
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1593


Abstract—SQL injection on web applications is a very popular

kind of attack. There are mechanisms such as intrusion detection
systems in order to detect this attack. These strategies often rely on
techniques implemented at high layers of the application but do not
consider the low level of system calls. The problem of only
considering the high level perspective is that an attacker can
circumvent the detection tools using certain techniques such as URL
encoding. One technique currently used for detecting low-level
attacks on privileged processes is the tracing of system calls. System
calls act as a single gate to the Operating System (OS) kernel; they
allow catching the critical data at an appropriate level of detail. Our
basic assumption is that any type of application, be it a system
service, utility program or Web application, “speaks” the language of
system calls when having a conversation with the OS kernel. At this
level we can see the actual attack while it is happening. We conduct
an experiment in order to demonstrate the suitability of system call
analysis for detecting SQL injection. We are able to detect the attack.
Therefore we conclude that system calls are not only powerful in
detecting low-level attacks but that they also enable us to detect high-
level attacks such as SQL injection.

Keywords—Linux system calls, Web attack detection,

Interception.

I. INTRODUCTION

EB applications are widely adopted as well as easily
accessible. Therefore they are a popular target for

attacks. For this reason initiatives devoted to providing Web
application security such as OWASP1 have become active.
Among OWASP’s contributions to Web application security
there is an enumeration of the most dangerous attacks called
OWASP Top Ten [9]. In this classification “Injection” attacks
are at the top rank. Injection attacks include SQL injection
where the attacker injects SQL commands in the data section
of a query. Preventing such attacks is not always possible and
even if there exist methods for effective prevention these
methods might be disabled by developers due to a lack of
security training or a lack of time in order to finish their task
on schedule. This is the reason why “prevention mechanisms
should be complemented by effective intrusion detection
systems (IDSs)” [3].

In this paper we demonstrate how system call analysis can
assist us in detecting an SQL injection attack. System call
analysis as a means to detect attacks is primarily used for
privileged applications such as Sendmail and lpr [2].
However, not only low-level applications invoke system calls

Malihe Mansouri and Paul Jaklitsch are Students at University of Applied

Sciences FH JOANNEUM, Kapfenberg, Austria (e-mail:
Malihe.Mansouri.ASE11@fh-joanneum.at, Paul.Jaklitsch.ASE10@fh-
joanneum.at).

Egon Teiniker, FH Professor at University of Applied Sciences FH
JOANNEUM, Kapfenberg, Austria (e-mail: Egon.Teiniker@fh-joanneum.at).

1 Open Web Application Security Project.

to perform privileged tasks. For example a Java Web
application is basically a Java program executed within a Java
Virtual Machine (JVM) which translates the byte code into
native code. Same as for system applications every privileged
action performed by a Java program results in a system call
being executed on the OS. Consequently we assume that there
is no possibility for the data to bypass this interface between
the native code of our application and the OS. As system calls
operate at the kernel level they can provide us with
information at a fine level of detail.

We start our demonstration using a simple Java Web
application vulnerable to SQL injection. The data which is
traveling through the different layers of our application from
the highest level to the lowest level can be compared to a
journey. Hence we structure our work from the perspective of
a traveler.

In Section II we distinguish our work or journey from the
previous ones. In Section III we first prepare our journey by
considering our application from a high-level and from a low-
level perspective or map. Subsequently we give an overview
of the building blocks of our application or travel stations. The
core part of this section is an experiment where we analyze the
system calls invoked by our Web application that have been
traced during an SQL injection attack. Due to the large amount
of system calls we only select those relevant for our purpose.
This can be compared to a travel diary where we only record
the interesting experiences encountered during our journey.
When we reach the destination of our journey we briefly
discuss what we have discovered. In Section IV we conclude
our paper or share our discoveries.

II. RELATED WORK

The work we present in this paper is a combination of two
perspectives for attack detection: A low-level perspective
using system call tracing and a high-level perspective
considering high-level attacks such as Web application
attacks. In the following, we discuss how previous works in
these two areas relate to our research work.

A. Low-Level Perspective

Bernaschi et al. [1] have demonstrated how the illegal
execution of privileged operations can be prevented via minor
amendments made to kernel code. Based on an in-depth
system call analysis they identify a subset of system calls
along with a subset of tasks that are helpful in preventing
elevation of privilege attacks. They furthermore use this as
input for developing an attack prevention prototype for the
Linux OS implemented as a kernel module as well as a kernel
patch. Once an attack is discovered the prototype denies
further access requested by the particular process. The results
of the analysis can assist in reducing the overhead inherent in

M. Mansouri, P. Jaklitsch, E. Teiniker

The Journey of a Malicious HTTP Request

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1594

attack monitoring as well as the effort for developing such a
solution. It also helps reducing the efforts for developing more
secure privileged applications.

