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    Abstract—This article attempts to analyze functionally graded 

beam thermal buckling along with piezoelectric layers applying based 

on the third order shearing deformation theory considering various 

boundary conditions. The beam properties are assumed to vary 

continuously from the lower surface to the upper surface of the beam. 

The equilibrium equations are derived using the total potential energy 

equations, Euler equations, piezoelectric material constitutive 

equations and third order shear deformation theory assumptions. In 

order to fulfill such an aim, at first functionally graded beam with 

piezoelectric layers applying the third order shearing deformation 

theory along with clamped -clamped boundary conditions  are 

thoroughly analyzed, and then following making sure of the 

correctness of all the equations, the very same beam is analyzed with 

piezoelectric layers through simply-simply and simply-clamped 

boundary conditions. In this article buckling critical temperature for 

functionally graded beam is derived in two different ways, without 

piezoelectric layer and with piezoelectric layer and the results are 

compared together.  Finally, all the conclusions obtained will be 

compared and contrasted with the same samples in the same and 

distinguished conditions through tables and charts. It would be 

noteworthy that in this article, the software MAPLE has been applied 

in order to do the numeral calculations. 

 

Keywords—Thermal Buckling, Functionally Graded Beam, 

Piezoelectric Layer, Various Boundary Conditions 

I. INTRODUCTION 

TILIZING piezoelectric materials, which would deform 

mechanically and vice-versa when being impacted by 

electric circuits, is supposed as one efficient way in order 

to achieve the aims mentioned above. Bonding or embedding 

of many pieces of such materials would make it easier in order 

to sense their strain and then monitor them. Considering their 

small dimensions, it could be possible to apply them in 

different pieces without altering a remarkable amount of their 

germs [1]. 

Piezoelectric materials are abundantly applied in various 

transducers such as, pressure transducers, strain gauges and 

accelerometers. In addition, it could be mentioned that such 

materials could be utilized in turbo-machines mechanical 

pieces [2] and also vibration control of simple machines in an 

experimental way [3]. 
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Tiersten [4] was the first one who reached to the equations 

monitoring vibration of piezoelectric sheets; he also managed 

to survey electro-mechanic basics. Furthermore, Tzou [5] also 

succeeded in obtaining equations monitoring a consistent 

piezoelectric condition through energy ways in curvilinear 

coordinates and solving several of them by engineering 

theories. 

Reddy [6] is another one who could obtain the equations 

monitoring piezoelectric sheets applying different theories like 

classic theory, first and third order shearing theory. Saravanos 

[7] and his partners managed to obtain the equations 

monitoring compound sheets with piezoelectric layers through 

layer wise theory and solve them as well and in addition, they 

attempted to compare their founding with analytic solutions. 

Brooks and Heyliger [8] made an effort to solve monitoring 

equations on piezoelectric sheets analytically in cylindrical 

bending condition; all the results claim that in short distance 

with thin layers the existence of a consistent electric circuit or 

linear change within it would be utterly logical and match the 

experimental conclusions as well. 

In order to test such solutions, it would be claimed that the 

best way could be obtaining and then solving equations in 

their certain conditions with analytical solutions. As it was 

mentioned earlier, in this article the buckling critical 

temperature of functionally graded beams would be obtained 

through various boundary conditions in two different ways, 

without piezoelectric layer and also with layers, and according 

to the third order shearing theory in various boundary 

conditions. 

