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Abstract—In this paper, the existence and uniqueness of positive
solutions for nonlinear fractional differential equation boundary value
problem is concerned by a fixed point theorem of a sum operator.
Our results can not only guarantee the existence and uniqueness of
positive solution, but also be applied to construct an iterative scheme
for approximating it. Finally, the example is given to illustrate the
main result.

I. INTRODUCTION

FRACTIONAL differential equations are used
in various fields, such as mechanics, physics, chemistry,

engineering, economics and biological sciences, etc.; see
[1− 9] and the references therein. In recent years, there are
many papers discuss the existence and multiplicity of
positive solutions for nonlinear fractional differential
equation boundary value problem by the use of
Leray-Shauder theory, fixed-point theorems, etc., see
[10− 14]. However, there are few papers consider the
existence of a unique positive solution for nonlinear
fractional differential equation boundary value problem, see
[15, 16].

In particular, by means of mixed monotone method, Xu,
Jiang and Yuan [16] obtained the uniqueness of solution to
the singular boundary value problem for fractional
differential equation{

Dα
0+u(t) = f(t, u(t)), 0 < t < 1, 3 < α ≤ 4,

u(0) = u(1) = u′(0) = u′(1) = 0.
(1)

They need

f(t, u) = q(t)[ϕ(u) + ψ(u)], ϕ : [0,+∞) → [0,+∞)

is continuous and nondecreasing, ψ : (0,+∞) → (0,+∞) is
continuous and nondecreasing and q ∈ C((0, 1), (0,+∞))
satisfies∫ 1

0
s2−η(2−α)(1− s)α−2−2ηq(s)ds < +∞, η ∈ (0, 1).

Naturally, when f(t, u) can not be denoted by
f(t, u) = q(t)[ϕ(u) + ψ(u)], how to consider the unique
positive solution of it? In this paper, by means of a fixed
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point theorem for a sum operator, we obtain the existence
and uniqueness of positive solution to the nonsingular
boundary value problem for fractional differential equation
(1) with the assumptionf(t, u) = g(t, u) + h(t, u). Moreover,
we can construct an iterative scheme to approximate the
unique solution, which is important for evaluation and
application.

II. PRELIMINARIES AND PREVIOUS RESULTS

In this section, we present some definitions, lemmas and
basic results that will be used in the proof of our main result.
Definition 1 [3] The integral

Iα0+f(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt, x > 0

is called the Riemann-Liouville fractional integral of order
α, where α > 0 and Γ(α) denotes the gamma function.
Definition 2 [3] For a function f(x) given in the interval
[0,∞), the expression

Dα
0+f(x) =

1

Γ(n− α)
(
d

dx
)n

∫ x

0

f(t)

(x− t)α−n+1
dt,

is called the Riemann-Liouville fractional derivative of order
α, where n = [α] + 1, [α] denotes the integer part of number
α.
Lemma 1 [16] Given y ∈ C[0, 1] and 3 < α ≤ 4, the unique
solution of the fractional differential equation{

Dα
0+u(t) = y(t), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0.
(2)

is

u(t) =

∫ 1

0

G(t, s)y(s)ds, t ∈ [0, 1]

where

G(t, s) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t−s)α−1+(1−s)α−2tα−2[(s−t)+(α−2)(1−t)s]
Γ(α) ,

0 ≤ s ≤ t ≤ 1,
tα−2(1−s)α−2[(s−t)+(α−2)(1−t)s]

Γ(α) ,

0 ≤ t ≤ s ≤ 1.

(3)

Here G(t, s) is called the Green function of the fractional
differential equation (2).
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Lemma 2 [16] The Green function G(t, s) defined by (3) has
the following property:

α−2
Γ(α) (1− s)α−2s2tα−2(1− t)2 ≤ G(t, s)

≤ 1
Γ(α)M0t

α−2(1− t)2
(4)

for t, s ∈ (0, 1). where M0 = max{α− 1, (α− 2)2}.
In the sequel, we present some basic concepts in ordered

Banach spaces for completeness and a fixed point theorem
which will be used later.

Suppose (E, || · ||) is a real Banach space which is partially
ordered by a cone P ⊂ E, i.e. x ≤ y if and only if y−x ∈ P .
If x ≤ y and x �= y, then we denote x < y. We denote the zero
element of E by θ. Recall that a non-empty closed convex set
P ⊂ E is a cone if it satisfies (i)x ∈ P, λ ≥ 0 ⇒ λx ∈ P ;
(ii)x ∈ P,−x ∈ P ⇒ x = θ.

Putting P 0 = {x ∈ P |x is an interior point of P}, a
cone P is said to be solid if P 0 is non-empty. Moreover, P is
called normal if there exists a constant N > 0 such that, for
all x, y ∈ E, θ ≤ x ≤ y implies ||x|| ≤ N ||y||; in this case N
is called the normality constant of P . We say that an operator
A : E → E is increasing if x ≤ y implies Ax ≤ Ay.