Forrest et al. [2] have proposed a method for detecting
anomalous behavior of privileged Unix processes. They adopt
the idea of the immune system which distinguishes between
self and others with ‘self’ defining normal behavior whereas
‘others’ refers to anomalous behavior or attacks. They define
such as ‘self’ using short sequences of system calls making it
efficient to monitor in terms of computing time. The authors
demonstrate that the space of possible system call sequences
remains fairly limited and that the sequences are closely
related to the kind of process. Furthermore they have shown
that it is very likely that the sequence is disturbed in case of an
attack happening thus allowing for its detection. Their method
was able to detect a number of known attacks on the UNIX
programs Sendmail and lpr.

In their work Peisert et al. [5] go one level beyond tracing
system calls by considering the usefulness of tracing function
calls in order to assist in forensic analysis. They demonstrate
that function calls provide a suitable level of abstraction for
forensic analysts due to the fact that they provide an intuitive
description when analyzing an attack. The authors note that
anomalous sequences of function calls fulfill a basic
requirement of forensics stating that besides the importance of
being aware if an attack has occurred it is also important to
know where it has occurred. Via conducting various
experiments with exploits on privileged UNIX applications,
they show that observing the deviations in the sequences of
function calls help in detecting illegal process activities.

B. High-Level Perspective

Robertson et al. [3] have suggested a new approach for
performing anomaly-based detection of web-based attacks
with the goal to reduce the number of false positives generated
by ordinary anomaly-based systems. Additionally they aim to
provide the person responsible for responding to the attack
with a description of the attack that has caused the anomaly.
For this purpose they have developed a prototype of a web
intrusion detection system. Their approach uses a technique
for generalizing anomalies by turning suspicious HTTP
requests into anomaly signatures. The event source for
obtaining the request data is flexible and the prototype uses
web server access log files. Once obtained the anomaly
signatures serve as the grouping criterion for repeating or
similar abnormal requests, facilitating the task of the
administrator who has to respond to the alerts. Furthermore
the approach uses a heuristics-based technique to determine
the type of attack which caused the anomaly. Through this the
attacks are prioritized and enriched with explanatory
information. In order to evaluate their approach the authors
have provided the system with real-world data stemming from
access log files from web servers hosted at different
universities.

Kruegel et al. [4] have introduced a novel approach for
anomaly detection in HTTP requests. The event source
providing the data for the analysis are web server access log

files containing the HTTP requests together with the
parameters. They implement analysis techniques which
compare the access patterns of HTTP requests together with
the contained parameters to profiles belonging to the requested
server-side program or document that have been defined
earlier. This allows the system to perform a focused analysis
and to reduce the number of false positives. The system has
been tested on real-world data as well.

C. Detecting High-Level Attacks

Considering the previous works we identify investigations
on the usage of system calls for attack detection. In other
words these methods use system calls as an event source.
Others use network traffic [6] or web server log files to detect
web-based attacks [3], [5].

To date we are not aware of any work dealing with the
combination of system calls for attack detection and the goal
of detecting web-based attacks. Robertson et al. [3] mention in
a side note when describing the event collection component of
their web intrusion detection system that events could also be
collected from “a system call auditing facility embedded into a
web server’s host operating system” but they do not elaborate
further on it. In our work we demonstrate the value of
performing a system call analysis for the purpose of detecting
Web application attacks. In order to perform a highly
privileged task any user, or process, has to invoke system calls
which are the only interface between user space and kernel
space. Peisert et al. [5] encourage our idea by stating that
“Capturing behaviors represented at the system call
abstraction makes intuitive sense: Most malicious things an
intruder will do use system calls.”

III. THE JOURNEY OF A MALICIOUS HTTP REQUEST

Before going on a journey we usually plan the route by
looking at the desired destinations that we plan to visit and we
prepare ourselves by gathering the required equipment. During
our journey we want to share our discoveries with others.

A. Preparation of the Journey

In the following we discuss the application of our detection
mechanism at different levels of the request life cycle. We do
so by following an HTTP request containing input data with
an SQL injection. Therefore we first want to introduce the
different stations that we will visit during our journey at the
application and system call level.

1. Stations of the Journey at Application Level

In the following we give a short overview of what happens
to our HTTP request on its way to the OS level. We address
the different stations using the numbers shown in Fig. 1. We
have a simple Java Web application which receives the
malicious query and passes it through different travel stations.
After visiting the whole destinations it returns a response to
the starting point of the journey which is the HTTP client.