II. PIEZOELECTRIC CONSTITUTIVE MATERIALS EQUATIONS 

Since piezoelectric materials treat as capacitors do when 

being polarized in order to obtain their constitutive equations, 

one should define the equations concerning dielectric 

materials and the capacitor. Capacity in dielectric materials 

would be defined as the following: 


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
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In such a relation, 
0

ξ  stands for dielectric capacitors 

constancy, rξ  stands for dielectric constancy, ξ stands for 

total dielectric constancy, A  stands for area of capacitor 

surfaces and C stands for capacity. On the other hand, electric 

charge for a flat capacitor would be obtained as the following: 

VCQ =                                                                                  (2) 

The Effects of Various Boundary Conditions on 

Thermal Buckling of Functionally Graded Beam 

with Piezoelectric Layers Based on Third order 

Shear Deformation Theory 
O. Miraliyari 

U



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:12, 2011

1731

 

 

Then C  replacement would be done: 

V
t

A
Q

ξ
=                                                                                 (3) 

In the relationships above, Q  stands for electric charge on 

sheets of the capacitor, V  stands for the voltage on two sides 

of the capacitor, D  stands for the amount of electric 

translation which would be obtained as the following: 

A

Q
D =                                                                                     (4) 

Finally, the total amount of D  would be obtained as the 

following: 

t

V
D

ξ
=                                                                                   (5) 

Thus, the electric field as the following: 

t

V
E =                                                                                      (6) 

Finally, obtained equations as the following: 

ED ξ=                                                                                    (7) 

The equation above is true for all isotropic dielectrics, but 

piezoelectric materials would remain as isotropic unless they 

are polarized; afterward, they turn into orthotropic. In such 

materials, electric field and electric translation would be 

defined through three elements. In other words the general 

equation for electric translation would be as the following: 

jiji ED ξ=                                                                               (8) 

Except 11ξ , 22ξ , 33ξ  all ijξ  for piezoelectric materials would 

be zero. Now, direct and reverse feature of piezoelectric 

materials mentioned earlier let us define piezoelectric quotient 

as the following in which explains tension and strain 

relationship with the imposed field and also electric 

replacement. 

Direct impact position: in this way, applying force produces 

electric field. As observed in Hook's low is applied in order to 

relate mechanical displacement and mechanical stress, shown 

as εσ E=  in which E  stands for elasticity modulus for a 

certain substance. It could be possible even to think of a 

relation for piezoelectric substances which defines the relation 

between mechanical stress and electric displacement as the 

following. 

jiji dD σ=                                                                              (9) 

In which iD stands for electric displacement, jσ mechanical 

stress and ijd  piezoelectric modulus.  

Reverse impact position: in this way, applying voltage 

produces strain or mechanical displacement. In such a 

position, we'd better apply a kind of relation which defines the 

relation between strain and the applied electric field on 

piezoelectric substances as the following, 

ejiji Ed=ξ                                                                            (10) 

In which iξ  stands for strain, ejE  electric field and ijd  

piezoelectric modulus in reverse position. 

jijejij dE σξ =                                                                    (11) 

Now, in order to obtain structural relations defining 

relations between stress and strain and also between electric 

field and electric displacement, all iD values are to be added. 

Furthermore, the equations would be summed up, 

e
T EdD ξσ +=                                                                    (12)  

Also, mechanical and electric deformation would be added: 

e
T

Ed
E

+= σξ
1

                                                                   (13) 

As it seems relationships concerning piezoelectric materials 

consists of two parts which one of them is electric charge 

equations defining the relationship among electric translation, 

mechanic stress and electric field and the other one defines the 

relationship among mechanic deformation, mechanic stress 

and electric field. 

III. FUNCTIONALLY GRADED BEAM 

The material properties are assumed to be graded through 

the thickness direction. The constituent materials are assumed 

to be ceramic and metal. The volume fractions of the ceramic 

cV and metal mV corresponding to the power law are expressed 

as: 
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= 1,
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Here, subscripts m and c are the metal and ceramic 

constituents, respectively, z is the thickness coordinate  

(-h/2 ≤ z ≤ h/2), and k is the power law index that takes values 

greater than or equal to zero. The variation of the composition 

of ceramic and metal is linear for k =1. The value of k equal to 

zero represents a fully ceramic beam. The properties of 

functionally graded beam are determined from the volume 

fraction of the material constituents. The Young's modulus, E, 

and coefficient of thermal expansion, α, are assumed to 

change in the thickness direction. 
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The Poisson' ratio, ν, is assumed to be constant across the 

plate thickness. Substituting Eq. (1) into (2), the material 

properties of the FG plate are determined as: 
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IV. OBTAINING FUNCTIONALLY GRADED BEAM EQUILIBRIUM 