For all x, y ∈ E, the notation x ∼ y means that there exist
λ > 0 and μ > 0 such that λx ≤ y ≤ μx. Clearly ∼ is an
equivalence relation. Given w > θ (i.e. w ≥ θ and w �= θ),
we denote the set Pw = {x ∈ E|x ∼ w} by Pw. It is easy to
see that Pw ⊂ P for w ∈ P .
Theorem 1 [17] Let P be a normal cone in a real Banach
space E, A : P → P be an increasing γ-concave operator
and B : P → P be an increasing sub-homogeneous operator.
Assume that
(i) there is w > θ such that Aw ∈ Pw and Bw ∈ Pw;
(ii) there exists a constant δ0 > 0 such that Ax ≥ δ0Bx, ∀x ∈
P.
Then operator equation Ax + Bx = x has a unique solution
x∗ in Pw. Moreover, constructing successively the sequence
yn = Ayn−1 +Byn−1, n = 1, 2, · · · for any initial value y0 ∈
Pw, we have yn → x∗ as n→ ∞.

III. MAIN RESULTS

In this section, we apply Theorem 1 to investigate the
fractional differential equation (1) with the
assumptionf(t, u) = g(t, u) + h(t, u), and we obtain the new
result on the existence and uniqueness of positive solution.

In this paper, we will work in the Banach space
C[0, 1] = {x : [0, 1] → R is continuous} with the standard
norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Notice that this space
can be endowed with a partial order given by
x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [0, 1].

Let P = {x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]} be the standard
cone. Evidently, P is a normal cone in C[0, 1] and the
normality constant is 1.
Theorem 2 Assume that
(H1) g, h : [0, 1] × [0,∞) → [0,∞) are continuous and
increasing with respect to the second argument, h(t, 0) �≡ 0;
(H2) there exists a constant γ ∈ (0, 1) such that
g(t, λx) ≥ λγg(t, x), ∀t ∈ [0, 1], λ ∈ (0, 1), x ∈ [0,∞), and
h(t, μx) ≥ μh(t, x) for μ ∈ (0, 1), t ∈ [0, 1], x ∈ [0,∞);

(H3) there exists a constant δ0 > 0 such that
g(t, x) ≥ δ0h(t, x), t ∈ [0, 1], x ≥ 0. Then the fractional
differential equation (1) has a unique positive solution u∗ in
Pw, where w(t) = tα−2(1− t)2, t ∈ [0, 1]. Moreover, for any
initial value u0 ∈ Pw, constructing successively the iterative
scheme

un+1(t) =

∫ 1

0

G(t, s)f(s, un(s))ds, n = 0, 1, 2, · · · ,

we have un(t) → u∗(t) as n→ ∞, where G(t, s) is given as
(3).
Proof: To begin with, from Lemma 1, the fractional
differential equation (1) has an integral formulation given by

u(t) =
∫ 1

0
G(t, s)f(s, u(s))ds

=
∫ 1

0
G(t, s)[g(s, u(s)) + h(s, u(s))]ds

where G(t, s) is given as in Lemma 1.
Define two operators A : P → E and B : P → E by

Au(t) =
∫ 1

0
G(t, s)g(s, u(s))ds,

Bu(t) =
∫ 1

0
G(t, s)h(s, u(s))ds.

It is easy to prove that u is the solution of the fractional
differential equation (1) if and only if u = Au + Bu. By
assumption (H1) and Lemma 2, we know that A : P → P
and B : P → P . In the sequel we check that A, B satisfy all
assumptions of Theorem 1.

Firstly, we prove that are two increasing operators.
In fact, from assumption (H1) and Lemma 2, for u, v ∈ P

with u ≥ v, we know that u(t) ≥ v(t), t ∈ [0, 1] and obtain

Au(t) =
∫ 1

0
G(t, s)g(s, u(s))ds

≥ ∫ 1

0
G(t, s)g(s, v(s))ds

= Av(t)

That is Au ≥ Av. Similarly, Bu ≥ Bv.
Next we show that A is a γ-concave operator and B is a

sub-homogeneous operator.
In fact, for any λ ∈ (0, 1) and u ∈ P , from (H2) we know

that
A(λu)(t) =

∫ 1

0
G(t, s)g(s, λu(s))ds

≥ λγ
∫ 1

0
G(t, s)g(s, u(s))ds

= λγAu(t)

That is, A(λu) ≥ λγAu for λ ∈ (0, 1), u ∈ P . So the operator
A is a γ-concave operator. Also, for any μ ∈ (0, 1) and μ ∈ P ,
by (H2) we obtain

B(μu)(t) =
∫ 1

0
G(t, s)h(s, μu(s))ds

≥ μ
∫ 1

0
G(t, s)h(s, u(s))ds

= μBu(t)

That is, B(μu) ≥ μBAu for μ ∈ (0, 1), u ∈ P .So the operator
B is a sub-homogeneous operator.

Now we show that Aw ∈ Pw and Bw ∈ Pw, where w(t) =
tα−2(1− t)2.

