collectively, research into AbO-induced neuronal CCR [83], 
[85] and AbO-induced insulin resistance [22], [74] suggests 
the toxic potential of AbOs to cause CCR and eventually 
neuron death is due to their ability to hinder neuronal 
responses to insulin. In fact, CCR can already be detected a 
few hours following the exposure of neuron to AbOs, 
suggesting that this occurrence is especially important in the 
pathogenesis of AD and could happen to individual neurons 
for many years during the disease’s presymptomatic stages. 
Furthermore, the occurrence of neuronal CCR is independent 
of the incorporation of tau and Ab into tangles and plaques 
respectively, despite being initiated by Ab and proceeding 
using a tau-dependent mechanism. 

C. Cerebroenergetic Failure  

An unusual characteristic of AD is a significant reduction in 
the energy metabolism of brain areas that are affected [86]. 
Insulin’s primary role in the CNS is the stimulation of glucose 
uptake into tissues using glucose transporters (GLUTs 1–8), 
[87]. The synthesis of numerous neurotransmitters responsible 
for cognitive function and synaptic plasticity, such as 

glutamate, GABA, dopamine, acetylcholine, amongst others, 
requires the use of glucose. In contrast to the noral ageing 
process where the cerebral energy pool decreases only 
slightly, sporadic AD impairs both the production and 
utilization of energy [88]. Seemingly hypothetical, describing 
AD as “diabetes mellitus of the brain” is nonetheless 
interesting in light of the growing body of evidence of 
similarities in the biochemical irregularities observed in 
glucose hypo-metabolism AD and T2DM [89]. Furthermore, 
the IR-induced hyperglycemia observed in T2DM is also 
attributed to glucose hypo-metabolism and energy failure [90]. 
These findings point to a shared link in the pathogenic 
molecular mechanisms of AD and T2DM. 

D. Oxidative Stress 

The emergence of mitochondrial dysfunction and oxidative 
stress is partly caused by cerebroenergetic failure [91]. 
Oxidative stress is the result of an imbalance between the 
antioxidant capacity of the cell and the amount of free radicals 
generated by metabolic activity, thereby causing lipids, 
nucleotide, proteins, and their damaged biological activities to 
be attacked and eventual cell death. The disproportionate 
production of free radicals can be caused by hyperglycemia 
[92]. Mitochondrial dysfunction enhances the generation of 
ROS, decreases the production of ATP, and impairs the 
functioning of the electron transport chain.  A substantial body 
of experimental and clinical evidence exists showing enhanced 
oxidative stress in both T1D and T2D [93] as a part of the 
diabetic neuropathy [92], [94]. AD brains also display a 
heightened expression of the pro-oxidant enzymes responsible 
for catalyzing the introduction of reactive nitrogen (RNS) and 
oxygen species (ROS) like nitric oxide synthase (NOS) and 
NADPH oxidase (NOX). The observations that the formation 
of Ab plaque precedes oxidative damage [95] and the upsurge 
in RNS corresponds to the beginning of Ab deposition 
observed in a transgenic AD mouse model [96] led researchers 
to hypothesize that enhanced Ab production can be triggered 
by oxidative stress. This contention is backed by sufficient 
experiential evidence illustrating how the expression of b-
secretase and c-secretase is regulated by oxidative stress, 
which also promotes Ab production and the amyloidogenic 
processing of APP  [97], [98]. It is noteworthy that recent 
studies have reported the possibility of Ab interaction with 
mitochondrial proteins, disrupting the electron transport chain, 
promoting mitochondria dysfunction, and the generation of 
ROS, thereby supporting a vicious cycle [99]. Furthermore, 
oxidative stress can increase tau hyperphosphorylation and 
ensuing tangle formation by transforming and disturbing 
peptidyl-prolyl cis–trans isomerise Pin1 [100]. Redox 
proteomics analysis has been used to identify other 
oxidatively-modified proteins in the AD brain hypothetically 
relevant to the pathogenesis of AD [101]. 

E. Tau Tangle Formation  

The role of the unusual tau phosphorylation in the 
pathophysiology of AD was identified in the 1980s [102]. The 
folding of tau protein with tubulin is generally used to enhance 
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vehicular transport and microtubule formation. When hyper 
phosphorylated, tau becomes insoluble and becomes less 
compatible with microtubules, resulting in the formation of 
neurofibrillary tangles (NFTs) [103]. NFTs are a hyper 
phosphorylated and cumulative form of tau protein, the 
accumulation and pathology of which correlate most 
significantly with dementia in AD [104]. In fact, different 
animal AD, obesity, and T2DM models with a reduction in 
insulin signaling have been found to have higher levels of 
insoluble hyper phosphorylated tau and the deposition of 
NFTs [105], [106] As a result, a reduction in insulin signaling 
appears to encourage NFT formation, give on to the loss of 
synaptic connections, interrupt neuronal cytoskeletal networks 
and axonal transport, and incremental neurodegeneration. 
Collectively, these conclusions insinuate that the onset of AD 
and its severity are heightened by IR, particularly in cases with 
a tendency towards tau pathology [40]. 

