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The homotopy analysis method for solving
discontinued problems arising in nanotechnology

Hassan Saberi-Nik and Mahin Golchaman

Abstract—This paper applies the homotopy analysis method
method to a nonlinear differential-difference equation arising in nan-
otechnology. Continuum hypothesis on nanoscales is invalid, and a
differential-difference model is considered as an alternative approach
to describing discontinued problems. Comparison of the approximate
solution with the exact one reveals that the method is very effective.
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I. INTRODUCTION

IN 1992, Liao [15] employed the basic ideas of the ho-
motopy in topology to propose a general analytic method

for nonlinear problems, namely homotopy analysis method
(HAM), [16], [17], [18], [19]. Based on homotopy of topol-
ogy, the validity of the HAM is independent of whether or
not there exist small parameters in the considered equation.
Therefore, the HAM can overcome the foregoing restrictions
and limitations of perturbation techniques. This method has
been successfully applied to solve many types of nonlinear
problems [1], [2], [11].
The HAM contains a certain auxiliary parameter h which
provides us with a simple way to adjust and control the
convergence region and rate of convergence of the series
solution. Moreover, by means of the so-called h-curve, it is
easy to determine the valid regions of h to gain a convergent
series solution.
The HAM offers certain advantages over routine numerical
methods. Numerical methods use discretization which gives
rise to rounding off errors causing loss of accuracy, and
requires large computer memory and time. This computational
method yields analytical solutions and has certain advantages
over standard numerical methods. The HAM method is better
since it does not involve discretization of the variables and
hence is free from rounding off errors and does not require
large computer memory or time.
According to E-in£nity theory [6], [7], [8], space at the
quantum scale is not a continuum, and it is clear that nanotech-
nology possesses a considerable richness which bridges the
gap between the discrete and the continuum [9], [21], [3]. On
nanoscales, He et al. [4] found experimentally an uncertainty
phenomenon similar to Heisenberg’s uncertainty principle in
quantum mechanics. Continuum hypothesis on the nanoscales
becomes, therefore, invalid. He and Zhu [5] suggested some
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differential-difference models describing fascinating phenom-
ena arising in heat/electron conduction and ¤ow in carbon
nanotubes, among which we will study the following model:

dun

dt
= (un+1 − un−1)

m
∑

k=1

(αk + βk(un)k) (1)

where αk and βk are constants. Physical interpretation is given
in Ref. [5]. Eq. (1) includes the well-known discretized mKdV
lattice equation:

dun

dt
= (α− u2

n)(un+1 − un−1) (2)

where the subscript n in Eq. (1) represents the nth lattice.
The aim of this paper is to directly extend the HAM to consider
the explicit analytic solution of the Eq. (2). Previously such
equations were solved by the exp-function method [10], [12],
[13] and the homotopy perturbation method [14].

II. BASIC IDEA OF HAM
In this section we employ the homotopy analysis method [15]
to the discussed problem.
To describe the basic ideas of the HAM, we consider the
following differential equation

N [u(x, t)] = 0, (3)

where N is a nonlinear operator, x, t denotes independent
variables, u(x, t) is an unknown function, respectively. For
simplicity, we ignore all boundary or initial conditions, which
can be treated in the similar way. By means of generalizing
the traditional homotopy method, Liao [15] constructs the so-
called zero-order deformation equation

(1− q)L[φ(x, t; q)−u0(x, t)] = q hH(x, t)N [φ(x, t; q)], (4)

where q ∈ [0, 1] is the embedding parameter, h 6= 0 is a non-
zero auxiliary parameter, H(x, t) 6= 0 is an auxiliary function,
L is an auxiliary linear operator, u0(x, t) is an initial guess
of u(x, t), u(x, t; q) is a unknown function, respectively. It
is important, that one has great freedom to choose auxiliary
things in HAM. Obviously, when q = 0 and q = 1, it holds

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t), (5)

respectively. Thus, as q increases from 0 to 1, the solution
u(x, t; q) varies from the initial guess u0(x, t) to the solution
u(x, t). Expanding u(x, t; q) in Taylor series with respect to
q, we have

φ(x, t; q) = u0(x, t) +

+∞
∑

m=1

um(x, t)qm, (6)
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where

um(x, t) =
1

m!

∂mφ(x, t; q)

∂qm
|q=0. (7)

If the auxiliary linear operator, the initial guess, the auxiliary
parameter h, and the auxiliary function are so properly chosen,
the series (6) converges at q = 1, then we have

u(x, t) = u0(x, t) +

+∞
∑

m=1

um(x, t), (8)

which must be one of solutions of original nonlinear equation,
as proved by Liao [16]. As h = −1 and H(x, t) = 1, Eq. (4)
becomes

(1− q)L[φ(x, t; q)− u0(x, t)] + q N [φ(x, t; q)] = 0, (9)

which is used mostly in the homotopy perturbation method [3],
where as the solution obtained directly, without using Taylor
series . According to the de£nition (7), the governing equation
can be deduced from the zero-order deformation equation (4).
De£ne the vector

~un = {u0(x, t), u1(x, t), . . . , un(x, t)}.

Differentiating equation (4) m times with respect to the embed-
ding parameter q and then setting q = 0 and £nally dividing
them by m!, we have the so-called mth-order deformation
equation

L[um(x, t)− χmum−1(x, t)] = hH(x, t)Rm(~um−1), (10)

where

Rm(~um−1) =
1

(m− 1)!

