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The Effects of Various Boundary Conditions on
Thermal Buckling of Functionally Graded Beam
with Piezoelectric Layers Based on Third order
Shear Deformation Theory

O. Miraliyari

Abstract—This article attempts to analyze functionally graded
beam thermal buckling along with piezoelectric layers applying based
on the third order shearing deformation theory considering various
boundary conditions. The beam properties are assumed to vary
continuously from the lower surface to the upper surface of the beam.
The equilibrium equations are derived using the total potential energy
equations, Euler equations, piezoelectric material constitutive
equations and third order shear deformation theory assumptions. In
order to fulfill such an aim, at first functionally graded beam with
piezoelectric layers applying the third order shearing deformation
theory along with clamped -clamped boundary conditions are
thoroughly analyzed, and then following making sure of the
correctness of all the equations, the very same beam is analyzed with
piezoelectric layers through simply-simply and simply-clamped
boundary conditions. In this article buckling critical temperature for
functionally graded beam is derived in two different ways, without
piezoelectric layer and with piezoelectric layer and the results are
compared together. Finally, all the conclusions obtained will be
compared and contrasted with the same samples in the same and
distinguished conditions through tables and charts. It would be
noteworthy that in this article, the software MAPLE has been applied
in order to do the numeral calculations.

Keywords—Thermal Buckling, Functionally Graded Beam,
Piezoelectric Layer, Various Boundary Conditions

1. INTRODUCTION

TILIZING piezoelectric materials, which would deform

mechanically and vice-versa when being impacted by

electric circuits, is supposed as one efficient way in order
to achieve the aims mentioned above. Bonding or embedding
of many pieces of such materials would make it easier in order
to sense their strain and then monitor them. Considering their
small dimensions, it could be possible to apply them in
different pieces without altering a remarkable amount of their
germs [1].

Piezoelectric materials are abundantly applied in various
transducers such as, pressure transducers, strain gauges and
accelerometers. In addition, it could be mentioned that such
materials could be utilized in turbo-machines mechanical
pieces [2] and also vibration control of simple machines in an
experimental way [3].
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Tiersten [4] was the first one who reached to the equations
monitoring vibration of piezoelectric sheets; he also managed
to survey electro-mechanic basics. Furthermore, Tzou [5] also
succeeded in obtaining equations monitoring a consistent
piezoelectric condition through energy ways in curvilinear
coordinates and solving several of them by engineering
theories.

Reddy [6] is another one who could obtain the equations
monitoring piezoelectric sheets applying different theories like
classic theory, first and third order shearing theory. Saravanos
[71 and his partners managed to obtain the equations
monitoring compound sheets with piezoelectric layers through
layer wise theory and solve them as well and in addition, they
attempted to compare their founding with analytic solutions.
Brooks and Heyliger [8] made an effort to solve monitoring
equations on piezoelectric sheets analytically in cylindrical
bending condition; all the results claim that in short distance
with thin layers the existence of a consistent electric circuit or
linear change within it would be utterly logical and match the
experimental conclusions as well.

In order to test such solutions, it would be claimed that the
best way could be obtaining and then solving equations in
their certain conditions with analytical solutions. As it was
mentioned earlier, in this article the buckling critical
temperature of functionally graded beams would be obtained
through various boundary conditions in two different ways,
without piezoelectric layer and also with layers, and according
to the third order shearing theory in various boundary
conditions.

I1. PIEZOELECTRIC CONSTITUTIVE MATERIALS EQUATIONS

Since piezoelectric materials treat as capacitors do when
being polarized in order to obtain their constitutive equations,
one should define the equations concerning dielectric
materials and the capacitor. Capacity in dielectric materials
would be defined as the following:

o cfoér[éj :f[éj (1)

In such a relation, §0 stands for dielectric capacitors

constancy, ¢&

. stands for dielectric constancy, ¢ stands for
total dielectric constancy, A stands for area of capacitor
surfaces and C stands for capacity. On the other hand, electric
charge for a flat capacitor would be obtained as the following:

o=Cv )
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Then C replacement would be done:
0=y G)

In the relationships above, Q stands for electric charge on

sheets of the capacitor, V' stands for the voltage on two sides
of the capacitor, D stands for the amount of electric
translation which would be obtained as the following:

Y
D== 4
A @
Finally, the total amount of D would be obtained as the

following:

p=£~ )
t

Thus, the electric field as the following:

=L (©)

t

Finally, obtained equations as the following:
D=¢E (M

The equation above is true for all isotropic dielectrics, but
piezoelectric materials would remain as isotropic unless they
are polarized; afterward, they turn into orthotropic. In such
materials, electric field and electric translation would be
defined through three elements. In other words the general
equation for electric translation would be as the following:
D;=¢, E; ®)

Except&)y, &y, 433 all & for piezoelectric materials would

be zero. Now, direct and reverse feature of piezoelectric
materials mentioned earlier let us define piezoelectric quotient
as the following in which explains tension and strain
relationship with the imposed field and also electric
replacement.

Direct impact position: in this way, applying force produces
electric field. As observed in Hook's low is applied in order to
relate mechanical displacement and mechanical stress, shown
as o =FE¢ in which E stands for elasticity modulus for a
certain substance. It could be possible even to think of a
relation for piezoelectric substances which defines the relation
between mechanical stress and electric displacement as the
following.

D;=d;o; )

In which D; stands for electric displacement, o ; mechanical
stress and d;; piezoelectric modulus.

Reverse impact position: in this way, applying voltage
produces strain or mechanical displacement. In such a
position, we'd better apply a kind of relation which defines the
relation between strain and the applied electric field on
piezoelectric substances as the following,

&i=d ij Eej (10)

In which & stands for strain, E, electric field and dy

piezoelectric modulus in reverse position.

SjEg=d;o; (1D
Now, in order to obtain structural relations defining

relations between stress and strain and also between electric

field and electric displacement, all D, values are to be added.

Furthermore, the equations would be summed up,
D" =do +EE, (12)
Also, mechanical and electric deformation would be added:

er =%o-+dEe (13)

As it seems relationships concerning piezoelectric materials
consists of two parts which one of them is electric charge
equations defining the relationship among electric translation,
mechanic stress and electric field and the other one defines the
relationship among mechanic deformation, mechanic stress
and electric field.

III. FUNCTIONALLY GRADED BEAM

The material properties are assumed to be graded through
the thickness direction. The constituent materials are assumed
to be ceramic and metal. The volume fractions of the ceramic

V. and metal V,, corresponding to the power law are expressed

as:
VL,=[2”hjk, v, =1-V, (14)
2h
Here, subscripts m and ¢ are the metal and ceramic

constituents, respectively, z is the thickness coordinate

(-h/2 <z < h/2), and k is the power law index that takes values
greater than or equal to zero. The variation of the composition
of ceramic and metal is linear for k£ =1. The value of k equal to
zero represents a fully ceramic beam. The properties of
functionally graded beam are determined from the volume
fraction of the material constituents. The Young's modulus, E,
and coefficient of thermal expansion, o, are assumed to
change in the thickness direction.

E(z)=EJV.+E,V, (15)
p(2)=pVe+ PV

The Poisson' ratio, v, is assumed to be constant across the
plate thickness. Substituting Eq. (1) into (2), the material
properties of the FG plate are determined as:

2z+h k
E(z)—Em+(Ec—Em)( h J (16)

k

p(z)=pu +(p, fpm)[zzzz h]

IV. OBTAINING FUNCTIONALLY GRADED BEAM EQUILIBRIUM
EQUATIONS BASED ON THE THIRD ORDER SHEAR
DEFORMATION THEORY

Supposing the third order shear deformation theory,
displacement field would be defined as the following:

{u(x, 2,8) =g (5,0) + 24(x, 1) — 2 (§ + W)

w(x, z,t) = wy(x, 1)

amn

In equation (17), u stands for translation on x axis, w stands
for translation on z axis. In such a relationship u is
considered as the third order to z while wis considered as
constant to z .