IV. ANTI-DIABETIC DRUGS IN AD 

Most proposed approaches to AD treatment till date have 
resulted in disappointing failures in clinical trials [107]. 
Experimental evidence is increasingly establishing the 
different links between the pathogenic mechanisms of AD and 
T2DM/metabolic diseases, and the vital role of insulin in the 
growth and development of neurons rationalizes the use of 
anti-diabetic agents in modern AD therapies. Similarly, a 
number of potentially successful insulin-based AD treatment 
strategies have also been developed [21]. Insulin signaling 
diminishes overtime as part of the ageing process [108]. Since 
age is an important AD risk factor, this suggests that patients 
with AD might benefit from the restoration of insulin 
signaling.  

Because the systemic administration of insulin has a 
problematic impact on the periphery, intranasal insulin 
delivery provides a seemingly harmless and efficient 
alternative method of increasing concentrations of CSF insulin 
without affecting the levels of systemic insulin and glucose. 
Particularly interesting is the discovery that the intranasal 
administration of insulin, a preferred method of CNS delivery 
[109], enhances memory function, such as in the delayed word 
recall test for young adults with a normal cognitive capacity 
[110], improves verbal memory in subjects with mild 
cognitive impairment (MCI) and AD [111], enhances 
declarative memory and selective attention performance in 
patients with early-onset AD, and also implying an increase in 
Aβ clearance and reduced amyloid pathology. Some studies, 
however, have suggested that only patients with ApoE-ɛ4-
negative genotypes can be effectively treated using intranasal 
insulin [112]. 

When the number of surface IRs is reduced in the later 
stages of AD, insulin can be used to stimulate alternative 
receptors (e.g., insulin-like growth factor 1 (IGF-1) receptors) 
and continue to improve the deficiencies caused by AD. 
Regardless, the evidence provided by these studies suggests 
that intranasal insulin could still be used in the treatment of 
patients with early AD and MCI. Alternative strategies could 
also be employed, such as using insulin sensitizers like 

peroxisome proliferator-activated receptors [(PPARs) PPAR-
γ] and glucagonlike peptide-1 (GLP-1) agonists, both known 
to have therapeutic benefits similar to intranasal insulin. 
PPARs are a group of nuclear receptors responsible for 
regulating how the genes used in lipid and glucose metabolism 
are transcribed. Clinical tests of pioglitazone and rosiglitazone 
– PPAR-γ agonists in T2DM, MCI, or AD patients have 
generated mixed results. While this shortcoming hindered any 
further development, this position needs to be reevaluated 
[113]. Incretins, glucose-dependent insulinotropic peptide 
(GIP) and GLP-1, are a family of GI hormones capable of 
affecting how the entire body utilizes glucose [114]. GLP-1R 
agonists were recently posited as an additional/alternative 
therapeutic approach to insulin-based AD therapies. GLP-1 
analogs or mimetics are a top choice amongst drugs marketed 
for development as AD therapeutic agents [115]. Glucagon-
like peptide 1 receptor (GLP-1R) agonists have been identified 
as activating pathways commonly used for insulin signaling 
and facilitate the plasticity of hippocampal synapses, 
cognition, and cell survival [116], [117]. GLP-1 analogs such 
as Exendin-4 and liraglutide which are authorized for T2D 
treatment are stable in blood and represent well brain 
permeation [118], [119]. The impairment of insulin signaling 
in hippocampal neurons due to AbO was recently discovered 
to be blocked by Exendin-4 [22]. It also facilitated the 
restoration of diminished brain insulin signaling in a 
transgenic mouse AD model, thereby mitigating the 
accumulation of Ab and improving cognition [22]. More 
significantly, liraglutide appears to offset memory deficiencies 
in mice induced by Ab [120], minimize neuropathology, and 
improve cognition in AD transgenic mice [121]. The full 
range of cellular mechanisms used by the activation of GLP-
1R to facilitate neuroprotection and enhance cognition has yet 
to be accounted for. Consequently, the activation of GLP-1R 
could provide a new approach to resensitizing diminished 
insulin signalizing in the brain and to halt or even prevent 
neurodegeneration in AD entirely. Experimental studies have 
concluded that GLP-1Rs agonist enhances cognitive function 
and mitigates the formation of Aβ and tau tangles in various 
AD animal models [122].  

V. CONCLUSION 

In conclusion, the establishment of a molecular link 
between AD and diabetes will have important ramifications 
for understanding the underlying mechanisms responsible for 
neuronal dysfunction in AD. This review has highlighted the 
importance of impaired insulin signaling, inflammation, 
oxidative stress and mitochondria dysfunction. The recently 
discovered pathophysiological and clinical similarities 
between diabetes and AD highlight the potential cognitive 
benefits of antidiabetic agents. This proposition is supported 
by evidence showing that AbOs (increasingly recognized as 
important synaptotoxins in AD) use proinflammator 
mechanisms to interrupt normal insulin signaling in the brain 
in a manner similar to the experience of peripheral tissue in 
diabetes. Insulin signaling in the brain can be stimulated to 
counteract the resultant cellular stress and synapse 
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dysfunction, using either insulin or an antidiabetic drug like a 
GLP-1R agonist. The inability of various T2D treatments to 
reduce the risk of AD or enhance cognition in AD dementia 
indicates that merely reducing the level of peripheral insulin 
resistance is an ineffective strategy. This is especially true for 
treatments involving the peripheral administration of insulin, 
sulfonylureas, metformin, and thiazolidinediones like 
rosiglitazone and pioglitazone [123], [124].  
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