On submission of the login form the client sends an HTTP
request to the Apache Tomcat server. Then Tomcat forwards
the request to the configured Filter Authentication Filter (1)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1595

w
us
la
(2
fro
M
th
da
w
no
cl

re
th
A
cl
U
in
ac
fir
us
(2
sy
se
JD
If
co
M
pa
in
Se
A
us

which perform
ser, the Filter
ayer, in our co
2). User Mana
om the data

MySQL databa
he user provi
atabase. If the

will be forward
ot successful t
lient.

Fig. 1 Stations

2. Stations o

Fig. 2 shows
equest. Tomca
he recv () sys

Authentication
lient and ther

User Manage
nformation fro
ccesses the M
rst has to be a
sername and h
2). After auth
ystem call to
erver (3). MyS
DBC driver w
f User DAO
orresponding

Management.
assword of th
n the request.
ervlet sends

Authentication
sing the send (

ms authenticat
r delegates th
oncrete examp
agement forw
layer to obta

ase. Subseque
ided credenti
e authenticati
ded to the Log
then the Filter

of HTTP reque

f the Journey

s the system
at receives the
stem call (1)

Filter. The l
refore calls th
ement. User
om the datab

MySQL databa
authenticated
hashed passw
hentication th

transmit the
SQL server re

which obtains i
O finds a u

username it
Finally Use

e user from d
. If the auth

the respo
Filter sends

() system call

ion. In order
he login meth
ple to the clas
wards to the c
ain the actual
ently User Ma
ials to the c
ion is success
gin Servlet (4)
r sends an HT

est journey at ap

at System Ca

calls for resp
e request data
and then forw

latter attempts
he login meth
r Managem
base via User
ase via JDBC
at the MySQ

word using the
he JDBC driv

malicious qu
eturns the resu
it using the re
user in the

returns a U
er Managem
database to the
hentication wa
nse to the
an error page
(5).

r to authentic
hod to the b
ss User Mana
class User DA
l credentials
anagement co
credentials fro
sful then the
). If authentic
ML error pag

pplication level

all Level

ponding to an
a from the soc
wards the req
s to authentic
hod implemen

ment obtains
r DAO. User
C. The JDBC

QL server by s
e send () syst
ver uses the
uery to the d
ult of the query
cv () system c
database wi

User object t
ment compar
e password pr
as successful

client, oth
e. This will b

cate the
business
agement
AO (3)
from a

ompares
om the
request
ation is

ge to the

l view

n HTTP
cket via
quest to
cate the
nted by
s user
r DAO

C driver
sending
em call
send ()

database
y to the
call (5).
ith the
to User
res the
rovided
l Login
herwise
be done

F

pa
a
Th
de

an
pre

To
Ch
pe
pre
use
wh
the
req
res
me

pro
be
the
cre
Ma

pro

in
log

Fig. 2 Stations o

3. Participant

Until now w
assword. It bec

malicious qu
herefore we w
scribed above
Our journey

n HTTP reque
esentation as s

<form method=
 <input type="
 <input type="

 size="
 <input type="
 …
</form>

This HTTP r

omcat in turn
hain3 which in
rform authen
eprocessing F
er and theref
hich performs
e dynamic res
quest will be
sponse to th
echanism is th
The Authenti
ovided by the
longing to th
e pair of use
edential stor
anagement us

2 Java class crea
otocol.

3 A web resource
a predefined ord

gging and encrypt

of HTTP reque

ts of the Requ

we assumed an
comes even m
uery to perf

want to detail
e when it is un
starts at the c
est from a sim
shown in Fig.

="get" action="/S
"text" name="use
"password" name
"20">
"submit" name="a

Fig. 3 Ind

request is rec
n passes the
n our example
ntication nam
Filter allows
fore acts as s
s authenticatio
sponse. Only
forwarded to

he client. Cir
he target of SQ
ication Filter
e business lay

he business lay
er credentials
red in to t
ses an object

ating dynamic w

e can be filtered b
der. Among the
tion [10].

est journey at sy

uest Journey

n ordinary us
more interestin
form an SQL
l the behavior
nder an SQL in
client side wit
mple HTML
3.

Servlet-Login/logi
rname" maxlengt

e="password" ma

action" value="L

dex.html Page

ceived by the
request to th

e consist of on
mely Authenti

to transparen
ome kind of

on functionalit
if authenticati

o the Servlet w
rcumventing

QL injection.
makes use of

yer. The class
yer is respon
as provided

the database.
of User DAO

web content that

by a chain of 0 to
applications of f

ystem call level

ser entering a
ng if the user
L injection
r of the appl
njection attack
th the client s
login form u

in.html" >
th="80" size="20

axlength="40"

Login">

e Servlet2 con
he configured
nly one Filter u
ication Filter

ntly authentica
decorator of

ty before gen
ion is success
which genera
this authent

f login functi
s User Manag

nsible for com
by the user

. The class
O in order to

is capable of th

 n filters which a
filters are authen

view

a valid
injects
attack.

lication
k.
ending

used as

0">

ntainer.
d Filter
used to
r. This
ate the
f proxy
erating

sful the
ates the
tication

onality
gement

mparing
to the

 User
obtain

he HTTP

are called
ntication,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1596

the user credentials from the database. The implementation of
the User DAO uses the Java JDBC4 interface for connecting to
a MySQL database. Due to the fact that the SQL statement is
created from a fixed string concatenated with unsanitized user
input attackers can choose their own password when providing
a malicious SQL statement as input for the username in the
login form.