EQUATIONS BASED ON THE THIRD ORDER SHEAR 

DEFORMATION THEORY 

Supposing the third order shear deformation theory, 

displacement field would be defined as the following: 





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,0
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0

txwtzxw

wcztxztxutzxu xφφ
                     (17) 

In equation (17), u stands for translation on x  axis, w  stands 

for translation on z  axis. In such a relationship u  is 

considered as the third order to z while w is considered as 

constant to z . 

Considering such elements Z∈  would be zero. Kinematic 

relationships, relations between translations and deformation 

would be as the following: 
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When one replaces (17) in (18), non-linear translations would 

be as the following: 
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Strain-deformation relationships considering thermal effects 

would be as the following: 
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Thus: 
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E Stands for elasticity, ν stands for Poison ratio, α stands for 

linear expansion ratio of the substance the beam is made of 

and T stands for difference in temperature. 

In general, when the beam is under the impact of the mechanic 

and thermal elements the total potential energy relationship 

would be as the following: 

Ω+= UV                                                                             (22) 

U Stands for deformation energy of the beam and it would be 

defined as the following according to the first shearing theory: 

( )[ ]∫ ∫ ∫ ∈+−∈= dzdydxTU xzxzxx σασ
2

1
                       (23) 

Also, Ωstands for the potential energy of the impacted 

mechanic forces on the beam which is zero here. 

Therefore: 

UV =                                                                                   (24) 

And then: 
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Stresses values would obtain as the following: 
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Thus, replacements would occur as the following: 
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Equilibrium equations would be obtained one considers 

integrand as zero: 
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V. BUCKLING OF FUNCTIONALLY GRADED BEAM ANALYSIS 

WITH UNIVERSAL PIEZOELECTRIC LAYERS UNDER THE EFFECT 

OF CONSTANT INCREASING TEMPERATURE ACCORDING TO 

THE THIRD ORDER SHEARING DEFORMATION THEORY 

Normal stress values xσ , shearing stress values xzσ and the 

relationships concerning deformation based on translation for 

the beam with piezoelectric layers would be: 

zxx EeTQ 3111 )( −−= αεσ                                                 (29) 
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Now, let us calculate the stress values regarding translation 

elements. 

Thus: 
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Stress values would be: 
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P
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(31) 

( ) T
zPx

P
x EeTQ 3111

)3( −−= αεσ In above equations, index P is 

related to properties of piezoelectric material.
 

T
z

B
z EE , Are 

electrical field of lower and upper layer respectively.
 Pαα ,

Are also linear expansion factor of middle layer and 

piezoelectric material respectively. 

Suppose: 
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xQ Is another stress deviatory force which would be given 

through the following equation: 
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Stress values would be: 
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11k  Is correction quotient 

Supposing: 
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Then torque deviatory force out of stress would be calculated 

as the following: 
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xR Is another stress deviatory force which is given in the 

following equation: 
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Finally, xP another stress deviatory force would be given as 

the following: 
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Stress values would be: 
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Now, let us suppose the thickness of the practical piezoelectric 

layers up and down the beam be equal; that is, PBT hhh ==  

On the other hand, as it was mentioned in the previous 

equations; the amount of electric field 
h

V
E = would be 

constant in which h  stands for piezoelectric layers thickness, 

V  stands for the imposed voltage. It is supposed here that 

voltage for upper and lower layer is equal, VVV BT ==  

supposing such data, the values of xN , xQ and xM would be 

finally obtained upon translation elements, 

0=== BT hhhif  

93823322 ccccGG
h

V

h

V
EE

h

V
E

TT
T
z

B
z +=+==⇒=====

74111 cccG ++=⇒ ,  08285222 =+=++= cccccG , 

09396333 =+=++= cccccG 14121044 cccG ++= ,  

15131155 cccG ++= ,  18171666 cccG ++= ,  741 ccc == ,  

82 cc −= ,  93 cc −=  

06593823322 ===+=+==⇒ ccccccGG                     (50) 