∂m−1N [φ(x, t; q)]

∂qm−1
|q=0. (11)

and

χm =

{

0, m 6 1,
1, m > 1. (12)

It should be emphasized that um(x, t) for m > 1 is governed
by the linear equation (10) under the linear boundary
conditions that come from original problem, which can be
easily solved by symbolic computation software such as
Matlab. For the convergence of the above method we refer
the reader to Liao’s work. If Eq. (3) admits unique solution,
then this method will produce the unique solution. If equation
(3) does not possess unique solution, the HAM will give a
solution among many other (possible) solutions.

Remark 3.1.
Liao [16] proved that, as long as a series solution given by the
homotopy analysis method converges, it must be one of exact
solutions. So, it is important to ensure that the solution series
(8) is convergent. Note that the solution series (8) contain
the auxiliary parameter h, which we can choose properly
by plotting the so-called h-curves to ensure solution series
converge. As suggested by Liao [16], the appropriate region
for h is a horizontal line segment.

III. APPLICATION

In this part, we apply the HAM to solve for the traveling
wave solution of Eq. (2), subject to the initial conditions

un0
(n, 0) =

√
αtanh(d)tanh(nd), (13)

where d is an arbitrary constant.
From Eq. (2), we de£ne the nonlinear operator

N [φ(n, t; q)] =
dφn(n, t; q)

dt
− (α− φ2

n(n, t; q))

(φn+1(n, t; q)− φn−1(n, t; q)), (14)

According to the initial condition denoted by (13), it is natural
to choose

un0
(n, t) =

√
αtanh(d)tanh(nd), (15)

We choose the linear operator

L[φn(n, t; q)] =
dφn(n, t; q)

dt
, (16)

with the property L[c] = 0, where c is coef£cient.
To ensure this, let h 6= 0 denote an auxiliary parameter,q ∈

[0, 1] an embedding parameter. We have the zeroth-order
deformation equation

(1− q)L[φn(n, t; q)− un0
(n, t)] = qhH(n, t)N [φn(n, t; q)],

(17)
obviously, when q=0 and q=1,

φn(x, t; 0) = un0
(n, t), φn(n, t; 1) = un(n, t).

(18)
Thus, φn(n, t; q) can be expanded in the Maclaurin series with
respect to q in the form

φn(n, t; q) = un0
(n, t) +

∞
∑

m=1

unm
(n, t)qm, (19)

where
unm

(n, t) =
1

m!

∂mφn(n, t; q)

∂qm
|q=0, (20)

Note that the zeroth-order deformation Eq.(17) contains the
auxiliary parameter h, so that φn(n, t; q) is dependent on h.
Assuming that h is so properly chosen that the series Eq.(19)
is convergent at q = 1, we obtain from Eq.(19) that

un(n, t) = un0
(n, t) +

∞
∑

m=1

unm
(n, t),

Fore the sake of simplicity, introduce

~unm
= {un1

, un2
, un3

, · · ·unm
}, (21)

We differentiate the zeroth-order deformation Eq.(17) m times
with respect to q, then set q = 0. Dividing the obtained equation
by m!, we get the so-called mth-order deformation equation:

L[unm
(n, t)−χmunm−1

(n, t)] = hH(n, t)Rm(~unm−1
), (22)

where

Rm(~unm−1
) =

dunm−1

dt
− (α−

m−1
∑

k=0

unk
unm−1−k

)

(un+1m−1
− un−1m−1

)), (23)
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We now successively obtain the solution to each high order
deformation equation:

unm
(n, t) = χmunm−1

(n, t) + L−1 (24)
[

hH(n, t)Rm(~unm−1
)
]

,m ≥ 1,

We start with an initial approximationun0
(n, t) we can obtain

directly the other components as:

un1
= −h[α− αtanh(d)2tanh(nd)2] [α

1

2 tanh(d)

(tanh((m+ 1)d)− tanh((m− 1)d))]t,

un2
= −h[α− αtanh(d)2tanh(nd)2] [α

1

2 tanh(d)

(tanh((m+ 1)d)− tanh((m− 1)d))]t+ · · ·
...

IV. NUMERICAL RESULTS

In this case, we take α = 1, d = .1, t = 1 as an example.
In table (1) we have presented approximate solution by
3th-order HAM, and error of HAM. By HAM, it is easy to
dicsover the valid region of h, which corresponds to the line
segments nearly parallel to the horizontal axis. To £nd the
valid region of h, the h-curve given by the 3th-order HAM
approximation is drawn in Fig. 1, which clearly indicates that
the valid region of his about −1.4 < h < −0.4. From Fig.
1, it is easily seen that −1 is a valid value of h. Thus, The
results of HAM in special case is similar to HPM results. In
Fig. 2, one can also see the comparison between obtained
results HAM whit exact solution.

Table 1
The results of the HAM(h = −1)

n HAM Absolute error Exact solution
-15 -0.08597195 6.87053408e-5 -0.08590324
-5 -0.02900117 9.39257007e-5 -0.02909509
-4 -0.01958995 0.00014563 -0.01973559
-3 -0.00980534 0.00019388 -0.00999922
3 0.0461696 0.00016340 0.04600622
4 0.0535908 0.00011127 0.05347954
5 0.0602532 5.91892372e-5 0.06019410
15 0.0931528 6.92041222e-5 0.09322206
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Fig. 1. The h-curve of un(3, 1) based on the 3th-order HAM.
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Fig. 2. The comparison of the HAM(h=-1) and exact solution.

V. CONCLUSION

In this Letter, we have successfully developed HAM for solving
discontinued problems arising in nanotechnology. It is apparently
seen that HAM is a very powerful and ef£cient technique in £nding
analytical solutions for wide classes of linear problems. The results
got from the performance of HAM over discontinued problems
arising in nanotechnology, was speci£ed that the solution of HAM is
similar to HPM results.
Matlab has been used for computations in this paper.
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