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Abstract—Iterative learning control aims to achieve zero tracking 
error of a specific command. This is accomplished by iteratively 
adjusting the command given to a feedback control system, based on 
the tracking error observed in the previous iteration. One would like 
the iterations to converge to zero tracking error in spite of any error 
present in the model used to design the learning law. First, this need 
for stability robustness is discussed, and then the need for robustness 
of the property that the transients are well behaved. Methods of 
producing the needed robustness to parameter variations and to 
singular perturbations are presented. Then a method involving 
reverse time runs is given that lets the world behavior produce the 
ILC gains in such a way as to eliminate the need for a mathematical 
model. Since the real world is producing the gains, there is no issue 
of model error. Provided the world behaves linearly, the approach 
gives an ILC law with both stability robustness and good transient 
robustness, without the need to generate a model.

Keywords—Iterative learning control, stability robustness, 
monotonic convergence. 

I. INTRODUCTION

TERATIVE learning control (ILC) applies to situations where 
a control system is to perform a specific tracking maneuver 

repeatedly. First one can give the maneuver as the command 
to a feedback control system. The response can be given 
mathematically by a convolution integral of the command 
over all past time. It is very unlikely that the convolution 
integral over all previous commands can equal the value of the 
command at the present time. Hence, feedback control 
systems generically have deterministic errors that repeat every 
time a tracking command is given. ILC iteratively adjusts the 
command given to the feedback control system based on the 
error observed in the previous run (or iteration, or cycle), 
aiming to converge to that command that produces zero 
tracking error. The iterations can also eliminate the influence 
of disturbances that repeat each time the command is given, 
such as the gravity torque on a robot link as it follows a given 
path. See references [1,2] for more information about ILC. 
This paper collects observations from various previous papers 
by the author and co-workers, to make observation on the 
manner in which stability robustness plays a much more 
fundamental role in ILC than in more routine forms of 
feedback control. 

II. MATHEMATICAL FORMULATION OF ILC

Consider a single-input, single-output feedback control 
system  
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x j (k +1) = Ax(k) + Bu j (k)   ; k = 0,1,2,…, p−1

y j (k +1) = Cx j (k +1) + d (k +1)
        (1)

where u j (k)  is the command, y * (k) for k = 1,2,…, p  is the 

p time step desired output history, d (k)  represents any 

repeating disturbance written as an equivalent output 
disturbance, j indicates the repetition or iteration number, and 
we aim to make y j (k)  converge to y * (k)  for all k as j tends 

to infinity. 
Following [3], package the whole history of a variable 

during an iteration into a column vector, and denote this by an 
underbar:

y
j
= y j (1) y j (2) ⋯ y j (p)[ ]

T

u j = u j (0) u j (1) ⋯ u j (p−1)[ ]
T

                   (2)

with analogous definitions for y * , d , and the error history 

e j = y *−y j
, that all use the time arguments of y

j
. By 

recursively substituting the solution of (1) for one k into the 
next k, one can write the output history in terms of 
convolution sums as 
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j
= Ax(0) + Pu j + d

A =

CA

CA
2

⋮

CA
p

























P =

CB 0 ⋯ 0

CAB CB ⋯ 0

⋮ ⋮ ⋱ ⋮

CA
p−1
B CA

p−2
B ⋯ CB

























       (3)

We assume that CB is not zero. If (1) came from a continuous 
time system fed by a zero order hold, then CB will not be zero 
if one is using an appropriate sample rate. Otherwise, one can 
adjust the definitions in (2) and (3) to account for a different 
delay through the system. A general linear first order iterative 
learning control law takes the form 

u j+1 = u j + Le j     or    δ j+1u = Le j                   (4)

where L is a p by p learning control gain matrix, and the delta 
operator indicates δ j+1u = u j+1 − u j , and can be used on any 

quantity. Four possible ILC laws are: pure integral control 
based learning, e.g. [3,4], Euclidian norm contraction mapping 
law [4], the partial isometry law [4], and the quadratic cost law 
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[5,6]