Thus,  

( )TdccF
w

uGN p
x

xx 11201

2
,0

,011 )()
2

( ++−−+= α              (51) 

)( ,017 xx wuEQ +=  

TdwucGuGM xxxxx 22,0,155,144 )( −+−=  

)( ,0111 xx wuER +=  

TdwucGuGP xxxxx 33,0,166,155 )( −+−=  

In the relationships above bVeF 312= stands for piezoelectric 

force. 
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Now, having the elements of xN , xQ , xM , xR and xP  their 

derivations upon translation elements and their translation in 

balance equations and solving them afterward, it would be 

possible to obtain the critical temperature difference.  

 

VI. BEAM WITH CLAMPED-CLAMPED BOUNDARY CONDITIONS 

Let us begin the process from the first equation of relationship 

(25). Thus, 

ktconscteNN xxx ===⇒= tan0,                              (52) 

( ) )())(( 11201 XTFTdccFk p +−=+++−=⇒ α  

Therefore:  

( ) kTdccVe
w

uGN p
x

xx =++−−+= 1120131

2
,0

,011 )(2)
2

( α  (53) 

With relation (53) displacement in relation (28) the remained 

equilibrium equation would be: 


















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∂
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∂
+

∂

∂
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=
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∂
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∂
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0)(

)()(3)(

,04

0
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3

3
1
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2

3

3
1

55,0,17,0,111

3

0
3

,166
2

,155

3

0
3
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xxxxxx
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xxxxxx
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x

w

x

u
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x

u
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x

w
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x

w
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(54) 

Thus,  











=++
∂

∂
+

∂

∂
−−−

=
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∂
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0

,04

0
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1
3
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0
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3,13,12,0111

xxxxx

xxxxx

wXTF
x

w
A

x

u
AwAuA

x

w
AuAuAwAuA

(55) 

Both equations above are equilibrium equations upon 

translation elements in which parameter x  and other variables 

would be obtained as the following: 

1171 3cEEA −=    

44552 GcGA −=    

66
2

553 GccGA −=                                                               (56) 

66
2

4 GcA =     

325 AAA +=  

Now, the possible response in such boundary conditions 

would be reckoned: 

∑

∑

=

=









=

=







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−=

n

m

m

n

m

m

l

xm
uu

m

l

xm
ww

1

11

1

00

)sin(

,......4,2

)cos(1

π

π

              (57) 

mw0 And mu1 would be constant, l stands for beam length and 

mstands for half-wave in x axis direction.  

Thus: 

( )





=++−−−−

=−+−

0)()(

0)()(

0
24

4
2

11
3

31

0
3

311
2

51

mm

mm

wXTFAAuAA

wAAuAA

βββββ

βββ
(58) 

By solving above equation we have: 

)(

)()2(

2
51

2
51

2
41

2
51

4
54

2
31

42
3

β

ββββββ

AAX

AAFAAAAAAAAA
Tcr

−−

−−−++−
=∆ (59) 

Buckling critical temperature difference would be Slight 

minimum would make us obtain relationship (51) upon
l

π
β

2
=

. 

VII. BEAM WITH SIMPLY-SIMPLY BOUNDARY CONDITIONS 

Similar to clamped-clamped boundary conditions, let us 

solve the equations and reach an equations system in such a 

step; let us reckon 1u and 0w in a different way. 

Thus: 

∑
=








=
n

m

m
l

xm
ww

1

,00 )sin(
π

   , ,...3,2,1=m                            (60) 

∑
=








=
n

m

m
l

xm
uu

1

,11 )cos(
π

    , ,...3,2,1=m  

mw0 And mu1 would be constant, l stands for beam length and 

mstands for half-wave in x axis direction.  

