
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2073

Abstract—This paper presents and evaluates a new classification

method that aims to improve classifiers performances and speed up
their training process. The proposed approach, called labeled
classification, seeks to improve convergence of the BP (Back
propagation) algorithm through the addition of an extra feature
(labels) to all training examples. To classify every new example, tests
will be carried out each label. The simplicity of implementation is the
main advantage of this approach because no modifications are
required in the training algorithms. Therefore, it can be used with
others techniques of acceleration and stabilization. In this work, two
models of the labeled classification are proposed: the LMLP
(Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro
Fuzzy Classifier). These models are tested using Iris, wine, texture
and human thigh databases to evaluate their performances.

Keywords—Artificial neural networks, Fusion of neural network-
fuzzy systems, Learning theory, Pattern recognition.

I. INTRODUCTION
N the past few years, ANNs (Artificial Neural Networks)
have been widely used in several application of the pattern

recognition. They have been employed as powerful classifiers
for the reason of their capacities of learning and generalizing.
But among their disadvantage is the slowness of their training
process. Avoiding this problem is the main goal of the labeled
classification.

On the other hand, ANNs and FIS (Fuzzy Inference
Systems) are appropriate to describe complex systems where it
is difficult to give mathematical description. Moreover, a
combination of these complementary methods allows having
more robust systems [1] [2]. For example, ANNs are not
interpretable, so they are not able to represent knowledge
explicitly while a fuzzy system can do it by fuzzy if-then rules
[1]. Furthermore, implementation of FIS necessitates tuning of
the membership function parameters that can be automatically
updated in the case of Neuro-Fuzzy Systems [2].

Manuscript received January 25, 2006. This work was supported by the

Laboratory of Automatic and Informatics Guelma, B.P. 401 Algeria and
CResTIC, Reims University, B. P. 1035, 51687, Reims Cedex 02, France.

M. Nemissi is with LAIG (Laboratory of Automatic and Informatics
Guelma), Guelma University, B.P. 401, Algeria (e-mail:
nemissi_m@yahoo.fr).

H. Seridi is with LAIG (Laboratory of Automatic and Informatics Guelma)
Algeria and CResTIC, Reims university, B. P. 1035, 51687, Reims Cedex 02,
France (e-mail: seridi@yahoo.fr).

H. Akdag is with LIP6 Université P. & M. Curie, 104, Avenue du Président
Kennedy, 75016 Paris, France (e-mail: Herman.Akdag@lip6.fr).

TABLE I
ADVANTAGES AND DISADVANTAGES OF ANN AND FIS

 Advantage Disadvantage

ANN
Parallel computing

Capacity of generalization
Self-adaptation

Black box
Lack of initialization techniques

FIS Possibility to use a prior
knowledge

Lack of training techniques

The BP (Back Propagation) algorithm [3] is a useful

algorithm in many applications. It is widely used for training
the ANNs and the Neuro-Fuzzy Classifiers, but its
convergence rate is relatively slow [4] and it is an unreliable
algorithm [5] [6]. In order to improve performances of the BP,
several approach have been proposed. Jacob et al. [7]
presented an approach based on the use of a different step
gains for each weight and the updating of theses term
iteratively. Li et al. [8], Russo [9], Ngyen et al. [10] and Yam
et al. [11] presented methods based on the weight
initialization, Lee et al. [12] studied the effect of initial weight
on premature saturation and Kamarthi et al. [13] introduced an
algorithm based on extrapolation of each weight to accelerate
the BP algorithm. Zurada [14] and Chandra et al. [15]
proposed methods which are based on the adapting of the
activation functions parameters. Rumelhart et al. [3] added an
extra term (the momentum) and Zweiri et al. [4][16]
introduced a third term (proportional factor) in addition to the
learning rate and the momentum. The problem of the local
minima was studied by Ampazis et al. [17], Phansalkar et al.
[18] and Vitela et al. [19]. Cho et al. [20] proposed an
approach based on the least-squares method to improve the
BP convergence and Wang et al. [21] proposed a modified
error function by adding one term to the conventional
function.