L =φI L =φP
T

L =φVU
T

L = (P
T
QP + R)

−1
P
T
Q      (5)

where P =UΣV
T  is the singular value decomposition of P,

and J j = e j
T
Qe j +δ j u

T
Rδ j u  is the quadratic cost, with Q and 

R chosen as positive definite matrices. Combining the 
equations, one can obtain the error propagation equation [3]

e j+1 = (I − PL)e j                                      (6)

u j+1 = (I − LP)u j + L[ y *−Ax(0) − d ]

from which one can conclude that the ILC law L will produce 
convergence to zero error for all initial error histories, if and 
only if the absolute value of all eigenvalues of (I − PL)  are 

less than unity (i.e., the spectral radius less than unity).
By taking z-transforms one can produce the analogous 

equation 
E j+1(z) = [1−G (z)L(z)]E j (z)                      (7)

provided that the learning law has a Toeplitz structure or is 
approximated by such a structure. Of course, the associated 
frequency response thinking is not rigorous in the ILC 
problem, because it assumes steady state response, and ILC is 
a finite time problem that technically never reaches steady 
state in the time domain.

No matter what learning law one uses, if equation (6) shows 
that it converges to zero error, then the control action 
converges to the unique solution of the first of equations (3) 
for the control history after replacing the output history at 
repetition j, by the desired output history, y * . This solution 

involves the inverse of the matrix P. This inverse is 
guaranteed to exist analytically since P is lower triangular 
with nonzero elements on the diagonal. But it is very badly ill 
conditioned when one starts with any continuous time system 
fed by a zero order hold, when the pole excess is 3 or more 
(and the sampling is sufficiently fast), see [7-11]. These 
reference show how to eliminate this difficulty by asking for 
zero tracking error every other time step, but allowing the 
control law to update the zero order hold input to the system 
every time step. By deleting the odd numbered rows from the 
matrix P and from the error and output history vectors, one 
can convert the above control laws in (5) (except for the first 
one), and also convert the convergence condition in (6). One 
might want to double the sample rate before applying the 
method. The phenomenon relates to the fact that the 
discretization process introduces zeros, and for a pole excess 
of 3 or more, one or more of the zeros is outside the unit circle 
making the inverse of the transfer function unstable [7]. The 
worst singular value of the matrix decays proportional to the 
inverse of the magnitude of the zero outside the unit circle 
taken to the power equal to the dimension of the matrix [11]. 
One might want to call this an internal instability, but in ILC it 
is not technically an instability since the ILC problem is finite 
time and hence the control action remains finite although 

growing exponentially with time step, and alternating in sign 
each time step. The ILC can produce zero error at every time 
step, but the error between time steps is also growing 
exponentially. Hence, if the ILC really gets close to producing 
zero error for such systems, it is important to delete the rows 
as described.

III. THE BASIC CATCH 22: ROBUSTNESS VS. MODEL 

DEPENDENCE

One can find various definitions of Catch 22 on the web. 
One says: “A situation in which a person is frustrated by a set 
of circumstances that prevent any attempt to escape from 
them.” The ILC situation is perhaps not a perfect fit, but it 
does contain some apparent contradictions and frustrations. By 
the end of this paper, perhaps we do escape.

A. The Universal ILC Law

The first ILC law in (5) comes very close to be a universal 
ILC law – i.e. no matter what the system is, just turn on the 
learning law, come back in a while, and the system will have 
converged to zero tracking error. Reference [4] discusses this 
in detail. One does need to know the time delay through the 
digital system, but when the system is a continuous time 
differential equation fed by a zero order hold, the delay will be 
one step unless one is using a sample rate that is unreasonably 
slow for the system dynamics. Hence, suppose that CB is not 
zero. Then we can make the following statement: Using the
first ILC law in (5) will produce a learning control system that 
mathematically converges to zero error as the iterations 
progress, for all sufficiently small gains φ  if the sign of the 

gain is the same as that of CB. Furthermore, as the step size 
gets small, the bound on the size allowed for the gain tends to 
infinity, so the constraint on the gain to be very easy to satisfy. 