Therefore:  

( )





=++−−−−

=−+−

0)()(

0)()(

0
24

4
2

11
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0
3

311
2
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βββββ
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(61) 

Finally, solving the above temperature difference equation 

would define crT∆ . 

)(

)()2(

2
51

2
51

2
41

2
51

4
54

2
31

42
3

β

ββββββ

AAX

AAFAAAAAAAAA
Tcr

−−

−−−++−
=∆ (62) 

Buckling critical temperature difference Slight minimum 

would make us obtain relationship (54) upon
l

π
β = . 

VIII. BEAM WITH CLAMPED-SIMPLY BOUNDARY CONDITIONS 

Similar to previous boundary conditions, at first solve the 

equations and reach an equations system in such a step; let us 

reckon 1u and 0w in a different way. 

Thus: 

)sincos()( 2
11 PPxlPPxPuxu m −+=    , ,...3,2,1=m       (63) 

( ))(cossin)( 00 xlPPxPlPxwxw m −+−=    , ,...3,2,1=m  

mw0 And mu1 would be constant, l stands for beam length and 

mstands for half-wave in x axis direction.  

Therefore:  

( )





=++−−−−

=−+−

0)()(

0)()(

0
24

4
2

11
3
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0
3

311
2
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wAAuAA

βββββ

βββ
(64) 

Finally, solving the above temperature difference equation 

would define crT∆ . 

2 4 2 4 2 2 2

3 1 3 4 5 1 5 1 4 1 5

2

1 5

( 2 ) ( )

( )
cr

A A A A A A A A A F A A
T

X A A

β β β β β β

β

− + + − − −
∆ =

− −
(65) 
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Buckling critical temperature difference Slight minimum 

would make us obtain relationship (54) upon
l

π
β

04.2
= . 

FIGURES AND TABLETS 

 

 
 

Fig. 1 Comparison of critical temperature of FGM beam 

 With layer and without layer versus the length of 

 Beam for various boundary conditions. 

(h=50 mm, hp=0.1, n=5) 

 

 
 

Fig. 2 Comparison of critical temperature of FGM beam 

 With layer versus the length of beam for various  

Boundary conditions for various n. 

(h=50 mm, hp=0.1) 

 

 
Fig. 3 Comparison of critical temperature of FGM beam with  

Layer with clamped-clamped boundary conditions  

Versus the length of beam for various hp. 

(h=50 mm, n=5) 

 

 
 

Fig. 4 Comparison of critical temperature of FGM beam with  

Layer with simply- simply boundary conditions  

Versus the length of beam for various hp. 

(h=50 mm, hp=0.1, n=5) 

 

 
 

Fig. 5 Comparison of critical temperature of FGM beam with  

Layer with clamped- simply boundary conditions  

Versus the length of beam for various hp. 

(h=50 mm, hp=0.1, n=5) 

 

IX. CONCLUSION 

Studying charts I-V the following results are obtained: 

Charts 1-5 are related to functionally graded beam critical 

temperature along with piezoelectric layers with thickness of 

hp=0.1 based on the third order shear deformation theory in 

clamped-clamped, clamped –simply and simply-simply 

boundary conditions. The highest difference in temperature in 

boundary conditions belongs to clamped-clamped one while 

the lowest one belongs to simply-simply one. On the other 

hand, difference in critical temperature an all 3 conditions 

upon all the charts falls down when the length stretches and it 

rises when the thickness increases. It is noteworthy that such 

changes in temperature occur with a sharp bent in clamped-

clamped condition compared to the other two conditions. 

Also, according to the chart 3-5 which are related to 

functionally graded beam critical temperature difference along 

with piezoelectric layers with variable thickness it would be 

concluded that increasing piezoelectric layer thickness 

increase would increase the critical temperature difference and 

also in all 3 conditions length stretch would decrease it while 

thickness increase would increase it.  
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