B. Request Journey - Tracing SQL Injection

In the following section we analyze a trace of system calls
which were performed by our application while being under
an SQL injection attack. For this purpose we first need to trace
the system calls invoked by our application. We consider the
system calls resulting from our Web application running on
Catalina5 acting as the database client. We conduct our
experiment on a Fedora Linux system using strace as a tracing
tool which we consider to be both sufficiently accurate and
simple to use for our purposes6.

Considering we want to trace an instance of Apache Tomcat
having a pid of 51247 and printing argument strings up to 1024
characters we use the following command (Fig. 4).

strace –p 5124 –f -s 1024 –o traceServletApplication.txt

Fig. 4 Strace for Catalina process

1. Reducing the Set of Data

The resulting output file of our application contains a trace
of more than 10000 lines of system calls invoked by the
process where we attached strace. Same as in a journey when
we record our experiences in a travel diary we have to
distinguish between the interesting and the unnecessary
information. In order to reduce the number of lines that we
have to analyze we look for a classification which can give us
the exact group of system calls which are relevant to our
client/server application. Bernaschi et al. [1] provide a system
call classification based on functionality. In terms of this
classification our application invokes system calls belonging
to the groups of communication, more precisely network
communication, and file systems.

2. Travel Diary - System Call Analysis

As starting point we analyze the request to the static page
index.html. Subsequently Tomcat has to process this request
and therefore needs to open the requested file, read the content
and send it to the client. In the following we identify the
individual system calls for receiving the client request at the
server side as depicted in Fig. 5.

Each line in the trace file starts with the process id
executing the system call, in this case “7480” which is the
process id of the Java virtual machine. Therefore we can
reduce further the set of system calls by only considering
system calls related to this process. The recv() system call is
used to receive messages from a connected socket. The

4 Java Database Connectivity.
5 Tomcat's servlet container implementation is called Catalina.
6 For further information about strace refer to the Appendix.
7 We have to determine the pid related to the script catalina.sh, not

startup.sh.

argument “41” refers to the file descriptor of the socket, the
second argument corresponds to the buffer contents i.e. the
HTTP request, the third argument “8192” describes the buffer
length in bytes and the last argument “0” is a flag for defining
the desired behavior. The return value “317” indicates the
number of bytes received from the socket.

…
7480 <... gettimeofday resumed> {1386544364, 110928}, NULL) = 0
7480 poll([{fd=41, events=POLLIN|POLLERR}], 1, 20000) = 1 ([{fd=41,
revents=POLLIN}])

7480 recv (41, "GET /Servlet-Login/index.html HTTP/1.1\...\n", 8192, 0)=317

7480 gettimeofday({1386544364, 111946}, NULL) = 0
7480 stat64("/home/student/install/apache-tomcat7.0.26/wtpwebapps/Servlet-
Login/index.html", {st_mode=S_IFREG|0664, st_size=1247, ...}) = 0
…

Fig. 5 System call receiving client request

The next relevant system call stat64() lists information

about the file index.html (Fig. 6).

…
7480 recv(41, "GET /Servlet-Login/index.html \...\n", 8192, 0) = 317
7480 gettimeofday({1386544364, 111567}, NULL) = 0
7480 gettimeofday({1386544364, 111946}, NULL) = 0

7480 stat64("/home/student/install/apache-tomcat-7.0.26/wtpwebapps/Servlet-
Login/index.html", {st_mode=S_IFREG|0664, st_size=1247, ...}) = 0

7480 access("/home/student/install/apache-tomcat-.0.26/wtpwebapps/Servlet-
Login/index.html", R_OK) = 0
7480 lstat64("/home", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0
7480 lstat64("/home/…", {st_mode=S_IFDIR|0700, st_size=4096, ...}) = 0…

Fig. 6 System call list file information

The first argument is the file path, and the second argument

constitutes a buffer to be filled with the information such as
the protection of the regular file st_mode and st_size showing
the file’s total size.

Having the file information Tomcat invokes the “access”
system call in order to check if all requested permissions are
granted.

The second argument to access() requests a check if the file
exists and read permissions are granted to it which is the case
according to the return value “0” (Fig. 7).