This convergence result is independent of the system 
dynamics appearing in the system matrix A. The convergence 
process in (6) works by having the first step, which is 
uncoupled from all other steps, converge first. Once it has 
converged, the next step is like a new first step, and it is 
uncoupled and will converge. The mathematics producing (6) 
is based on a linear model, but the result also applies to nearly 
all non-linear systems as well [12]. The main requirement is 
the satisfaction of a Lipschitz condition, something that one 
expects for differential equations governing control systems.

Furthermore, if you do not happen to know the sign of CB,
one can alternate the sign of φ  each iteration and each time 

step and eliminate any need for such knowledge [13].
We conclude that this learning law has extreme stability 

robustness. The law is almost model free, works on nearly all 
systems. So, experiments were performed on a robot with a 
desired maneuver that rotates all joints by 90 degrees 
simultaneously, timed so that the base joints reach the 
maximum speed allowed by the manufacturer. The RMS 
tracking error decreased by a substantial factor in the first 10 
iterations and then started to grow. By iteration 15 the 
hardware was making so much noise we were afraid of 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:12, 2011

1947

damaging the robot and stopped the iterations. Of course we 
had a mathematical proof that it would converge to zero, so 
we switched to simulation. The result was exponential 
overflow. Knowing that it must converge, we shortened the 
trajectory and succeeded in showing that the RMS error 

reached a peak of 1.1991×1051 radians at iteration 62,132, 
and then started decaying, reaching a rather satisfactory 

approximation of zero error, an RMS of 1.3145×10−48

radians, at iteration 3×105.
We conclude that this ILC law has very desirable stability 

robustness, but obtaining good learning transients is the issue. 
Waiting that many iterations might not be practical in the real 
world, the actuator limits are not modeled in the mathematics 
and one might not be able to buy actuators that can reach that 
many radians in a few second. So the approach appears 
impractical in spite of its guaranteed convergence.

B. The Use of a Model to Produce Good Learning 

Transients

The second and third ILC laws in (5), when substituted into 
the error propagation equation in (6), make the matrix in 
parenthesis symmetric and positive definite. As a result, for a 
sufficiently small gain φ , all eigenvalues are less than one in 

magnitude, and in addition all singular values can be make 
less than one in magnitude

max[σ (I − PL)]< 1

Therefore these laws produce monotonic decay of the 
Euclidean norm of the error every iteration. The maximum 
error at any time step for the robot was 9 degrees, and with 
this monotonic decay property, these laws will have the RMS 
error getting smaller from there. There is no possibility of 

going to 1051 radians on the way to zero tracking error.

C. Unusual Sensitivity to Model Error

Frequency response methods can apply rigorously to the 
sister field of repetitive control (RC) [4], but are approximate 
when applied to the finite time ILC problem. It is instructive 
to look at the repetitive control problem for indications of 
behavior. The repetitive controller can be applied to adjust the 
command to a feedback control system that is subject to a 
periodic disturbance or is executing a periodic command. 
Instead of looking at the error in the previous iteration, one 
looks at the error in the previous period. The repetitive 
controller is then the controller in a closed loop system where 
the plant is the original feedback control system whose 
performance is to be enhanced. When studying stability of 
feedback control systems it is usual to look at the phase 
margin associated with the frequency at which the Bode 
magnitude plot crosses a gain of unity. If one applies this 
thinking to the RC problem, one sees that the plot goes 
through the gain of unity around the fundamental frequency of 
the period involved, but also around every harmonic of the 
fundamental all the way to Nyquist frequency. In routine 

controller design, the phase margin indicates stability 
independent of the high frequency dynamic, provided it does 
not cross unity again. But in RC, it keeps crossing unity all the 
way to Nyquist. This indicates that the model accuracy is
important at all frequencies up to Nyquist. We are rarely 
confident of the model accuracy at very high frequency. 

