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Abstract—Loop detectors report traffic characteristics in real 

time. They are at the core of traffic control process.  Intuitively, 
one would expect that as density of detection increases, so would 
the quality of estimates derived from detector data. However, as 
detector deployment increases, the associated operating and 
maintenance cost increases. Thus, traffic agencies often need to 
decide where to add new detectors and which detectors should 
continue receiving maintenance, given their resource constraints. 
This paper evaluates the effect of detector spacing on freeway 
travel time estimation. A freeway section (Interstate-15) in Salt 
Lake City metropolitan region is examined. The research reveals 
that travel time accuracy does not necessarily deteriorate with 
increased detector spacing. Rather, the actual location of detectors 
has far greater influence on the quality of travel time estimates. 
The study presents an innovative computational approach that 
delivers optimal detector locations through a process that relies on 
Genetic Algorithm formulation. 
 

Keywords—Detector, Freeway, Genetic algorithm, Travel time 
estimate.  

I. INTRODUCTION 

NDUCTIVE loop detectors are installed on many 
freeways in the United States. Loop detectors monitor 
traffic conditions at single-point locations. They supply 

data about traffic conditions: vehicle presence, flow, 
occupancy and speed. Flow and occupancy may be extracted 
directly from loop data; however, algorithms must be 
developed to calculate point speed and travel time. 
Evaluation of freeway performance is based on the 
information derived from loop detectors. The reliability and 
accuracy of these data depends on the number and 
placement of loop detectors. Proper placement enables 
transportation agencies to derive more accurate information 
for performance monitoring, which in turn improves traffic 
operation activities overall, such as ramp metering. 
However, as Departments of Transportation (DOTs) deploy 
more detectors, the associated operating and maintenance 
cost increases [1]. So, traffic agencies need to decide where 
to add new detectors and which detectors should be 
maintained, given their resource constraints [2].  
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A Traffic Monitoring Station (TMS) is defined as a set of 
inductive loop detectors that covers each mainline and ramp. 
TMS reports traffic characteristics in real time and are at the 
core of the traffic management process. Utah Department of 
Transportation (UDOT) has deployed TMSs on I-15 in Salt 
Lake City metropolitan region at approximately ½ mile 
spacing. This half mile spacing is a product of early 
requirements for real-time data collection and is used to 
manage traffic and provide driver information. With the 
advent of advanced video surveillance such as Closed 
Circuit Television (CCTV) technology, the use of these data 
for incident detection has become less important. However, 
there are other important uses of the data that have different 
requirements for TMS placement. For example, we need to 
estimate travel time from TMS detector data. This is feasible 
if the TMSs are placed so that they can sample freeway 
conditions effectively. There is a tradeoff between the 
intensity of TMS spacing and the accuracy of travel time 
estimates. Intuitively, one would expect that as the density 
of detection increases, the quality of travel time estimates 
also increases. However, this improved accuracy comes with 
a cost: installation and maintenance. 