…
7480 stat64("/home/student/install/apache-tomcat-.0.26/wtpwebapps/Servlet-
Login/index.html", {st_mode=S_IFREG|0664, st_size=1247, ...}) = 0

7480 access ("/home/student/install/…/wtpwebapps/Servlet-
Login/index.html", R_OK) = 0

7480 lstat64("/home", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0
7480 lstat64("/home/…", {st_mode=S_IFDIR|0700, st_size=4096, ...}) = 0
…

Fig. 7 System call file permission check

The open () system call returns a file handle to index.html

that will be used by the subsequent read() system call (Fig. 8).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1597

…
7480 stat64("/home/student/install/apache-tomcat-.0.26/wtpwebapps/Servlet-
Login/index.html", {st_mode=S_IFREG|0664, st_size=1247, ...}) = 0

7480 open ("/home/student/…/wtpwebapps/Servlet-Login/index.html",
O_RDONLY|O_LARGEFILE) = 42

7480 fstat64(42, {st_mode=S_IFREG|0664, st_size=1247, ...}) = 0
7480 fcntl64(42, F_GETFD) = 0
…

Fig. 8 System call open() file handle

The following read () reads the entire content of index.html

from file descriptor “42” (Fig. 9).

…
7480 fcntl64(42, F_GETFD) = 0
7480 fcntl64(42, F_SETFD, FD_CLOEXEC) = 0

7480 read (42, "<html>\n\t<head>\n\t\t<title>Servlet Filter
Example</title>\n\t</head>\n\t<body>...\n\t\t<h2>Login:
</h2>\t\t\n\t\t<form method=\"get\" action=\"/Servlet-Login/login.html\"
>….”, 1247) = 1247

7480 close(42) = 0
7480 gettimeofday({1386544364, 118267}, NULL) = 0
…

Fig. 9 System call read()

The server now creates an HTTP response using the file

recently read together with header information and sends it to
the client via the socket identified by file descriptor “41” (Fig.
10).

…
7480 gettimeofday({1386544364, 119761}, NULL) = 0
7480 gettimeofday({1386544364, 119903}, NULL) = 0

7480 send (41, "HTTP/1.1 200 OK\r\nServer: Apache-Coyote/1.1\r\nAccept-
Ranges: bytes\r\nETag: W/\"1247-1386504489000\"\r\nLast-Modified: Sun,
08 Dec 2013 12:08:09 GMT\r\nContent-Type: text/html\r\nContent-Length:
1247\r\nDate: Sun, 08 Dec 2013 23:12:44
GMT\r\n\r\n<html>\n\t<head>\n\t\t<title>Servlet Filter Example</title>…
", 1475, 0 <unfinished ...>
5131 <... gettimeofday resumed> {1386544364, 110930}, NULL) = 0
7480 <... send resumed>) = 1475

5131 <... gettimeofday resumed> {1386544364, 110930}, NULL) = 0
7480 <... send resumed>) = 1475
5131 clock_gettime(CLOCK_REALTIME, <unfinished ...>
…

Fig. 10 System call send()

As shown in Fig. 11 the attacker enters the malicious SQL

string in order to obtain access to the application and submits
the request to the server by pressing the “Login” button.

Fig. 11 SQL injection login form

Until now we just had the static page but shortly the
attacker will enter the malicious data in the field of Username
and Password using the values depicted in Fig. 12.

Username: 'UNION ALL select 'attacker','Pa$$w0rd'from dual where ''='
Password: Pa$$w0rd

Fig. 12 Malicious Query

Subsequently Tomcat receives the username and password

from the client in URL encoded form (Fig. 13)

…
7483 poll([{fd=41, events=POLLIN|POLLERR}], 1, 20000 <unfinished ...>
5131 futex(0xb772a444, FUTEX_WAIT_PRIVATE, 5, {0, 999835953}
<unfinished ...>
7483 <... poll resumed>) = 1 ([{fd=41, revents=POLLIN}])

7483 recv (41, "GET /Servlet-
Login/login.html?username=%27UNION+ALL+select%27attacker%27%2C
%27Pa%24%24w0rd%27from+dual+where+%27%27%3D%27&password=
Pa%24%24w0rd&usergroup=Guest&action=Login HTTP/1.1\r\nHost:
localhost:8080\r\nUser-Agent: Mozilla/5.0 (X11; Linux i686)
AppleWebKit/535.4+ (KHTML, like Gecko) Version/5.0
Safari/535.4+\r\nAccept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\nReferer:
http://localhost:8080/Servlet-Login/index.html\r\nAccept-Encoding:
gzip\r\nConnection: Keep-Alive\r\n\r\n", 8192, 0) = 492

7483 gettimeofday({1386544409, 846053}, NULL) = 0
7483 write(1, "SQL> SELECT username, password FROM User WHERE
username =''UNION ALL select'attacker','Pa$$w0rd'from dual where ''=''",
117) = 117
7483 write(1, "\n", 1) = 1

…

Fig. 13 Receive malicious query

Tomcat after receiving these parameters and values has to

do a dynamic processing. The login.html requires that the user
will be authenticated. Therefore the credential data provided
by the user must be compared to the credentials stored into the
database and in order to do that our User DAO uses a JDBC
driver to communicate with the MySQL database.