By (H1) and Lemma 2,
α−2
Γ(α)w(t)

∫ 1

0
s2(1− s)α−2g(s, 0)ds ≤ Aw(t)

=
∫ 1

0
G(t, s)g(s, w(s))ds

≤ 1
Γ(α)w(t)

∫ 1

0
M0g(s, 1)ds
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From (H1) and (H3), we have

g(s, 1) ≥ g(s, 0) ≥ δ0h(s, 0) ≥ 0

Since h(t, 0) �≡ 0, we can get∫ 1

0

g(s, 1)ds ≥
∫ 1

0

g(s, 0)ds ≥ δ0

∫ 1

0

h(s, 0)ds > 0,

and in consequence,

l1 := α−2
Γ(α)

∫ 1

0
s2(1− s)α−2g(s, 0)ds > 0,

l2 := 1
Γ(α)

∫ 1

0
M0g(s, 1)ds > 0.

So l1w(t) ≤ Aw(t) ≤ l2w(t), t ∈ [0, 1]; and hence we have
Aw ∈ Pw.Similarly,

α−2
Γ(α)w(t)

∫ 1

0
s2(1− s)α−2h(s, 0)ds ≤ Bw(t)

≤ 1
Γ(α)w(t)

∫ 1

0
M0h(s, 1)ds

from h(t, 0) �≡ 0, we easily prove Bw ∈ Pw.Hence the
condition (i) of Theorem 1 is satisfied.

In the following we show that the condition (ii) of
Theorem 1 is satisfied.

For u ∈ P , by (H3),

Au(t) =
∫ 1

0
G(t, s)g(s, u(s))ds

≥ δ0
∫ 1

0
G(t, s)h(s, u(s))ds

= δ0Bu(t)

Then we get Au ≥ δ0Bu, u ∈ P .
Finally, by means of Theorem 1, the operator equation Au+

Bu = u has a unique positive solution u∗ in Pw. Moreover,
constructing successively the iterative scheme

un = Aun−1 +Bun−1, n = 1, 2, · · ·
for any initial value u0 ∈ Pw, we have un → u∗ as n →
∞.That is, the fractional differential equation (1) has a unique
positive solution u∗ in Pw. For any initial value u0 ∈ Pw,
constructing successively the iterative scheme

un+1(t) =

∫ 1

0

G(t, s)f(s, un(s))ds, n = 0, 1, 2, · · · ,

we have un → u∗ as n→ ∞.
Corollary 1 When f(t, u) = q(t)[ϕ(u) + ψ(u)] satisfy the
conditions of theorem 2, the nonsingular boundary value
problem for fractional differential equation (1) has a unique
positive solution u∗ in Pw, where
w(t) = tα−2(1 − t)2, t ∈ [0, 1]. Moreover, for any initial
value u0 ∈ Pw, constructing successively the iterative
scheme

un+1(t) =

∫ 1

0

G(t, s)f(s, un(s)ds, n = 0, 1, 2, · · · ,

we have un(t) → u∗(t) as n → ∞,where G(t, s) is given as
(3).
Remark 1 By Theorem 2, Corollary 1 is obvious. Moreover,
the unique positive solution u∗ we obtain satisfies:
(i) there exist λ > μ > 0 such thatμtα−2(1 − t)2 ≤ u∗ ≤
λtα−2(1− t)2, t ∈ [0, 1],
(ii) we can take any initial value in Pw and then construct an
iterative scheme which can approximate the unique solution.

IV. EXAMPLE

We present one example to illustrate Theorem 2.
Example 1 Consider the following fractional differential
equation:{

D
10
3
0+u(t) = u

1
5 (t) + arctanu(t) + t3 + t2 + π

2 ,
u(0) = u(1) = u′(0) = u′(1) = 0.

(5)

In this example, we have α = 10
3 . Let

g(t, u) = u
1
5 (t) + t2 + π

2 ,
h(t, u) = arctanu(t) + t3,
γ = 1

5 .

Obviously, g, h : [0, 1]× [0,∞) → [0,∞) are continuous and
increasing with respect to the second argument, h(t, 0) = t3 �≡
0.Besides, for t ∈ [0, 1], λ ∈ (0, 1), x ∈ [0,∞), we have

g(t, λu) = λ
1
5u

1
5 (t) + t2 + π

2

≥ λ
1
5u

1
5 (t) + λ

1
5 (t2 + π

2 )

= λ
1
5 (u

1
5 (t) + t2 + π

2 )
= λγg(t, u)

and for t ∈ [0, 1], μ ∈ (0, 1), x ∈ [0,∞), we have
arctan(μu) ≥ μ arctanu, and thus h(t, μu) ≥ μh(t, u).
Moreover, if we take δ0 ∈ (0, 1], then we obtain

g(t, u) = u
1
5 (t) + t2 + π

2≥ t2 + π
2≥ t3 + arctanu

≥ δ0(t
3 + arctanu)

= δ0h(t, u)

Hence all the conditions of Theorem 2 are satisfied. An
application of Theorem 2 implies that the fractional
differential equation (5) has a unique positive solution in Pw,
wherew(t) = t

4
3 (1− t)2, t ∈ [0, 1].

Remark 2 The nonlinearity f in example 1 can not be
denoted by f(t, u) = q(t)[ϕ(u) + ψ(u)], so the positive
solution of example 1 can not been obtained by virtue of
[16].Theorem 2 generalizes the results in [16].
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