Considering such elements €, would be zero. Kinematic
relationships, relations between translations and deformation
would be as the following:
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ex:ur+lwi €,=0
2 (18)
€ z=Uz+W, eyzz()

When one replaces (17) in (18), non-linear translations would
be as the following:

_ 3 3 1 5
€=Uy, + ZUy, —CZUy —CZ Wy oy +EWO’X

(19)

€ =u —3z%u - 3czzw,x + Wox

Strain-deformation relationships considering thermal effects
would be as the following:

Oy = Qll(ex _aT)

20
Oz =Cr €y @0
Thus:
E E
= , C, = 21
On 2 TS 21

E Stands for elasticity, v stands for Poison ratio, « stands for
linear expansion ratio of the substance the beam is made of
and T stands for difference in temperature.

In general, when the beam is under the impact of the mechanic
and thermal elements the total potential energy relationship
would be as the following:

V=U+Q (22)
U Stands for deformation energy of the beam and it would be
defined as the following according to the first shearing theory:

U——III[O’ —al)+o,, . |dvdydz (23)

Also, Qstands for the potential energy of the impacted
mechanic forces on the beam which is zero here.

Therefore:

V=U (24)
And then:

oV =6U=0

SU = ﬁ”(ax&(ex —aT)+ 0,0 €, )dxdz =0

3 3
SU = J'J‘ o-xs(“O)c*Z Ul x —CZ7U|x —CZWo xx += (WOY) deds =0

+0 50Uy — ~3cz? uy — ~3cz? wo,x + W x)

(25)
b
oU = Ejj(ax5 €, —axd(aT)-r 0,70 €,z )dxdz =0

Stresses values would obtain as the following:
h h

2 2
Thus, replacements would occur as the following:

OP,
L

jaa L Sugdx + + 0y —3cR,)Suydx

‘[(3 Rx a(N)éWO,x)7C6P2

-2,

o

27

Equilibrium equations would be obtained one considers
integrand as zero:

N,,=0
0.-3R, ~M_, +cP,, =0 (28)
3CRx,x - Qx,x - Cpx,xx - NXWO,)QC =0

V.BUCKLING OF FUNCTIONALLY GRADED BEAM ANALYSIS
WITH UNIVERSAL PIEZOELECTRIC LAYERS UNDER THE EFFECT
OF CONSTANT INCREASING TEMPERATURE ACCORDING TO
THE THIRD ORDER SHEARING DEFORMATION THEORY

Normal stress values o, , shearing stress values o, and the

relationships concerning deformation based on translation for
the beam with piezoelectric layers would be:

o, =0 (& —al) ey E; (29)
Oy = bJ.leldz =cqdz

2

_ 3 3 1
£y Sllgp Uy = CZMy WY WG o

&, =uy —3cz’u; — 3czzw0,x + Wo.r

Now, let us calculate the stress values regarding translation
elements.
Thus:

h

SAE

h
—+h
2 T

. =b ja (l)dz+bja Dz +b J.O' @ gz (30)

A A 2 2
2 F 2 2

Stress values would be:
=0f(e, —apT)-e5 E7
=Oule, —af) 31
= Qﬁ(&‘x —aPT)—eMEZ In above equations, index P is
related to properties of piezoelectric material. Ef E ZT Are

electrical field of lower and upper layer respectively. a,ap
Are also linear expansion factor of middle layer and
piezoelectric material respectively.

