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Abstract—The inverted pendulum system is a classic control 

problem that is used in universities around the world. It is a suitable 
process to test prototype controllers due to its high non-linearities and 
lack of stability. The inverted pendulum represents a challenging 
control problem, which continually moves toward an uncontrolled 
state. This paper presents the possibility of balancing an inverted 
pendulum system using sliding mode control (SMC). The goal is to 
determine which control strategy delivers better performance with 
respect to pendulum’s angle and cart's position. Therefore, 
proportional-integral-derivative (PID) is used for comparison. Results 
have proven SMC control produced better response compared to PID 
control in both normal and noisy systems. 

 
Keywords—Inverted pendulum (IP) proportional-integral-

derivative (PID), sliding mode control (SMC). 

I. INTRODUCTION 

N inverted pendulum is a pendulum which has its mass 
above its pivot point. It is often implemented with the 

pivot point mounted on a cart that can move horizontally and 
may be called a cart and pole. Whereas a normal pendulum is 
stable when hanging downwards, an inverted pendulum is a 
pendulum which has its mass above pivot point mounted on a 
cart that can move horizontally and may be called a cart and 
pole. Whereas a normal pendulum is stable when hanging 
downwards, an inverted pendulum is inherently unstable, and 
must be actively balanced in order to remain upright, either by 
applying a torque at the pivot point or by moving the pivot 
point horizontally as part of a feedback system. The inverted 
pendulum is a classic problem in dynamics and control theory 
and widely used as benchmark for testing control algorithms 
(PID controllers, neural networks, fuzzy control, genetic 
algorithms, etc.). Variations on this problem include multiple 
links, allowing the motion of the cart to be commanded while 
maintaining the pendulum, and balancing the cart-pendulum 
system on a see-saw. The inverted pendulum is related to 
rocket or missile guidance, where thrust is actuated at the 
bottom of a tall vehicle. The understanding of a similar 
problem is built in the technology of segway, a self-balancing 
transportation device. The largest implemented use is on huge 
lifting cranes on shipyards. When moving the shipping 
containers back and forth, the cranes move the box 
accordingly so that it never swings or sways [1]. This research 
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presents a simulation study of a sliding mode control to keep 
the balance of the inverted pendulum system. 

II. PROPOSED SYSTEM 

The system consists of an inverted pole with mass, m, 

hinged by an angle   from vertical axis on a cart with mass, 
M, which is free to move in the x direction as shown in Fig. 1. 
A force, F is required to push the cart horizontally. The 
dynamical equations of the system will be derived. The 
inverted pendulum system that will be used in this thesis have 
the following specifications given in Table I [2]. 

 
TABLE I 

SYSTEM PARAMETERS 

parameter Values 

M 0.5 kg 

m 0.2 kg 

b 0.1 N/m/sec 

L 0.3 m 

I 0.006 kg.m2 

g 9.8 m/s2 

 

 

Fig. 1 The inverted pendulum force analysis 
 

The following equation represents the equation of motion. 
The velocity has two components, one due to the motion of 
the cart ( X ) and the other due to the angular motion of 
pendulum. 
 The horizontal position: sinLX   

 The vertical position: cosL  
The total kinetic energy is: 
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The potential energy is: 

 

cos0 mgLVV      (3)  
 

0V  is the potential energy for  = 90. The Lagrange function: 
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For X equation: 
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For   equation:  
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The equations related to X: 
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The Linearized of equations: cos() = -1, sin() = 0, and 
02)^/)(( dtd  . To obtain the transfer function of the 

linearized system equations analytically, we must first take the 
Laplace transform of the system.  
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where U is the input.  