The labeled classification approach proposed in this work is
different from these methods in the sense that our proposition
aims to improve the training process by changing the
representation of examples instead of modifying the training
algorithm. Indeed, this method seeks to speed up the BP
convergence by adding an extra feature (labels).

Our approach can be used with several models trained by
the BP, and it can be used with different techniques of
acceleration and stabilization. In this work, two models of the
labeled classification are proposed: LMLP and LNFC. The
first model is based on the use of a neural architecture while
the second is based on the use of Neuro-Fuzzy architecture. In
section 2, we describe the proposed approach. In sections 3,
we present the first model and we discuss its classification

The Labeled Classification and its Application
M. Nemissi, H. Seridi, and H. Akdag

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2074

performances on Iris, wine, human thigh and texture
databases. The second model and its performances are
presented in section 4. Finally, conclusions are given in
section 5.

II. THE LABELED CLASSIFICATION
An important reason of the BP slowness is the saturation

behavior of the activation function used in different layer [4].
In fact, when a sigmoid has a slope near a zero, a weight point
may enter the saturation region of the weight space [5]. In
such situation, the weight increment remains little even if the
error is relatively large. The basic idea of our approach is to
make the training example linearly separable by adding an
extra feature (labels). The labels must be identical for
examples belongings to the same class to ensure the linear
separation and reduce the possibility of entering the saturation
region. After the training process, every test example will be
classified according to the classifier’s outputs with all labels
(Fig. 1).

Fig. 1 Labeled classifier

Recall that a conventional classifier maps any input vector

X(x1 x2 … xN) into an output vector Z(z1 z2 … zK) corresponding
to the class Ci of the example represented by X. Fig. 1 shows a
labeled classifier with two input and three classes. It is based
on the adding of labels at the input of the used classifier and
giving a decision according to the classifier outputs.

A. Methodology
The labeled classification is performed in two stages:
1. Addition of labels for all training examples and

performing training of the used classifier (according to two
modes).

2. Carrying out tests with these labels to classify every
novel example (Fig. 2).

Therefore, for each class Ci, corresponds a label Li. Every
training example X (x1 x2 …xN) of Ci is represented by X (x1 x2
… xN Li). The representations of all training examples are
modified by the same manner. After the training process,
every new example (X) will be tested with all labels and it will

be classified according to the following decision rule:

X ∈ Ci if Eri(X) =min {Er1(X), Er2(X), …ErK(X)}
where Eri is the sum-squared error between the target Ti
corresponding to the class Ci and the calculated output Zi
using the label Li. Eri is defined by:

iii ZTEr −=

Fig. 2 Scheme of the labeled classification

B. Training in the Labeled Classification

The labeled classification is used with the classifiers trained
by the BP for the reason that our decision rule is based on the
sum-squared-error between target and classifier output.
Training in the labeled classification is performed using two
modes:

1) First Mode: Simple Training
The first mode consists in carrying out the training

normally. No modifications are involved in the algorithm and
the cost function is the total sum-squared-error, which is given
by:

() ()∑

=

−=
Q

q

qq ZTTSSS
1

where T(q) and Z(q) are the target and the classifier output of
the qth example.

Ci

x1

x2

x3

Adding
labels

Decision

Li

 z1 z2 z3

Classifier

Database

Addition labels
 and training

Addition of the label Li
Classifier simulation
Determination of Eri

Training
examples

Test
examples

Classification of the test
example

For
every Ci

Extraction of a test
example

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2075

Hidden layer

x1

x2

xN

Output layer
Input layer

z1

z2

zJ

Lk

y1

y2

yM

2) Second Mode: Full Training
In the second mode, the training is performed by

minimizing the sum-squared errors between the target and the
classier outputs obtained with each label (Fig. 3). That is to
say, for every presented example, the classifier must be
simulated and updated for all labels. The cost function
becomes:

)()(

1 1

q
i

q
Q

q

K

i

ZTE −= ∑∑
= =

where T(q) is the target and ()q

iZ is the calculated output of the
qth example using the label Li.

Fig. 3 Scheme of the full training

In the simple training, the adaptation is performed once at

every presentation of a training example while in the full
training, the adaptation is performed K times (K is the number
of classes). Therefore, the process of the full training is more
complex. In the next paragraphs, the performances of these
two modes are evaluated.