The literature shows that the effect of field detection 
spacing on traffic forecasting measures along freeways has 
been addressed. For a 9 mile Californian route, Kwon et al. 
[3] showed how derived congestion measures such as total 
delay, extent and duration of congestion, vary with the 
number of detectors. They infer that the accuracy of 
estimates increases in proportion to the number of detectors 
deployed. However, the authors did not focus on travel time 
estimation. Ozbay et al. [4] investigated the effect of sensor 
location on travel time estimation during recurrent and non-
recurrent congestion on I-76 in southern New Jersey. They 
found that increasing the number of sensors does not always 
improve the accuracy of travel time estimates. Bartin et al. 
[5] showed that the marginal gain of travel time accuracy 
decreases as the number of road-based surveillance units 
increases. By selecting the detectors in a pre-defined way, 
Fujito et al. [6] studied the effect of detector spacing on 
travel time index (congestion measure), using field data 
from Cincinnati, Ohio, and Atlanta, Georgia. Their analysis 
did not show any definite pattern of the variation of travel 
time index with detector spacing. Chan et al. [7] proposed a 
bi-level programming model to determine the speed detector 
density with travel time information. They showed that Root 
Mean Square Error (RMSE) of average link travel time 
estimate decreases with increase in the number of speed 
detectors. In a similar study, Sen et al. [8] showed that the 
measured travel time errors are nonlinear and inversely 
proportional to the number of probe vehicles. Ban et al. [9] 
indicated that as sensor spacing increases, travel time 
estimation becomes more sensitive to actual sensor 
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locations. Chen et al. [10] studied how short-term traffic 
forecasting performance is related to detector spacing using 
neural networks. They concluded that forecasting 
performance was not significantly affected by detector 
spacing. Cheu and Ritchie [11] reviewed several incident 
detection algorithms applied to sites with both dense and 
sparse arrays of detectors. They reported no clear link 
between performance and detector spacing.  
 To summarize, the literature shows research that 
addresses the relationship between field detection and the 
estimation of traffic metrics is active, through methods that 
can be characterized as modeling [4],[5],[9] or empirical 
[3],[6]-[8]. Chen et al. [10] has tested their modeling 
findings with empirical data from field. However, their work 
addressed short-term forecasting, not travel time estimating. 
There is need for further work. Methods validated by field 
data needs to be developed. Further, there is a need for 
methods that address detector error. In concluding, the 
literature for travel time estimates is inconsistent and hence 
inconclusive. 
 The goal of this paper is to determine the impact of 
decreasing TMS coverage on a freeway corridor on the 
computation of congestion measures such as travel time 
estimates. In other words, how is the inaccuracy of the travel 
time estimates affected by increased TMS spacing? The 
paper analyzes the sensitivity between the accuracy of travel 
time estimates and TMS spacing. Several hypothetical 
uniform spacing cases are examined: 0.5, 1, 1.5, 2, 2.5, 3 
miles. Field data comes from the Interstate-15 (I-15) 
freeway in Salt Lake City metropolitan area. Travel time 
estimates from speeds collected from field detectors are 
compared to travel time estimates derived from micro 
simulation. This would ensure the robustness and 
applicability of the methodology. A further analysis adopts a 
metaheuristic method to develop Pareto optimal solutions to 
the multi-criteria optimization problem. Resulting Pareto 
optimal solutions would deliver a robust and compromise 
design of the optimal location of TMS. 
 Solving single objective optimization problems by 
Genetic Algorithms (GAs) has become a proven and widely 
accepted technique. Genetic Algorithms are heuristic 
optimizers based on the evolutionary concepts of natural 
selection and survival of the fittest [12]. Genetic Algorithms 
has also been found to be most successful in multi-objective 
optimization [13]. In this paper, a Pareto based multi-
objective GA is applied to the simultaneous optimization of 
travel time accuracy and number of TMSs. 

II. METHODOLOGY 

A novel computational approach was developed to meet 
the study objectives. The study segment is the I-15 freeway 
between 800 south in Salt Lake City (SLC) to 400 south in 
Orem, Utah. The 35 mile study corridor has the TMS 
spacing of approximately ½ mile. The baseline scenario 
represents the average TMS spacing. With the baseline 
scenario of half-mile spacing and increasing the spacing in 
increments of half-mile up to three miles produces six 
uniform TMS spacing scenarios (0.5, 1, 1.5, 2, 2.5 and 3 
mile). Deleting alternating TMSs from the baseline (0.5 
mile) scenario creates the 1 Mile scenario. This generates 
two scenarios: the odd numbered TMSs (1010101), and the 
even numbered TMSs (0101010). The same procedure was 
repeated for the other uniform TMS spacing between 1.5 
Mile and Mile 3, to generate 21 TMS spacing scenarios. 

Table I lists the TMS spacing scenarios generated for 
analysis.  
 

 
 

The freeway study section is divided into 57 Zone of 
Influence (ZOI) sub segments which are defined as half the 
distance upstream and downstream to the neighboring TMS 
as shown below in Fig. 1.  

 

 
 

Fig. 1 Freeway section and zones of influence for TMS 
 

The spot speeds from detectors that constitute a TMS 
were used to calculate the travel time over the entire ZOI. 
Travel time for each TMS is given by the ZOI length 
divided by the spot speed across the TMS. The travel time 
for each of the constituent ZOIs was calculated and summed 
to give the total estimated travel time for the entire freeway 
segment. The difference between the estimated travel time 
and the actual travel time is the travel time error for the 
freeway segment.  
 Travel time estimates from field analysis were compared 
to travel time estimates derived from simulation in VISSIM 
[14] for validation purpose. The field analysis is pertinent to 
the cases when existing TMS layouts should be revisited in 
order to find if removing redundant stations would reduce 
costs of their operations and maintenance without affecting 
quality of the travel time estimates. However, the field 
analysis cannot be used to plan for new facilities and to 
develop a new TMS layout on the freeways which are 
currently not detectorized. For such purposes one can use 
microsimulation models, which accurately resemble field 
traffic operations. Fig. 2 illustrates the methodology used to 
compare field analysis with high-integrity simulation 
analysis. 

There follows a detailed explanation of the field analysis 
and the Simulation (VISSIM) analysis. 
 