Keeping the frequency transfer function version of the 
square bracket in (7) less than one in magnitude, is suggested 
in [14] as an approximate way of enforcing monotonic decay –
it creates monotonic decay of every frequency component of 
the error in that part of the trajectory that can be considered to 
be properly modeled by steady state response, i.e. after 
roughly a settling time of the system. 

In continuous time, each pole contributes 90 degrees phase 
lag as the frequency gets large. If the Nyquist frequency is 
high, one expects similar phase lag near Nyquist, although at 
Nyquist the transfer function is necessarily real, meaning 
either positive or negative, which indicates the phase must be 
a multiple of 180 degrees. One expects a larger phase lag in 
the discrete time system than in the continuous because of the 
average of one half step delay resulting from sampling. 

Physical system models are very often missing high 
frequency dynamics, sometimes called parasitic poles, and in 
some situations, called residual modes for second order 
missing terms. To satisfy the design objective in the previous 
paragraph, the L(z)  in (7) should make the product G (z)L(z)
have a positive real part, using whatever model G (z)  one has. 

If the model is missing high frequency parasitic poles or 
residual modes at high frequency, the real phase of the product 
can very easily go beyond -90 degrees. The result is at least 
bad transients, if not instability. 

Hence, we seem to need the model to fix bad transients, but 
as soon as we make use of a model, model inaccuracy is very 
likely to produce eventual instability of the ILC learning 
process [15]. 

D. Reaching Hardware Error Levels Smaller than the 

Error Level of any Feasible Model

One might ask, why do we need ILC? Can’t we just create a 
model, and use it to find the input needed to produce the 
desired output? On the robot studied in [14], we did produce a 
model and invert it. The result was a decrease in the RMS 
error by a factor of 50. This same error level was reached by a 
simple ILC law after 4 runs, which can be easier than working 
hard on a model. And when the iterations were continued the 
error level continued to decrease to a factor of 1000. Thus, the 
error level reached in hardware was much better than the error 
level of the model we were using.

We can take this thinking one step further. The ILC in [14] 
decreased the RMS tracking error of all seven joints of the 
robot by a factor of about 1000 in roughly 12 iterations. This 
is a very substantial increase in accuracy for any hardware 
system, and it is produced without modifying hardware, 
simply by adjusting the command given to the system. Of 
course the final error level reached cannot be as low as the 
reproducibility level of the hardware. When one gives the 
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same command more than once, there will be some variation 
in the actual trajectories obtained, and the learning law will 
look at the error and take corrective action as if the same error 
would occur next time if the same command were given. 
Thus, the ILC law will amplify random errors. The factor of 
1000 is therefore above this base level, when reproducibility is 
tested from minute to minute. But it is actually well below the 
reproducibility level of the hardware when measured from day 
to day. Hence, the ILC is fixing errors of the size of how 
different the robot behaves tomorrow than it behaves today. 
No one is going to be able to make a model that would predict 
such things. We don’t know what is different tomorrow. 
Maybe the sun is coming in the window. Maybe the air 
conditioner is on. Maybe the door is open and there is some 
draft. Of course, we must keep the ILC running in order to 
correct for such changes. 

The conclusion is that when using ILC we want to be able 
to reach final error levels that are better than the error level for 
any model we could produce of the system. The ability to do 
so is in fact one of the very attractive aspects of ILC, and 
accomplishing this is all based on stability robustness of the 
learning law. 