III. THE LMLP
A. Architecture

The MLP (Multi Layered Perceptron) is the most used
architecture of ANN. This model provides techniques of
approximating arbitrary non-linear functional mapping
between multi-dimensional spaces [22]. Its training algorithm
is the BP and it is important to improve performances of this
process. Therefore, we propose a classification model (LMLP)
based on the use of the labeled classification with the MLP.

Fig. 4 represents a LMLP with N neurons at the input layer, M
neurons at the hidden layer and J neurons at the output layer.

Fig. 4 LMLP

After adding labels, representation of the training example

becomes: X (x1 x2 … xN Li) where x1, x2,…xN are the original
features and Li the added label. This additional feature (Li)
will be treated with the same manner as the other feature.
Thus, the output of the mth hidden neuron will be:

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎭
⎬
⎫

⎩
⎨
⎧

= +
=

∑ mNinm

N

n
nm wLwxhy ,1

1

The jth network output becomes:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑ ∑

=
+

= =
mj

M

m
mNi

M

m
mjnm

N

n
nj uwLhguwxhgz

1
,1

1 1

where zj is the output of the jth neurons, xn is the nth input. h
and g are the activation function (sigmoid). The second part of
the above equation shows the consequence of adding labels at
the network outputs.

B. LMLP Training

1) Simple Training
In this mode, labels are treated as the other features. The

LMLP is trained as any conventional MLP and the BP is used
without any change. The adaptation task is to minimize the
total sum-squared error (TSSE) between the classifier outputs
and the targets.

2) Full Training
In this mode, for every presented example, the network

outputs must be determined with all labels. The weights are
adjusted according to these outputs. The function cost

Addition of the
label Li

Simulation of the
classifier

Update

Next example

Database

Training
examples

Test
examples

For
every Ci

Extraction of a
training example

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2076

becomes the sum-squared errors between targets and the
classier outputs obtained with different labels. Therefore, at
every iteration, a training example X(q) is presented to the
classifier with a label Li. The adaptation task is to minimize
the partial sum-squared error (PE) between the classifier
output and the target. PE is defined by:

() ()q

i
q ZTPE −=

where T(q) is the target and ()q

iZ is the calculated output of the
qth example using the label Li.

C. Choice of Labels

In this process, the choice of labels is very important
because they influence directly the classification
performances. We suggest choosing values around 0.5 with a
small deference (δ) between them. For example, in the case of
three classes: L1=0.5- δ, L2=0.5 and L3=0.5+ δ

D. Iris Database Classification

To appreciate the proposed model, tests are carried out on
the Iris database using an MLP and a LMLP. The
classification performances of this database using MLP
depend strongly on the initial weight. In some cases, the
weight point enters the saturation region and the MLP makes a
large number of iterations to escape from this region, or
escape may never be achieved. An example of such situation
is presented in Fig. 5. This figure indicates the evolution of
the classification rate during the training stage of an MLP and
a LMLP. Both models have the same architecture (8 hidden
neurons), they are initialized by the same weights and the
training parameters are the same (step gains and momentum).
The used labels are L1=0.475, L2=0.5 and L3=0.525. So, with
δ=0.025. LMLP1 denotes LMLP with simple training and
LMLP2 denotes LMLP with full training. The graphs showed
on this figure indicate the improvements obtained by the
labeled classification. It allows obtaining a classification rate
equal to 98 % after less than 200 iterations while the MLP
permits obtaining this rate after more than 750 iterations.

0 500 1000 1500
92

93

94

95

96

97

98

99

100

Iterations

C
la

ss
ifi

ac
tio

n
ra

te
 (%

)

MLP
LMLP1
LMLP2

Fig. 5 Iris classification using the MLP and the LMLP

0 100 200 300 400 500
92

93

94

95

96

97

98

99

100

Iterations

C
la

ss
ifc

at
io

n
ra

te
 (%

)

A
B
C

Fig. 6 Iris classification using the LMLP (simple training) with
different labels

0 100 200 300 400 500
92

93

94

95

96

97

98

99

100

Iterations

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

A
B
C

Fig. 7 Iris classification using the LMLP (full training) with different
labels

Fig. 6 shows the effect of labels in the case of the simple

training. Graph A corresponds to δ=0.025 (L1=0.475, L2=0.5
and L3=0.525), graph B corresponds to δ=0.015 and graph C
corresponds to δ=0.050. We can note that the LMLP with
simple training gives acceptable results for δ ≤ 0.025.