Since we will be looking at the angle ø as the output of 
interest, and solving (17) for X(s): 
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Then, substituting into (18): 
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 The transfer function of this system for the pendulum’s 

angle is:  
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The transfer function of this system for the pendulum’s 

position is: 
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where:  
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The linearized system equations can also be represented in 
state-space form. The four states represent the position, 
velocity of the cart, the angle, and angular velocity of the 
pendulum. The output y(t) contains both the position of the 
cart and the angle of the pendulum we will assume that we can 
only measure the angle of the pendulum, and this is the output 
we want to regulate.  

State space in general form is: 
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From (3), (6), and from the linearization: 
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From (26), (27): 
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III. SLIDING MODE CONTROL (SMC) 

The way SMC deals with uncertainty is to drive the plants 
state trajectory into a sliding surface and maintain the error 
trajectory on this surface for all subsequent times. The 
advantage of SMC is that the controlled system becomes 
insensitive to system disturbances [4]. The sliding surface is 
defined such that the state tracking error converges to zero 
with input reference. The idea of sliding to stable manifold 
(reaching phase), then slide to equilibrium (sliding phase). 
Consider a second order system: 
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Assumptions: 
 )(Xf  and )(Xg  are nonlinear functions. )(Xg  > 0. 

 )(Xf  and )(Xg  need not to be continuous. 

We want to design a state feed back to stabilize the origin, 
the motion satisfies the differential equation. 
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Define coordinate with respect to the stable manifold. 
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is stable if S  = 0. 

The time derivative of S is: 
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To evaluate stability, evaluate the Lyapunov candidate. 
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v  is negative definite if: 
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Stability is insured if: 
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By using the control law, and chatter may be reduced by 

replacing the signum function with a sigmoid (smooth) 
function. This essentially creates a boundary layer around the 
sliding surface. In this case, the control law is [5]: 
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From state space equations: 
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Identifying )(Xf and )(Xg . 
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and K is chosen to: 
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IV. RESULTS 

The mathematical model in the open loop system and 
equations using the transfer function and state-space of the 
inverted pendulum have been determined. All these equations 
were implemented using Matlab M-file code. From Fig. 2, it 
can be noticed that the inverted pendulum system is not stable 

without a controller. The curves of the pendulum’s angle and 
cart’s position were approached infinity as the time increases. 
Therefore, some controllers need to be designed in order to 
stabilize the system, as shown in Figs. 2 (a) and (b), 
respectively.  
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Fig. 2 Open loop Inverted Pendulum Response (a) Pendulum's Angle 
(b) Cart's Position 

A. PID Controller Results 

The implementation of PID control method is done by 
adjusting the value of gain Kp, Ki and Kd in order to get the 
best impulse response of the system [2]. 

Using suitable values of gains Kp =240, Ki =378, Kd =38, 
the pendulum’s angle is satisfactorily achieved as shown in 
Fig. 3. From Fig. 4, it can be seen that the cart moves in the 
negative direction with a constant velocity. Thus, although the 
PID controller stabilizes the angle of the pendulum, this 
control method would not be feasible to be implemented on an 
actual physical system that was presented of cart's angle and 
pendulum's position as the outputs of the system [3]. 

 

 

Fig. 3 Response for Pendulum 's angle of PID 
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Fig. 4 Response for cart's position of PID 

B. SMC Results 

The results as follows: Recall that the control objective is to 
keep the pendulum in its upright position and the cart in the 
specified position. Using the state space and the controller of 
sliding mode control for the position and angle were achieved, 
as can be seen from Figs. 5 and 6.  

 

 

Fig. 5 Response for Pendulum's Angle of SMC 
 

 

Fig. 6 Response for cart's Position of SMC 

V. RESULTS ANALYSIS 

A. Pendulum's Angle 

All the characteristics values of the responses are 
summarized in Table II.  