…
7483 gettimeofday({1386544409, 852614}, NULL) = 0

7483 socket (PF_INET6, SOCK_STREAM, IPPROTO_IP) = 42
7483 setsockopt (42, SOL_IPV6, IPV6_V6ONLY, [0], 4) = 0
7483 connect(42, {sa_family=AF_INET6, sin6_port=htons(3306),
inet_pton(AF_INET6, "::ffff:127.0.0.1", &sin6_addr), sin6_flowinfo=0,
sin6_scope_id=0}, 28) = 0
7483 getsockname(42, {sa_family=AF_INET6, sin6_port=htons(48367),
inet_pton(AF_INET6, "::ffff:127.0.0.1", &sin6_addr), sin6_flowinfo=0,
sin6_scope_id=0}, [28]) = 0
7483 setsockopt (42, SOL_TCP, TCP_NODELAY, [1], 4) = 0
7483 setsockopt (42, SOL_SOCKET, SO_KEEPALIVE, [1], 4) = 0

7483 gettimeofday({1386544409, 856534}, NULL) = 0
…

Fig. 14 System call socket() connection

As shown in Fig. 14 subsequently the connector establishes

a connection with the database server on port “3306”which in
our experiment resides at the same machine (127.0.0.1).

Fig. 15 depicts how our application receives a response
from the MySQL server. In this response the MySQL server
tells the client to use a password mechanism called

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1598

“m
ag
m

…
74
74

74
74
(~g
as

74
…

da
pa

...
74

74
"D
52

51
51
...

cl
m

…
74
74

74
WH
wh

74
74
74
…

qu
M
ha

…
74
51

74
51
<u
74
res
\\0
12

74
74
…

mysql_native_
gainst the mys

method [8].

…
483 setsockopt(42
483 gettimeofday

483 ioctl(42, FIO
483 recv(42, "J\0
~ghUN\0\377\367

sword\0", 78, 0)

483 gettimeofday
…

Fig

In the send()

atabase “testd
assword which

483 recv(42, "J\0

483 send (42,
D\0\0\1\217\242\2
2c\312v\360\253\3

137 futex(0xb774
137 gettimeofday

F

After multip

lient and My
malicious query

…

483 gettimeofday
483 ioctl(42, FIO

483 send (42, "q\
WHERE username

here ''=''", 117, 0

483 gettimeofday
483 ioctl(42, FIO
483 recv(42, "\1\0

…

The second a

uery at runtim
MySQL. In th
appening.

…

483 <... ioctl resu
137 clock_gettim

483 recv (42, <u
137 futex(0xb774
unfinished ...>
483 <... recv
sumed>"\2&\0\0

0\5\0\0\4\376\0\0
25, 0) = 125

483 gettimeofday
483 gettimeofday

…

F

_password, w
sql.user table u

2, SOL_SOCKET
y({1386544409, 8

ONREAD, [78]) =
0\0\0\n5.5.20\0\23
7\10\2\0\17\200\25

= 78

y({1386544409, 8

g. 15 System ca

) system call
db” using the
h can be seen

\0\0\n5.5.20\...@

2\0\377\377\377\0
302\362\\333\217

40e28, FUTEX_W
y({1386544409, 8

Fig. 16 MySQL

ple messages
ySQL databa
y to the server

y({1386544409, 9
ONREAD, [0]) =

\0\0\0\3SELECT
e =''UNION ALL
0) = 117

y({1386544409, 9
ONREAD, [0]) =

0\0\1", 4, 0) = 4

Fig. 17 Sendin

argument in th
me that will fin
his concrete

umed> , [125]) =
me(CLOCK_REA

unfinished ...>
40e44, FUTEX_W

\2\3def\0\0\0\10u
\"\0\22\0\0\5\10a

y({1386544409, 9
y({1386544409, 9

Fig. 18 Result se

which implem
using the nati

T, SO_KEEPALI
856534}, NULL)

= 0
30\0\0\0R-
5\\0\0\0jHk`#*Ipv

856873}, NULL)

all password ne

the JDBC dr
e user “stude
in Fig. 16.