On the other hand, Fig. 7 indicates the effect of labels in the
full training. It is clear that the LMLP gives the same results
for these labels.

E. Wine Database Classification

This database was obtained after a chemical analysis of
wines grown in the same region but derived from three
different cultivars. It contains 178 examples with 13 features
belonging to 3 classes. The first one has 59 examples, the
second has 71 and the third has 48. We utilize the training
data-itself-as-testing method.

Fig. 8 indicates the evolution of the classification rate
during the training stage of an MLP and a LMLP. Both
models have the same architecture (6 hidden neurons),
initialization weights and parameters. The used labels are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2077

L1=0.49, L2=0.5 and L3=0.51. So, with δ=0.01. LMLP1
denotes LMLP with simple training and LMLP2 denotes
LMLP with full training. The graphs showed on this figure
indicate the improvements obtained by the labeled
classification (with full training). It allows obtaining a
classification rate equal to 100 % after 35 iterations while the
MLP permits obtaining this rate after 50 iterations.

0 10 20 30 40 50 60 70 80 90 100
95

96

97

98

99

100

101

Iterations

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

MLP
LMLP1
LMLP2

Fig. 8 Wine classification using the MLP and the LMLP

Fig. 9 shows the effect of labels in the case of the simple

training. Graph A corresponds to δ=0.05 (L1=0.45, L2=0.5
and L3=0.55), graph B corresponds to δ=0.025 and graph C
corresponds to δ=0.01. We can note that the LMLP with
simple training gives acceptable results for δ ≤ 0.025.

Fig. 10 shows the effect of labels in the full training. The
LMLP gives the same results for these different labels.

0 10 20 30 40 50 60 70 80 90 100
95

96

97

98

99

100

101

Iterations

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

A
B
C

Fig. 9 Wine classification using the LMLP (simple training) with
different labels

0 10 20 30 40 50 60 70 80 90 100
95

96

97

98

99

100

101

Iterations

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

A
B
C

Fig. 10 Wine classification using the LMLP (full training) with
different labels

F. Human Thigh Database Classification

The image of Fig. 11 is acquired by cryosection color
photography. A manual classification was makes by an expert
and four components were identified (grease, bone, marrow
and muscle). Each one of these components corresponds to a
class and a file of 300 pixels representing each one. The
obtained sample consists of 1200 pixels, 300 pixels of each
class. The addition of components X and Y (to locate
geometrical position of a pixel and to take account of its
vicinity) improves the classification performances.

To evaluate generalization capacities of our model, a cross
validation of order 4 is used. Four datasets are obtained. Each
base contains 900 training examples and 300 test examples.

Fig. 11 Image of human thigh cryosection

As in [23], the used MLP is composed of 5 neurons at the

input, 8 hidden neurons and 4 outputs neurons. The MLP and
the LMLP are initialized by the same weights. In table (2), the
obtained results are showed. This results are the average of the
4 data sets obtained by the cross validation.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2078

TABLE II
RESULTS OF THE HUMANTHIGH CLASSIFICATION USING MLP AND LMLP

Classifier Labels Classification
rate

(Test datasets)
MLP 98.17

0.425 0.475 0.525 0.575 (δ =
0.050) 97.83 LMLP

 (Simple training)
0.485 0.495 0.505 0.515 (δ =
0.010) 97.92

0.470 0.490 0.510 0.530 (δ =
0.020) 97.92 LMLP

(Full training)
0.485 0.495 0.505 0.515 (δ =
0.010) 97.92

G. Texture Database Classification

Fig. 12 shows an image constituted of two different
microtextures. A pretreatment (calculation of different local
correlations) of the initial image allows obtaining a series of 8
images. Each one is the detection result of a particular
attribute. Every pixel is then described by a vector of 8
attributes.