 
TABLE II 

COMPARISON OF OUTPUT RESPONSE OF PENDULUM’S ANGLE 

Characteristic  
Controller  

PID  SMC  

Rising Time (tr) Sec 0.2 0.05 

Peak Time (tp) Sec 0.43 0.2 

Settling Time (ts) Sec 1.44 0.3 

Over Shoot Percentage (%OS) 2.65 0.9 

 
Based on Table II, the sliding mode control has settling time 

of 0.3 seconds while the PID controller has a larger settling 

time of 1.44 seconds. However, for the maximum overshoot 
range, sliding mode control has a better range of 0.9. 
Therefore, while the PID controller has a larger overshoot 
percentage of 2.65, the sliding mode control (since) has 
outperformed the PID satisfying the design criteria needed for 
pendulum angle. From both controllers’ characteristics, it can 
be said that the sliding mode control controller has the ability 
to response quickly compared to the PID controller, as shown 
in Fig. 7. 
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Fig. 7 Comparison for both controllers of cart’s angle 

B. Pendulum's Position 

All responses of cart's position are illustrated in Table III. In 
Table III, it can be clearly seen the difference of the 
characteristics between responses. The sliding mode control 
has a smaller value of settling time, (Ts) of 0.55, seconds, 
while PID controller has a larger value of settling time, (Ts) of 
11.1 seconds. SMC has also a smaller rising time (Tr) of 0.4 
seconds. For the overshoot percentage (%OS), sliding mode 
control has also a smaller overshoot. Therefore, it can be said 
that the SMC controller has the ability to response quickly 
compared to the PID controller, as shown in Fig. 8. 

 
TABLE III 

COMPARISON OF OUTPUT RESPONSE OF CART’S POSITION 

Characteristic  
Controller  

PID  SMC  

Rising Time (tr) Sec 10 0.4 

Peak Time (tp) Sec 9.61 0.18 

Settling Time (ts) Sec 11.1 0.55 

Over Shoot Percentage (%OS) 0.52 0.05 
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Fig. 8 Comparison of output response of cart’s position 
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VI. ADDING NOISE TO THE SYSTEM FOR BOTH CONTROLLERS 

All previous simulations are assuming no disturbance and 
no measurement noise. 

 

 

Fig. 9 Simulation system with noise 
 

The disturbance was added to the input system, as shown in 
Fig. 9. Gaussian noise was introduced to the system with zero 
mean and standard deviation 1.5. The noise added to the angle 
is Gaussian, = 0 and  =1.5 rad, and the results of PID and 
SMC are shown in Figs. 10 and 11, respectively. 

 

 

Fig. 10 Angle simulation results with/ without noise of PID 
 
 
 

  

Fig. 11 Angle simulation results with/without noise of SMC 
 

From Figs. 10 and 11, the noise is added to the angle, with a 
Gaussian noise, the sliding mode control is not affected with 
noise. However, the system with PID controller, the noise has 
moved the system from stable operation to unstable. 

As shown in Figs. 12 and 13, the noise added is Gaussian, 
= 0,  =1.5 m. When using Gaussian noise, the sliding mode 
control is not affected with noise. However, the system with 
PID controller, the noise has moved the system from stable 
operation to unstable. 

 

 

Fig. 12 Position simulation results with/without noise of PID 
 

 

Fig. 13 Position simulation results with /without noise of SMC 

VII. CONCLUSIONS  

 From the early results and analysis, it can be concluded that 
the PID conventional controller is capable of controlling the 
inverted pendulum's angle and the cart's position. The Sliding 
mode control for inverted pendulum system has shown a better 
response. SMC results have also proven to be a powerful 
research tool that can reduce time, and noise compared with 
the performance of the PID controller because the SMC strives 
the system being driven towards the sliding surface, and drives 
a close loop system to a stable state. The control input will 
rapidly switch for system states close to the surface.  

In SMC, it is not possible to bring the trajectory on 
switching surface in one step, we try to move our trajectory 
slowly in k steps. Therefore, as a future work, K can be tuned 
by genetic algorithm to remove any chattering. In addition, 
fuzzy- genetic control can also be taken into account as further 
work for controlling the inverted pendulum system.  
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