1) Summary 

Now back Catch 22 thinking:
(1) We have an ILC law that is mathematically guaranteed to 
converge to zero tracking error for almost all systems, but the 
bad learning transients make it impractical.
(2) We need to make use of a model in the ILC law in order to 
obtain well behaved, monotonic, learning transients. As long 
as the model is right, we get what we want.
(3) But, in order to have convergence of the learning process, 
the model must be accurate to within something like 90 degree 
phase error all the way to Nyquist frequency. Obtaining such 
accuracy at high frequencies is very hard, and also an unusual 
requirement in control. One might say that parasitic poles or 
residual modes are generic in the world, and they will destroy 
the convergence. 
(4) Hence, we need the model to fix the bad learning 
transients, but in the process of using the model we easily 
destroy convergence. 
(5) Furthermore, we want ILC to converge to zero error in the 
real world, not zero error in some model we come up with. So 
we want the error level to be better than the error level in the 
model we are using to design the ILC law. As the ILC 
decreases the error, it should somehow be smart enough to 
ignore what the model is saying, once the hardware error level 
is at or below the model error level. 
(6) Conclusion: robustness of the convergence process is the 
key to producing the desired ILC behavior. The learning law 
must feel like converging to zero error in spite of the model 
being wrong.

IV. ROBUSTNESS TO MODEL PARAMETER UNCERTAINTY

Knowing that robustness is fundamental in ILC, one might 
naturally look at linear robust control theory for guidance. 

Such methods have been used in ILC, see for example [16]. 
There are a number of difficulties. In so far as one relies on 
frequency response modeling, it does not rigorously apply to 
the finite time ILC problem where we insist on getting zero 
error every time step, including the transient parts of the 
trajectory at the beginning. Also, such methods want one to 
specify the form of the uncertainty in a specific structured 
way. And this can be rather confining. And finally, such 
methods are most likely ineffective at handling parasitic poles, 
i.e. singular perturbations of the model. An advantage of such 
an approach is that there is guaranteed convergence within the 
specified parameter range.

A very different approach is given in [17]. One can pick any 
desired probability distribution for each uncertain parameter. 
Then by picking random numbers from the distribution one 
constructs a substantial set of models. Then, instead of 
designing the learning law based on the nominal model as 
represented in matrix P, for the case of the quadratic cost ILC 
(the last law in (5)) one sums the associated cost given below 
(5) over this set of models, and finds one control law to 
minimize the sum. Following [18], one can do analogous 
averaging with the Euclidean norm and the partial isometry 
ILC laws in (5). Because of the nonlinear relationships, the 
ILC of the average cost is different than the ILC of the 
average system. And by averaging the cost, one obtains much 
improved stability robustness of the design. 

In [17] 200 models were generated from the uncertainty 
distributions. For the nominal model based ILC law, stable 
and monotonic convergence was obtained for 53 models, 
stable but non-monotonic convergence for 111 models, all of 
which are practically unacceptable with very large RMS 
growth, and unstable learning for the remaining 36 models. In 
contrast, the design based on the cost averaged over the 
models produced stable monotonic convergence for 186 out of 
the 200 models, stable non-monotonic convergence for 14 
models of which only 2 may be considered unacceptable, and 
there were no unstable results.  This process is surprisingly 
effective at improving the stability robustness to model 
parameter errors. The drawback is that there is no guaranteed 
convergence interval. But the approach is very easy to use, 
and handles whatever uncertainty distribution one is interested 
in, and produces a simple learning law. 

V. ROBUSTNESS TO UNMODELED HIGH FREQUENCY 

DYNAMICS

There is an effective answer to the question of how to make 
ILC convergence robust to missing parasitic poles or residual 
modes at high frequency [4,14,19]. One passes the computed 
control action for the next iteration in (4) through a zero-phase 
low-pass filter that cuts off the learning above some 
frequency. One picks this cutoff as the frequency above which 
one no longer has confidence in the model. One achieves 
stability of the learning process, but at the expense of no 
longer aiming for zero error above the cutoff frequency. There 
are some interesting issues of ill-conditioning in the effective 
cutoff achieved when one wants a cutoff too near Nyquist 
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frequency [20]. Of course, this is making use of frequency 
response thinking. In order to extend the thinking into shorter 
time trajectories, one can make the singular value cutoff as 
detailed in [21].