Fig. 12 Image of texture

Thus, the image is represented by two classes, which are

described by eight files containing each one the pixel values.
The obtained sample consists of 400 pixels of each class. A
cross validation of order 4 allows obtaining four training
datasets containing each one 600 pixels and 4 test datasets of
200 pixels for each one.

For the comparison, the used MLP is composed of 5
neurons at the input, 8 hidden neurons and 2 outputs neurons.
Table III indicates the obtained results.

TABLE III

RESULTS OF TEXTURE CLASSIFICATION USING MLP AND LMLP

Classifier Labels Classification rate
(Test datasets)

MLP 99.125 %
0.475 0.525 (δ = 0.050) 99.375 % LMLP

 (Simple training) 0.490 0.510 (δ = 0.020) 99.500 %
0.475 0.525 (δ = 0.050) 100 % LMLP

(Full training) 0.490 0.510 (δ = 0.020) 100 %

IV. THE LNFC

A. Presentation

The implementation of Neuro-Fuzzy Systems aims to
combine proprieties and advantages of ANNs and FIS. In
these systems, every layer of ANN performs a different
function of a FIS: Fuzzification, Inference and
Defuzzification. The NFCs (Neuro-Fuzzy Classifiers) [1] have
a Neuro-Fuzzy architecture that can incorporate in its structure
fuzzy if-then rule of the form:

If x1 is ‘small’ and x2 is ‘big’ then X belongs to Ck

The conception of the LNFC aims to exploit and improve

proprieties of the NFCs. The use of LNFC leads to replace the
above rules by rules of the form [24]:

If x1 is ‘small’ and x2 is ‘big’ and its label is L1 then this

example belongs to Ck

B. Architecture
The labeled classification consists essentially in adding

labels to all training examples. Consequently, a neuron is
added at the first layer and K neurons at the second (K is the
number of classes). Every neuron added to the second layer
corresponds to the membership function of a label.

Fig. 13 shows an example of LNFC with two input
variables (x1 x2) and two output variables (z1 z2). Every input
is represented by two linguistics variables. In the first layer,
every neuron corresponds to a linguistic variable. Neurons of
the second layer send the product of the incoming signals and
every neuron of the third layer corresponds to a class. The
output of the mth output of the third layer is:

()∏
=

=
N

n
nnmm xy

1

μ

The jth network output is:

()

()
⎪⎭

⎪
⎬
⎫

⎩
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎩
⎨
⎧

=

∏

∑ ∏

=

= =

N

n
nnm

M

m
mj

N

n
nnm

j

x

wx
z

1

1 1

μ

μ

where μnm is the mth membership function, xn is the nth input
and wmk is the weight between the mth hidden neuron and the
jth output neuron. In the version of Jang [2], he used sigmoid
function at the output layer. Using his model, the jth network
output becomes:

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎩
⎨
⎧

⎭
⎬
⎫

= ∑ ∏
= =

M

m
mj

N

n
nnmj wxgz

1 1

μ

where g is the activation function of the output layer.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2079

Fig. 13 LNFC with tow labels, two inputs, eight rules and two

outputs

C. Training
The back propagation algorithm is widely used for neuro-

fuzzy systems training, for example in [1] [24] [25] [26]. The
adaptation task is to minimize the total sum-squared error
between the classifier outputs and the targets. Our model is
trained using this algorithm. The training of LNFC is
performed without tuning the membership functions, which
allows:

1. Obtaining a simplified training process because only
the output weights are updated.

2. Keeping the original linguistic meaning of the
membership functions.

3. Changing the T-norme operator (used in neurons of the
third layer) without changing the training algorithm.

4. Changing the membership functions without changing
the training algorithm.

As for the LMLP, the training can be performed using two
modes: simple training and full training. In both cases, the
update expression at the (i+1) iteration of umj is:

() () () () mjjj

i
mj

i
mj ysgztuu '

1
1 −+=+ η

where η1 is the step gain, tj is the jth component of the target, zj
is the jth output and g’ is the derivate of g (activation function
of the output layer).

D. Choice of Labels
The premises of the Fuzzy rules established by the third

layer depend on the membership functions of labels instead by
the labels themselves. That is to say, contrary to the case of
the LMLP where the choice of labels values influences
directly the classification performances.