@\0mysql_native_

0\0\0\0\0\0\0\0\0
7\253testdb\0", 72

WAKE_PRIVAT
873247}, NULL)

L client authent

 exchanged
ase server th
r as shown in

943173}, NULL)
0

T username, passw
L select'attacker

961161}, NULL)
0

ng of malicious

he send() syst
nally be recei
example we

= 0
ALTIME, {138654

WAIT_PRIVATE,

username\10usern
attacker\10Pa$$w

978216}, NULL)
978296}, NULL)

et from MySQL

ments authen
ve password h

IVE, [1], 4) = 0
 = 0

v%O@\0mysql_n

 = 0

gotiation

river connects
ent” and the

_password\0", 78,

\0\0\0\0\0\0stude
2, 0) = 72

TE, 1) = 0
 = 0

tication

between the
he client sen
Fig. 17.

 = 0

word FROM Use
','Pa$$w0rd'from

 = 0

query

tem call is the
ved and execu
can see the

44409, 97792590

1, {0, 49902096}

name\f\10\0@\0\0
w0rd\5\0\0\6\376\

 = 0
 = 0

L server

tication
hashing

native_p

s to the
hashed

 0) = 78

ent\0\24\2

JDBC
nds the

er
m dual

e actual
uted by

e attack

04}) = 0

}

0\0\375\1
\0\0\"\0",

an

…
513
513
<un
748

748
Coy
Len
<h
Par
sele
\"P
\"L

748
748
…

to

vu
red
on
fun
a
ex
on
an
co
app
qu

pa
can
we
pro
the
ou
sat
da
pa
is

Finally the cl
nd sends it to th

37 clock_gettime
37 futex(0xb774
nfinished ...>
83 gettimeofday(

83 send (41, "HT
yote/1.1\r\nConte
ngth: 299\r\nDate
ead> <title>Lo
rameters:</h1>
ect'attacker','Pa$

Pa$$w0rd\"

Login\"
 </

83 gettimeofday(
83 gettimeofday(

Fi

Fig. 20 depic
the applicatio

C. Findings of

So far we hav
ulnerable appli
duce the imm

n the interestin
nctionality [1]
Web applicat
ample we hav

n the Web app
n argument of

mmunication
plication, or

uery to the data

SELECT usern
=''UNION ALL

We can check

arameters in a
n concentrate
e do not need
ogramming la
e specifics of

ur example th
tisfy the SQL

ata layer code
art of the query

filtering for a

lass Login Ser
he attacker (F

e(CLOCK_REAL
0e44, FUTEX_W

({1386544410, 3

TTP/1.1 200 OK\r
ent-Type: text/htm
e: Sun, 08 Dec 20
ogin</title> </h
 <pre> usern

$$w0rd'from dual
> usergroup =

/pre> </body><

({1386544410, 4
({1386544410, 4

ig. 19 HTTP re

cts that the att
on.

Fig. 20 Su

of the Journey

ve considered
ication during

mense amount
ng ones by pr
] as well as th
tion that we
ve been able t
plication by lo
the send() sy
system calls.
more precise

abase.

name, password
 select'attacker','P

Fig. 21 M

k for different
a programming
e on the pecul
d to know the
anguage in or
the attack we

he injected qu
L syntax of th

(depicted in b
y is that the u
an empty strin

rvlet generate
Fig. 19).

LTIME, {138654
WAIT_PRIVATE

9904}, NULL) =

r\nServer: Apach
ml;charset=ISO-8
013 23:13:30 GM

head> <body>
name = \"'UNIO
l where ''='\"<br/
\"Guest\"

</html>\n", 447,

0707}, NULL) =
0802}, NULL) =

esponse for logi

tacker success

uccessful attack

d the system c
g an SQL injec

of traced sys
rioritizing them
he type of the

used in our
to detect the S
ooking for the
ystem call whi
 This is the p
ely the JDBC

FROM User
Pa$$w0rd'from du

Malicious query

t attack pattern
g language in
liarities of the
mechanism u

rder to access
can define an

uery string us
he query whic
black in Fig.
ser name part
ng. This make

s an HTTP re

44410, 30823329}
E, 1, {0, 49942671

= 0

he-
8859-1\r\nConten

MT\r\n\r\n<html>
 <h1>Request

ON ALL
/> password
 action =
0) = 447

= 0
= 0

in.html

sfully gained

k

calls invoked
ction attack. W
stem calls and
m according t
application, s
experiment.