VI. LETTING THE REAL WORLD TAKE THE PLACE OF THE 

MATHEMATICAL MODEL

Reference [22] developed a way to mimic the Euclidean 
norm contraction mapping ILC law in (5) using reversed time 
runs between each forward time run. This was studied in the 
frequency domain in that reference, and [23] reformulates it in 
the time domain in order to have rigorous mathematical 
treatment of stability. And [23] also shows how to introduce 
compensators that improve the learning rate at higher 
frequencies where the Euclidean norm law can become slow. 
A summary of the basic process without a compensator is as 
follows. 

A. A Fully Robust Model Free ILC Algorithm with Good 

Learning Transients

(i) During iteration j, the state starts at xa, j (0) , and the 

input history is given by the column matrix u j . The resulting 

output and error histories are given by 

y
a, j

= Pu j + Ac xa, j (0) + v a

ea, j = y *−y a, j

Here v a  represents any disturbance that appears every time 

one aims to execute the desired trajectory, assumed to be the 
same for all iterations. 

 (ii) Reverse the time history of the resulting error

eb, j = I rea, j      ; I r =

0 ⋯ 0 1

0 ⋯ 1 0

⋮ ⋰ ⋮ ⋮

1 ⋯ 0 0

























(iii) Apply this reversed time error history to the system as a 
command, starting from initial condition xb, j (0) , resulting in 

the output

ec, j = Peb, j + Ac xb, j (0) + v b

Since this command is very different from commands aiming 
to produce the desired trajectory, this equation allows a 
different disturbance input v b  that is assumed to be the same 

each time one applies error signals as inputs.
(iv) The time history is again reversed in time

ed , j = I rec, j

The result is that the tracking error has been low pass filtered 
by the dynamics of the system, and the reversal of time has 
produced a phase lead (or lag) that is cancelled by the phase 
lag (or lead) produced when it next goes through the system, 
so that there is no net phase change.

(v) Finally, the control update for the next repetition or 
iteration is given by 

u j+1 = u j +φed , j

with learning gain φ .

B. Comments

The Euclidean norm contraction mapping ILC law is a 
particularly appealing law. It produces symmetric matrices 
that govern convergence, it produces zero phase, and 
convergence is monotonic in the Euclidean norm of the error 
so that the transients are well behaved. On the other hand, 
these properties only hold if the model used is accurate. The 
method of this section replaces the model in the ILC update 
gains, by the real world. So we are no longer using a model 
that could be wrong. 

The algorithm stated above does not handle the repeating 
disturbances, but one can modify it to do so [23]. A difficulty 
with the Euclidean norm ILC law is that the learning can be 
very slow at high frequencies, and [23] also has methods that 
allow the designer to introduce a compensator that speeds up 
the learning where needed. And finally, [23] shows how to 
introduce a learning cutoff if desired. Correcting high 
frequency errors far above the bandwidth of the system can 
require too large a control action to fix, making a cutoff 
desirable. Advantages and disadvantages of the method 
described here include: 

(i) Convergence is guaranteed in hardware implementation 
provided the world behaves linearly. 

(ii) There is no need to produce a system model, and no 
issue of how accurate the model would need to be, since the 
approach works with the world behavior instead of a 
mathematical description of the world behavior. 

(iii) The transients during the learning process are well 
behaved, producing monotonic decay of the Euclidean norm 
of the error from repetition to repetition. 

(iv) Gain adjustment is easy, and can be done in hardware if 
desired. All gains below approximately the reciprocal of the 
DC gain of the system, or the M-peak of the system when 
there is a resonance, are expected to produce convergence. 

(v) The ILC designer can use a compensator to adjust the 
learning rate as a function of frequency.