E. Iris Database Classification

To appreciate the LNFC, it is compared with a conventional
NFC using Iris database. In both cases, three linguistic
variables are used for the fuzzification (Fig. 14).

0 5 10
0

0.2

0.4

0.6

0.8

1

X1
0 5 10

0

0.2

0.4

0.6

0.8

1

X2

0 5 10
0

0.2

0.4

0.6

0.8

1

X3
0 5 10

0

0.2

0.4

0.6

0.8

1

X4

Fig. 14 Membership function of Iris features

Fig. 15 shows the evolution of the classification rate during

the training stage of the NFC and the LNFC. Both models are
initialized by the same weights and the training parameters are
the same. The used membership function of labels are
μi(Li)=1 and μi(Lj)=0.85. This figure indicates the
improvements obtained by the labeled classification. It allows
obtaining a classification rate equal to 99.33 % after 60
iterations using LNFC with full training and 98.67 using
LNFC with simple training while the NFC permits obtaining
this rate after 80 iterations.

0 20 40 60 80 100
95

96

97

98

99

100

Iterations

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

NFC
LNFC1
LNFC2

Fig. 15 Iris classification using the NFC and the LNFC

Fig. 16 shows the effect of the membership function of
labels in the case of the simple training. Graph A corresponds
to μi(Li)=1 and μi(Lj)=0.9, graph B corresponds to μi(Li)=1
and μi(Lj)=0.8 and graph C corresponds to μi(Li)=1 and

x1

x2

z1

z2

A2

A1

B2

B1

μA2
μA1

μB2

y1

y8

x3
L2

L1

μL2

μB1

μL1

AND

AND

AND

AND

AND

AND

AND

AND

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2080

10 12 14
0

0.5

1

0 2 4 6
0

0.5

1

0 2 4 6
0

0.5

1

10 20 30 40
0

0.5

1

50 100 150 200
0

0.5

1

0 2 4 6
0

0.5

1

0 2 4 6
0

0.5

1

0 0.5 1
0

0.5

1

0 2 4 6
0

0.5

1

μi(Lj)=0.7. We can note that the LNFC with simple training
gives an acceptable classification rate (98.67%) for μi(Lj) ≥
0.8.

On the other hand, Fig. 17 indicates the effect of labels in
the case of the full training: the LNFC allows obtaining a
classification rate equal to 99.33 % for μi(Lj) ≥ 0.8.

0 20 40 60 80 100
95

96

97

98

99

100

101

Iterations

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

A
B
C

Fig. 16 Iris classification using the LNFC (simple training) with

different labels

0 20 40 60 80 100
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Iterations

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

A
B
C

Fig. 17 Iris classification using the LNFC (full training) with
different labels

F. Wine Database Classification

The LNFC is compared with NCF using wine database. In
both cases, two linguistic variables are used for the
fuzzification (Fig. 18).

Fig. 18 Membership function of Wine features

The evolution of the classification rate during the training

stage of the NFC and the LNFC are showed in Fig. 19. In
both case the initial weights and the training parameters are
the same. The used membership function of labels are
μi(Li)=1 and μi(Lj)=0.85. The graphs showed on this figure
indicate the improvements obtained by the labeled
classification. It allows obtaining a classification rate equal to
100 % after 10 iterations using LNFC with full training and
after 40 iterations using LNFC with simple training while the
NFC permits obtaining this rate after 80 iterations.

0 20 40 60 80 100
95

96

97

98

99

100

101

Iterations

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

LNFC1
NFC
LNFC2

Fig. 19 Wine classification using the NFC and the LNFC

Fig. 20 shows the effect of the membership function of

labels in the case of the simple training. Graph A corresponds
to μi(Li)=1 and μi(Lj)=0.9, graph B corresponds to μi(Li)=1
and μi(Lj)=0.8 and graph C corresponds to μi(Li)=1 and

0 5 1 1
0

0.

1

0 2 4 6 0

0.

1

0 2 4 6
0

0.

1

0 100 200
0

0.

1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2081

μi(Lj)=0.7. We can note that the LNFC with simple training
gives acceptable results for μi(Lj)≥ 0.8.

On the other hand, Fig. 21 indicates the effect of labels in
the full training; the LNFC gives the same results for these
labels.