SQL injection
e malicious qu
ich is in the c

point where th
C driver, sen

WHERE userna
ual where ''=''

ns in the syste
ndependent w
e attack itself

used by the co
 the DB). Ba

n attack signat
ses single quo
ch is defined
21). One susp

t of the where
es sure that th

esponse

}) = 0
1}

nt-
>

=

access

by our
We can
d focus
to their
such as
In our

n attack
uery as
class of
he Web
nds the

ame

em call
way and
f. (E.g.
oncrete
ased on
ture. In
otes to
in the

picious
clause

he first

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:9, 2014

1599

part of the statement has no result. The UNION ALL part of
the SQL statement provides a WHERE condition which is
always “true” and therefore the data is included into the result
set. These are examples of suspicious patterns indicating that
an SQL injection takes place.

Additionally we are able to check data that is exchanged
between the components belonging to the infrastructure of a
single application, including the server application, a web
service or a database server. In our experiment the Web
application communicates with the DB server using the send()
and recv() system calls.

Furthermore the approach of detecting attacks via system
calls applies not only to one specific attack like SQL injection
but to all kinds of Web application attacks including cross-site
scripting and path manipulation. The only pre-requisite is that
we know about the attack pattern that we are looking for.

IV. CONCLUSION

Previous works [1], [2] focused on using system calls for
detecting low level attacks which are targeting high privileged
processes such as Sendmail. We could demonstrate a new way
of using system calls for attack detection which enables us to
detect SQL injection attacks which are taking place at a high
level. System call tracing is applicable for detecting attacks
independent from the level where they take place.

Moreover in order to detect the attack we do not need to
have access to the application’s source code.

Due to the fact that at runtime any application is represented
as native code invoking the system calls we are independent
from the programming language.

Furthermore we have no dependency on the application’s
internal architecture and whether it uses a layered architecture
or not. Other approaches to attack detection might rely on a
certain architecture e.g. in order to instrument existing code
with log statements.

Last but not least is that we are able to see the actual data at
runtime after it has passed any decoding and decryption which
allows us to see the attack data in detail and which makes
certain evasion techniques used by the attacker useless.

APPENDIX

Tracing system calls via strace can be described as “a
technique that presents details of the execution of program”.
Following the path of a programs execution enables us to
more accurately understand how a program executes and
thereby interacts with its environment. Additionally following
the path of execution enables us to detect the locations where
the program does not behave as expected [7]. To this end for
our work we need a tool which accurately shows the system
calls which execute from the application that we want to
investigate.

Strace is a tool allowing to trace system calls performed by
a process and can either be attached to a running process
(using the option –p) or be started with a new process.

When performing its task it records the system calls made
by a process as well as the signals it receives.

For each system call it records the name, its arguments and
the return value.

Strace does not require that the source code is available as it
does not require any recompilation.

Child processes that have been created by a forked system
call can be traced using the –f option and the output can be
redirected to a file using the –o option if desired.

We should keep in mind that strace always has to be run
with root privileges in order to also trace privileged system
calls.

REFERENCES
[1] M. Bernaschi, “Remus: a security-enhanced operating system,” ACM

Trans. on Information and System Security (TISSEC), 2002, pp.36-61.
[2] S. Forrest, S. A. Hofmeyr, “A Sense of Self for Unix Processes,” in

Proc. IEEE Symposium on Security and Privacy, Washington, 1996, pp.
120.

[3] W. Robertson, G. Vigna, “Using Generalization and Characterization
Techniques in the Anomaly-based Detection of Web Attacks, “in Proc.
of the 13th Symposium on Network and Distributed System Security
California, 2006.

[4] C. Kruegel, G. Vigna, “A multi-model approach to the detection of web-
based attacks,” Elsevier Computer Networks: The International Journal
of Computer and Telecommunications Networking - Web security, New
York, 2005,pp. 717 - 738.

[5] S. Peisert, M. Bishop, S. Karin, and K. Marzullo, “Analysis of Computer
Intrusions Using Sequences of Function Calls,” in IEEE Trans. on
Dependable and Secure Computing, 2007, 137-150.

[6] Gustavo Miguel Barroso Assis do Nascimento, “Anomaly detection of
web-based attacks,” Master Thesis. Lisboa, Portugal, Universidade de
Lisboa, 2010.

[7] M. T. Jones, IBM, “Kernel command using Linux system calls,” from
http://www.ibm.com/developerworks/linux/library/l-system-calls, 2010,
Retrieved 12 11, 2013.

[8] Oracle, “The Native Authentication Plug-in,” from
http://dev.mysql.com/doc/refman/5.5/en/native-authentication-
plugin.html, 2013, Retrieved 12 11, 2013.

[9] OWASP, “2013 Top 10 List”, from https://www.owasp.org/
index.php/Top_10_2013-Top_10, Retrieved 9 14, 2014

[10] Oracle, “Chapter 4 Java Servlet Technology: Filtering Requests and
Responses”, http://docs.oracle.com/cd/E19159-01/819-3669/bnafd/
index.html