(vi) The algorithms has the property that one needs to make 
an extra reverse time run between each normal run. This 
suggests that one would normally apply the approach to learn 
a needed input signal and once convergence is reached, turn 
off the ILC, and simply use the command that has been 
learned for all future runs. Because of these extra reverse time 
runs it is not so convenient to keep the learning process going 
all the time in order to deal with drifts in the system behavior. 
Also, the method asks that one extend the desired trajectory to 
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deal with elimination of forcing functions in the governing 
equations, and this also suggest doing the learning and then 
turning off the ILC. 

VII. CONCLUSIONS

We started with a learning control law that has a 
mathematical guarantee of convergence to zero error for 
nearly all systems, linear or nonlinear. Unfortunately this 
guarantee is of no great use in practice, if the transients can 

reach 1051 radians error and take 105  iterations to converge.  
Introducing a model into the control law, allowed us to 

guarantee good learning transients with monotonic decay of 
the Euclidean norm of the error. But then convergence to zero 
tracking error is most likely lost if there are any parasitic poles 
left out of the model at high frequencies. (Note, in practice the 
resulting unstable ILC can actually be very useful. It is very 
common that the tracking error decreases dramatically for 
some time before there is any evidence of the instability, and 
the instability very often has very slow growth.)

Nevertheless, in the attempt to fix the learning transients, we 
were forced to use information about the system, with the 
result that we lost the guarantees of convergence -- to really 
get zero error, the model has to be rather good all the way to 
Nyquist frequency, which is unlikely in practice. 

One way to address this problem is to use a zero-phase low-
pass filter cutoff to cut off the learning above the range for 
which the model is accurate. This means that we sacrificed 
zero tracking error for good learning transients.

Finally we present a method of computing iterative learning 
control updates that does not make use of a model, and hence 
cannot be leaving out high frequency dynamics, or have 
sufficient model error to produce instability. The method 
requires that one make a reverse time run between each 
iteration to let the real world system give you information for 
the learning control update. As long as the system behavior is 
linear, this approach allows one to have good monotonic 
decay of the learning transients, with guaranteed convergence 
to zero error, and do so without the need for a model and 
hence without the danger of destabilization by model error.   

REFERENCES

[1] Z. Bien and J.-X. Xu, editors, Iterative Learning Control: Analysis, 

Design, Integration and Applications, Kluwer Academic Publishers, 
Boston, 1998.

[2] J.-X. Xu and K. L. Moore, Guest Editors, Special Issue on Iterative 
Learning Control, International Journal of Control, Vol. 73, No. 10, 
July 2000.

[3] M. Phan and R. W. Longman, “A mathematical theory of learning 
control for linear discrete multivariable systems,” Proceedings of the 

AIAA/AAS Astrodynamics Conference, Minneapolis, Minnesota, pp. 
740-746, August 1988.

[4] R. W. Longman, “Iterative learning control and repetitive control for 
engineering practice,” International Journal of Control, Special Issue on 
Iterative Learning Control, Bien and Xu, guest editors, vol. 73, no. 10, 
pp. 930-954, July 2000.

[5] D. H. Owens and N. Amann, Norm-Optimal Iterative Learning Control,
Internal Report Series of the Centre for Systems and Control 
Engineering, University of Exeter, 1994. 

[6] J. A. Frueh and M. Q. Phan, “Linear quadratic optimal learning control 
(LQL),” Proceedings of the 37th IEEE Conference on Decision and 

Control, Tampa, FL, pp. 678-683, Dec. 1998.

[7] K. Åström, P. Hagander, and J. Strenby, “Zeros of sampled systems,” 
Proceedings of the 19th IEEE Conference on Decision and Control, pp. 
1077-1081, 1980.