Suppose:
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*" *h *h O, Would be:
¢ =b J'Q“dz ¢ =b .[Q“zdz e =b J.QUZ dz Q=B+ wo) (37)
P Then torque deviatory force out of stress would be calculated
7_113 7_11” s as the following:
g h h h h ﬁ‘*hr
Cy :bIQlldz Cs —bJ.Qllzdz s —bIQllz dz , «=b IG (l)zdz-i—bja @zdz+b J‘O' )y (38)
—h —h 77}1
2 7 2 2" 2 2
h h Stress values would be:
ot ot ) 07( ) EB
o, =0k, —a,T)-e
cg=b IQﬁﬂk, cg=b IQ”ﬂk (32) * N 3z
h i o =0(e, —al) (39)
2 2 3 T
i " o =0f\(e, —a,T) ey E;
2 , p 3 Supposing:
cn=b [Ohdz, dy=—"5 [Eqaed. i i h
1—-v - —+hr
Ll —h Z 2
2 2 c,=b J.Qllzdz Cs =bJ.Q”zdz cg=b JQ“zdz
h
=z0- (Q ) *?h‘* 2 E
—h
G11=cl+c4+020, G22=cz+cs+cs, Gy =c3+cg+cy 2
2
N, Would be: co=b J‘QIIJIZ dz (40)
B
Wl —hy
_ 0,x B T 2
Ny =G11(ug,x +T) +Gou, x —c@33(u), x + 10, xx) — b3 1(EZ h + Ez hT)*((C’l +opap +di 1)T i Y |
(33) 2 2 2
O, Is another stress deviatory force which would be given ¢, =b IQHZ dz, ¢ —bJQ“zzdz, 3 :bJ‘Q“z“dz,
through the following equation: LS —h —h
h h " 2 2 2
7+hr I i
—+hy —+hy
0, = kb J'a O g + k, bja @ iz + by, ja Oz (34) 2 20
ca=b jQﬁz dz ¢;5=b J.Ql’iz dz,
R = 3 n h
Stress values would be: 2 , 2
0'(1) = c(l)(u —3cz2u1 —3czzw0x + W) 5
e b [E@a)d
(2) =cy(u —3cz%u, - 3czzw07x +Wor) (35) T IZ (2)a(z)dz
<h
ol = c§3)(u1 —3cz%u, - 3c22w0’x +Wo,) 2
ky; Ts correction quotient Gp=cy+es+cg, Guy=co+ep+ay,
Supposing: Gss=cp +e3+ois
—h il h M, Would be:
2 2 2 2
- p - 2.p -
Ey = bkyy .[ c7dz , Ey = bkyy .[ Zleqdz, By =bhyy I crdz M, =Gy(uy, +ﬂ)+G44cl,xx —cGs(uy +W0,xx)
e, e, —h 2 (41)
i 2 ? 2
" ey ety vl 5B it 10 AP gy
2
E, = bk, I ¢ 22dz (36) R Is another stress dev1atory force Wthh is given in the
Zn following equation:
2 711 h L
ﬁ-ﬁ—h ﬁ+h 1 9 3
2t 2t R, k”bfz o,.dz=b .[ ()dz+bI <>dz+bj o¥dz(42)
Es=bly, [efdz, Eg=bh, [eb=dz 0, E i
h h 2? 2 2
2 2 Stress values would be:

E,=E -3cE, + E;-3cE, + Es —3cE, () ; =c;(u —3cz? u) —3cz? Wox T W)
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O'g) =cy(u — 3c22u1 - ?yczzwo’)C + Wo,x) (43)

G _ 2 2
o, =cy(u —3czuy =3z wy , + W)

Supposing:
h h
2 2
E, = kb I P22z B, =ky\b Ic?)zzdz
h h
B 2
h —h
2t B
Eg =k b J.cgp)zzdz ,Eg =k b J.cgp)z“dz
h by
2 2 ?
g ﬁ+/1T
Eo = ky\b I D2tz Eyg=kyb j Pz dz (44)
—h L
2 2
E, = E, —3cEy + E, —3cE, + Eg — 3cEj,
R, Would be:
R, = Eyy(uy +wy,) (45)

Finally, P, another stress deviatory force would be given as
the following:

—h h h
— - —+hy
X p) 2
P = bjz3axdz =b I oW3dz+b J.O')(Cz)z3dz+ b Ia£3)z3dz (46)
X L —h h
' 2 2 2

Stress values would be:
1 B
O-)(( )= lel (gx - apT) - e31Ez

o = 0y\(s, —aT) 47)
0')(‘3) =0f(e, ~a,T) - e31EZT
Supposing:
=h =h —h
2 2 2
c;=b J.ZSQ{;dz, ¢y =b jz4le1dz , Cg=b JzéQﬁdZ,
7gfh5 %7/73 %413
h
2
cg=b IZ3Q11dZ (48)

h h h

— —+hy
2 2 2
4 6 3
o3 =bIz OFdz, ¢ =bJ.z Oz, co=h J'z Oz,
S S W
2 2 2
Eﬁ-hr ﬁ+hr

2 2
_ 4p 6\ g, _
cs=b Jz Olhdz, b jz Oldz=cjg,
h h

2 2
h

2
J' PE()a(z)dz
by

2
Gy3 =03+ +Cy, Gss =0 3+ 05, Gog =16 +017 + 045
P_Would be:

b
don =
33 1

2

2
wO,x
P, =Gy3(ug, + - )+ Gisstty = cGg (U 5 + Wo )