0 20 40 60 80 100
95

96

97

98

99

100

101

Iterations

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

A
B
C

Fig. 20 Wine classification using the LNFC (simple training) with
different labels

0 20 40 60 80 100
95

96

97

98

99

100

101

Iterations

C
la

ss
ifi

ca
tio

n
ra

te
 (%

)

A
B
C

Fig. 21 Wine classification using the LNFC (full training) with
different labels

G. Human Thigh Database Classification

The NFC and the LNFC are tested using human thigh
database. Three linguistic variables are used for the
fuzzification. Table IV illustrates the obtained results. This
results are the average of the 4 data sets obtained by the cross
validation.

TABLE IV
RESULTS OF THE HUMANTHIGH CLASSIFICATION USING NFC AND LNFC

Classifier Labels Classification rate
(Test datasets)

NFC 97.92
μi (Li) =1 μi (Lj)=0.7 97.92 LNFC

(simple training) μi (Li) =1 μi (Lj)=0.9 98.08
μi (Li) =1 μi (Lj)=0.7 98.08 LNFC

(full training) μi (Li) =1 μi (Lj)=0.9 98.08

H. Texture Database Classification

The NFC and the LNFC are also evaluated using texture
database. Two linguistic variables are used for the
fuzzification. The obtained results are showed on Table V.

TABLE V
RESULTS OF THE TEXTURE CLASSIFICATION USING NFC AND LNFC

Classifier Labels Classification rate
(Test datasets)

NFC 99.13
μi (Li) =1 μi (Lj)=0.8 99.25 LNFC

(simple training) μi (Li) =1 μi (Lj)=0.9 99.25
μi (Li) =1 μi (Lj)=0.7 99.25 LNFC

(full training) μi (Li) =1 μi (Lj)=0.9 99.25

V. CONCLUSION
In this paper, a new classification method is presented. Two

models obtained by the use of this method are proposed: the
labeled MLP and the labeled NFC. To evaluate the
performances established by this development, the LMLP and
the LNFC are compared respectively with conventional NFC
and MLP.

Four databases are used for evaluation of these networks.
Therefore, our models are examined by different type of
features: length and width measure (in Iris database), pixel
value and their position (in the human thigh database), local
correlations components (in the texture database) and
chemical features (in the wine database).

The obtained results on these databases show that the
proposed approach improve performances of the MLP and the
NFC except in the case of human thigh classification using
MLP.

 The NFC is more stable than the MLP. The LNFC provides
also this property because its conception does not require any
modification in the structure and the training algorithm of the
NFC.

The training of the LNFC is performed without modifying
the membership functions parameters, which leads obtaining
simple training process and not loosing the original linguistic
meaning of the membership functions. We can also change the
T-norme operator (used in neurons of the third layer) and the
membership functions without modifying the training
algorithm.

 The training in the proposed approach can be performed
using two modes: the simple training and the full training.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2082

According to our experiments, we can note that the first one is
more simple but it depends strongly of labels values while the
second provides more flexibility in the choice of labels but its
training process is relatively complex.

REFERENCES
[1] G. J. S. Roger Jang and C. T. Sun, “A Neuro-Fuzzy Classifier and Its

Applications” in Proc. of IEEE international conference on fuzzy
systems (1), San Francisco, 1993, pp. 94–98.

[2] B. D. Chakraborty and N. R. Pal, “A Neuro-Fuzzy Scheme for
Simultaneous Feature Selection and Fuzzy Rule Based Classification”
IEEE trans., Neural Networks. vol. 15, 2004, pp. 110-123,

[3] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning internal
representation by error propagation” Parallel distributed processing:
exploration in the microstructure of cognition, D.E.Rumelhart and
J.L.McClelland edition, MIT press Cambridge, 1986, pp. 318–362.

[4] Y. H. Zweiri, J. F. Whidborne and L. D. Seneviratne, “Three-term
backpropagation algorithm” Neurocomputing, Vol. 50, 2003, pp. 305–
318.

[5] C. Looney, Pattern Recognition Using Neural Networks. Oxford
University Press, New York, 1997.