[8] P. A. LeVoci and R. W. Longman, "Intersample error in discrete time 
learning and repetitive control," Proceedings of the 2004 AIAA/AAS 

Astrodynamics Specialist Conference, Providence, RI, August 2004. 
[9] R. W. Longman, P. A. LeVoci, and T. Kwon, “Making the impossible 

possible in iterative learning control,” Proceedings of the Thirteenth 

Yale Workshop on Adaptive and Learning Systems, Center for System 
Science, Yale University, New Haven, CT, pp. 99-106, May-June 2005.

[10] R. W. Longman, T. Kwon, and P. A. LeVoci, “Making the learning 
control problem well posed – stabilizing intersample error,” Advances in 

the Astronautical Sciences, vol. 123, pp. 1143-1162, 2006.
[11] Y. Li and R. W. Longman, “Addressing problems of instability in 

intersample error in iterative learning control,” Advances in the 

Astronautical Sciences, vol. 129, pp. 1571-1591, 2008.
[12] R. W. Longman, C.-K. Chang, and M. Phan, “Discrete time learning 

control in nonlinear systems,” A Collection of Technical Papers, 1992 

AIAA/AAS Astrodynamics Specialist Conference, Hilton Head, South 
Carolina, pp. 501-511, August 1992.

[13] R. W. Longman and Y.-C. Huang, “Analysis and frequency response of 
the alternating sign learning and repetitive control laws," Journal of the 

Chinese Society of Mechanical Engineers, vol. 21, no. 1, pp. 107-118, 
2000.

[14] H. Elci, R. W. Longman, M. Phan, J.-N. Juang, and R. Ugoletti, 
"Discrete frequency based learning control for precision motion 
control," Proceedings of the 1994 IEEE International Conference on 

Systems, Man, and Cybernetics, San Antonio, TX, pp. 2767-2773, Oct. 
1994.

[15] R. W. Longman and Y.-C. Huang, "The phenomenon of apparent 
convergence followed by divergence in learning and repetitive control," 
Intelligent Automation and Soft Computing, Special Issue on Learning 
and Repetitive Control, Guest Editor: H. S. M. Beigi, vol. 8, no. 2, pp. 
107-128, 2002.

[16] N. Amman, D. H. Owens, W. Rogers, and A. Wahl, “An H-infinity
approach to linear iterative learning control design,” International 

Journal of Adaptive Control and Signal Processing, vol. 10,  pp. 767-
681, 1996.

[17] K. Takanishi, M. Q. Phan, and R. W. Longman, "Multiple-model 
probabilistic design of robust iterative learning controllers," 
Transactions of the North American Manufacturing Research 

Institution, Society of Manufacturing Engineers, vol. 33, pp. 533-540, 
May 2005.

[18] R. W. Longman and K. D. Mombaur, “Implementing linear iterative 
learning control laws in nonlinear systems,” Advances in the 

Astronautical Sciences, to appear.
[19] H. Elci, M. Phan, R. W. Longman, J.-N. Juang, and R. Ugoletti, 

“Experiments in the use of learning control for maximum precision 
robot trajectory tracking,” Proceedings of the 1994 Conference on

Information Sciences and Systems, Princeton, NJ, pp. 951-958, March 
1994.

[20] R. W. Longman and W. Kang, “Issues in robustification of iterative 
learning control using a zero-phase filter cutoff,” Advances in the 

Astronautical Sciences, vol. 127, pp. 1683-1702, 2007.
[21] K. Chen and R. W. Longman, "Creating short time equivalents of 

frequency cutoff for robustness in learning control," Advances in the 

Astronautical Sciences, vol. 114, pp. 95-114, 2003.
[22] Y. Ye and D. Wang, “Zero phase learning control using reversed time 

input runs,” ASME Journal of Dynamic Systems, Measurement, and 

Control, vol. 127, pp. 133-139, March 2005. 
[23] R. W. Longman, T. Kwon, D. Wang, and Y. Ye, “Practical, model-free, 

completely robust learning control using reversed time input runs,” 
Proceedings of the 2006 AIAA/AAS Astrodynamics Specialist 

Conference, Keystone, CO, Aug. 2006.