3
s +ep)a, +dss |1 +bey X (nf + h 2}’3 (49)
3
+2h§h+%h2h§)—be3155(h; Wb th +2h%h+%h2h§)

Now, let us suppose the thickness of the practical piezoelectric
layers up and down the beam be equal; that is, i, = hy = hp
On the other hand, as it was mentioned in the previous

equations; the amount of electric field E:%Would be

constant in which /% stands for piezoelectric layers thickness,
V' stands for the imposed voltage. It is supposed here that
voltage for upper and lower layer is equal, V7 =y %=y
supposing such data, the values of N, O,and M, would be
finally obtained upon translation elements,

if h=hy=hg =0

14 vt oyT

E:Z:EZB :EZT —7:7 = G22 :G33 =Cyt+Cg=0C3+Cy

=Gy =c+cgtcq, Gy =cy+csteg=cy+c5=0,
Gy =c3+¢gtcg=c3+¢c9 =0 Gy =y + ¢ +C14,
Gss =cy +oyters, Ggg =016 0y +eg, € =¢4 =0y,

Cr =—Cg, C3=—Cy

=Gy =Gy3=Cy+cg=c3+Cg=C5=c5=0 (50)
Thus,
2
WO,x
Nx:Gll(uo,x+7)_F_((Cl+c20)ap+dll)T (51

O, = Eq(uy +wy )

M, = Gyquy = Gss(uy, + Wy ) —d T

R, =Ey (uy +wp )

Py = Gssuy = cGeg (1) + W 1) = d33T

In the relationships above F =2e; bV stands for piezoelectric
force.

1734



International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:5, No:12, 2011

Now, having the elements of N.,0.,M,,R and P, their

derivations upon translation elements and their translation in
balance equations and solving them afterward, it would be
possible to obtain the critical temperature difference.

VI. BEAM WiTH CLAMPED-CLAMPED BOUNDARY CONDITIONS

Let us begin the process from the first equation of relationship
(25). Thus,
N,,=0 = N,=cte=constant =k (52)

= k=—\F+((¢ +cy)a, +d)T)=~(F +XT)

Therefore:
2

W X
N, :Gll(uo,x"_%)_zeSlV_((Cl +ey)a, +d11)T:k (53)

With relation (53) displacement in relation (28) the remained
equilibrium equation would be:

*w,
By (uy +wy ) =3By (uy + W ) — Gagtiy 4 +¢Gss(uy y + 673)
X

3w
+¢Gssity o — Gty , +—2) =0
55t 66 (1.1 P ) (54)
oui

ek (uy  + Wo e ) = E7 (1, + Wy 1) = G5 o’
X

8143 (>4W
2 1 0
+0 Ggg(—+

6 6x3 6x4

)+ (F+ XT)wg o, =0

Thus,

*w,
Ay + Alwo’x + Azul’xx + A3u1’xx + 4, T‘x} =0

. (55)
oy

ad

4
0w,

+A
N o’

- Alul,x - AI Wo,xx — A3 + (F + XT)WO,xx =0
Both equations above are equilibrium equations upon
translation elements in which parameter x and other variables
would be obtained as the following:

A =E,; -3cE;,
Ay =cGss =Gy
Ay = cGss — *Geg (56)
A, = 02G66
As = Ay + 4y

Now, the possible response in such boundary conditions
would be reckoned:

wy = ZWO"' [1 - cos(m;[x)j
m=1

m=24,... (57)

. . MTX
U = Zulm [sm( 7 )j
m=1

Wo,, And u;,, would be constant, / stands for beam length and

mstands for half-wave in x axis direction.
Thus:

(A= As Y, + (4B = 4", =0 58)
(4B~ A8~ 48 = 4,8* +(F + XDV B Iy, =0
By solving above equation we have:
AT, = (3B 24,4387 + 4y A5 B* + A As 7 — 4y 44 B0)~ F (4 — A5 ) (59)

~X(4 - 455%)
Buckling critical temperature difference would be Slight

minimum would make us obtain relationship (51) upon g = 27”

VII. BEAM WITH SIMPLY-SIMPLY BOUNDARY CONDITIONS

Similar to clamped-clamped boundary conditions, let us
solve the equations and reach an equations system in such a
step; let us reckon #; and w in a different way.