[6] M. A. Hoehfeld, and S. E. Fahlman, “Learning with limited numerical
precision using cascade correlation algorithm” IEEE Trans. Neural
Networks vol. 3, 1992, pp. 902-6111.

[7] R. A. Jacobs, “Increased rates of convergence through learning rate
adaptation” Neural Networks, vol. 1, 1988, pp. 295-307.

[8] G. li. H. Alnuweiri and W. Wu, “Acceleration of backpropagation
trough initial weight pre-training with delta rule” in Proc. 1993 IEEE
Int. Conf. Neural Networks, San Francisco, vol. 1, 1993, pp. 580-585.

[9] A. P. Russo, “Neural networks for sonar signal processing” Tutorial No.
8, IEEE Conf. on Neural Networks for Ocean engineering, Washington,
D.C., 1991.

[10] D. Nguyen and B. Widrow, “Improving the learning speed two-layer
neural networks by choosing initial values of the adaptive weights” in
Proc. IEEE Conf. Neural Networks, San Diego, vol. 3, 1990, 21-26.

[11] J. Y. F. Yam and T. W. S. Chow, “A weight initialization method for
improving training speed in feedforward neural network”
Neurocomputing, vol. 30, 2000, pp. 219-232.

[12] Y. Lee, S. H. Oh and M. Kim, “The effect of initial weights on
premature saturation in back-propagation learning” in Proc. Joint Conf.
Neural Networks, Seattle, vol. 1, 1991, pp. 765-770.

[13] S.V. Kamarthi and S. Pittner, “Accelerating neural network training
using weight extrapolations” Neural Networks, vol. 12, 1999, pp.1285-
1299.

[14] M. Zurada, “Lambda learning rule for feedforward neural networks” in
Proc, IEEE int. Conf. Neural Networks, vol. 3, 1993, 1808-1811.

[15] P. Chandra and Y. Singh, “An activation function adapting training
algorithm for sigmoidal feedforward networks” Neurocomputing, vol.
61, 2004, pp. 429– 437.

[16] Y. H. Zweiri, “Optimization of a Three-Term Backpropagation
Algorithm Used for Neural Network Learning” International Journal of
Computational Intelligence. vol. 3, 2006, pp. 322–327.

[17] N. Ampazis, S. J. Perantonis and J.G. Taylor, “Dynamics of multilayer
networks in the vicinity of temporary minima” Neural Networks, vol. 12,
pp. 43–58, 1999.

[18] V. V. Phansalkar and P. S. Sastry, “Analysis of the back-propagation
algorithm with momentum” IEEE Transactions on Neural Networks,
vol. 5, 1994, pp. 505–506.

[19] J. Vitela and J. Reifman, “Premature Saturation in Backpropagation
Networks: Mechanism and Necessary Conditions” Neural Networks,
vol. 10, 1997, pp. 721–725.

[20] S. W. Cho and T. W. S. Chow, “ Training multilayer neural networks
using fast global learning algorithm-least-squares and penalized
optimization methods” Neurocomputing, vol. 25, 1999, pp. 115–131.

[21] X.G. Wang, Z. Tang, H. Tamura and M. Ishii, “A modified error
function for the backpropagation algorithm” Neurocomputing, vol. 57,
2004, pp. 477 – 484.

[22] C. M. Bishop, Neural networks for pattern recognition. Clarendon press,
Oxford, 1995.

[23] M. Nemissi, H. Boudouda and H. Seridi, “Comparing performances of
the MPL, RVFLNN and NFC for human thigh classification” in Proc. of
the International Workshop on Text, Image and Speech Recognition,
Annaba-Algeria, 2005, pp. 125–131.

[24] M. Nemissi, H. Seridi and H. Akdag, “Labeled Neuro-Fuzzy
Classification.” Asian Journal of Information Technology, vol. 4, 2005,
pp. 868–872.

[25] F. Masulli and A.Sperduti, “Learning Techniques for Supervised Fuzzy
Classifiers” Fuzzy Learning and Applications. CRC press, ch. 4, 2001,
pp. 147–169.

[26] A. Lotfi, “Learning Fuzzy Systems” Chapter 6, Fuzzy Learning and
Applications, CRC press, 2001, ch. 6, pp. 205–222.