Thus:

Wy = Zwo,m(sin(@)j ,m=123,.. (60)
m=1

n
U = Zulﬂm(cos(@)J ,m=123,..
m=1

Wy, And u;,, would be constant, / stands for beam length and

mstands for half-wave in x axis direction.
Therefore:

{(Al _A5ﬂ2)“1m +(A1ﬂ—A3ﬂ3)W0m =0
(B~ 4By, (- 4B~ 4B+ (F + XT)B by, =0

Finally, solving the above temperature difference equation
would define AT, .

_ (A32ﬂ4 24, 4337 + Ay s+ Ay A — 4 A7)~ F(y — As )
X (4~ 45 %)
Buckling critical temperature difference Slight minimum

(61)

AT,

cr

(62)

would make us obtain relationship (54) upon g :% .

VIII.BEAM WITH CLAMPED-SIMPLY BOUNDARY CONDITIONS
Similar to previous boundary conditions, at first solve the
equations and reach an equations system in such a step; let us
reckon u; and wj in a different way.

Thus:

u(x)=uy, (Pcos Px + P2lsin Px - P) ,m=123,.. (63)
Wy (x) = w,, (sian— PlcosPx+ P(l —x)) ,m=123,..

Wo,, And u;,, would be constant, / stands for beam length and

mstands for half-wave in x axis direction.
Therefore:

{(Al - Asﬂz Yy, + (A4 - A3ﬂ3)W0m =0

(A= Ao~ 47— A+ (F + XT)B b, =0
Finally, solving the above temperature difference equation
would define AT, .

ar BB 2AAE + AAS + AAE ~AAB)FA-AF) (o)

’ ~X(4~4f")

(64)
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Buckling critical temperature difference Slight minimum

2.047

would make us obtain relationship (54) upon S =

l
FIGURES AND TABLETS
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Fig. 1 Comparison of critical temperature of FGM beam
With layer and without layer versus the length of
Beam for various boundary conditions.

(h=50 mm, hp=0.1, n=5)
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Fig. 2 Comparison of critical temperature of FGM beam
With layer versus the length of beam for various
Boundary conditions for various n.

(h=50 mm, hp=0.1)
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Fig. 3 Comparison of critical temperature of FGM beam with
Layer with clamped-clamped boundary conditions
Versus the length of beam for various hp.

(h=50 mm, n=5)
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L

—— S-S (hp=0.1)

—@— S-S (hp=0.5)
S-S (hp=1)

—¢—S-S (hp=5)

Fig. 4 Comparison of critical temperature of FGM beam with
Layer with simply- simply boundary conditions
Versus the length of beam for various hp.

(h=50 mm, hp=0.1, n=5)
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1000 1 —a—C sihp 05;
S (hp=0.
AT goo

\7\\\\ S (hp=1)
600
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Fig. 5 Comparison of critical temperature of FGM beam with
Layer with clamped- simply boundary conditions
Versus the length of beam for various hp.

(h=50 mm, hp=0.1, n=5)

IX. CONCLUSION

Studying charts I-V the following results are obtained:

Charts 1-5 are related to functionally graded beam critical
temperature along with piezoelectric layers with thickness of
hp=0.1 based on the third order shear deformation theory in
clamped-clamped, clamped -—simply and simply-simply
boundary conditions. The highest difference in temperature in
boundary conditions belongs to clamped-clamped one while
the lowest one belongs to simply-simply one. On the other
hand, difference in critical temperature an all 3 conditions
upon all the charts falls down when the length stretches and it
rises when the thickness increases. It is noteworthy that such
changes in temperature occur with a sharp bent in clamped-
clamped condition compared to the other two conditions.
Also, according to the chart 3-5 which are related to
functionally graded beam critical temperature difference along
with piezoelectric layers with variable thickness it would be
concluded that increasing piezoelectric layer thickness
increase would increase the critical temperature difference and
also in all 3 conditions length stretch would decrease it while
thickness increase would increase it.
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