 

Freeway segment

Zone of Influence of                  Zone of Influence                Zone of Influence

TMS 1                                      TMS 2                                      TMS 3

(ZOI1)                                       (ZOI2)                                      (ZOI3)

TMS 1                                      TMS 2                                        TMS 3

    TABLE I  
TMS SPACING SCENARIOS  

Name 

Average 
distance 
between 

TMS 
(mile) 

Scenarios: 
No of 

possible 
data sets 

No of 
TMS 

skipped  

Baseline 0.5 1 0  
Mile 1.0 1.0 2 1  
Mile 1.5 1.5 3 2  
Mile 2.0 2.0 4 3  
Mile 2.5 2.5 5 4  
Mile 3.0 3.0 6 5  

  Total  21    
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Fig. 2 Steps involved in Field and VISSIM Analysis 

 

A. Field Data  

Field data was collected from the TMSs on the I-15 
freeway (800 south in SLC to 400 south in Orem) in the Salt 
Lake City metropolitan area. The loops are mostly dual loop 
detectors which give direct measure of speed data. In some 
cases, there are radar units (Wavetronix model 105) that 
deliver the same data as single loop detectors. They apply a 
speed algorithm  that presents an average speed based on the 
occupancy numbers for the prior 16 vehicles.  

UDOT reports the 20-second loop detector speeds for 
purpose of real time traffic management applications. The 
20-second data are imported in real-time to VISUM-Online, 
a program now called PTV Traffic Platform, to facilitate 
further archival and analysis [15]. The measures were 
recorded at 20-second intervals. The detector speeds were 
then extracted. 

The field data was extracted for the morning peak period 
traffic on Tuesdays, Wednesdays, and Thursdays for the  
month of August, 2007. Flawed or aberrant data due to road 
work or detector failures were excluded from the analysis. 
The mean of spot speeds from detectors that constitute a  
TMS were used to calculate the travel time over the entire 
ZOI.  Travel time for each TMS is given by the ZOI length 
divided by the aggregated spot speed. The estimated travel 
time (TTEF) is the sum of travel times of the constituent 
ZOIs of the freeway segment. For measured travel time 
(TTMF) computation, Global Positioning System (GPS) 
travel time for the entire freeway section was utilized. The 
GPS speed data was collected using the Floating Car 
Technique. In this technique, a GPS device was installed in 
the vehicle that was driven according to the “flow of traffic” 
throughout the study segment [16]. While the vehicle is 
running, the GPS device automatically logs the latitude and 

longitude and the time data [17]. Altogether 96 GPS runs 
were completed. The difference between the TTEF and TTMF 
gives the travel time error (TTF) for the entire freeway 
segment. In a similar manner, the travel time errors for all 
21 TMS spacing scenarios were estimated.  

B. Simulation 

The VISSIM model of the freeway study segment was 
developed for a recent High Occupancy Vehicle 
(HOV)/High Occupancy Toll (HOT) study [18]. Building, 
calibrating and validating the VISSIM model required 
extensive field data collection and data reduction. Various 
traffic data were collected between 6.30 AM and 9.00 AM 
(morning peak) on Tuesdays, Wednesdays, and Thursdays, 
under fair weather and dry pavement conditions during four 
weeks in August, 2007. Other periods were excluded 
because the traffic was light. Both the network and the 
model input were based on actual peak period traffic data of 
the I-15 corridor. Detail description of the data, calibration, 
and validation results is documented [17], [18]. Validation 
results showed a very close match between travel times from 
field and simulation. Further, UDOT provided the locations 
of the installed TMS along I-15 on a KMZ file in Google 
Earth software [19], providing a realistic background image. 
The image enables users to easily navigate through a 
network. Using this tool, the specific location of the TMS 
were identified and added into the existing I-15 model as 
data collection points. Fig.3 represents the VISSIM model 
of I-15 for an intersection showing the built in data 
collection points which resembles the actual TMS locations 
obtained from the Google Earth KMZ file.  

VISSIM generated the spot speeds at the built-in TMS 
locations. These spot speeds served to calculate the travel 
time over the entire ZOI. Travel time for each TMS is given 
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by the ZOI length divided by the spot speed. The estimated 
travel time (TTES) is the sum of travel times of the 
constituent ZOIs. Two travel time sections, one at the entry 
and one at the exit of the freeway segment were built into 
the model to obtain the measured travel time (TTMS) for the 
freeway segment. The difference between the TTES and 
TTMS is the travel time error (TTS) for the entire freeway 
segment. The procedure was repeated to calculate the travel 
time errors for all 21 TMS spacing scenarios. 

 

 

Fig. 3 Model of a part of I-15 showing built-in TMS locations 
resembling those in KMZ file 

 

III.  FORMULATION OF THE TRAVEL TIME ERROR FUNCTION  

Travel time error is the difference between the measured 
travel time and the estimated travel time required to travel a 
roadway segment. This concept was used in the formulation 
of the travel time error function. The analytical approach 
followed is similar to the approach reported by Edara et al. 
[20]. Two specific travel time estimates are defined: 
Measured Travel Time (TTM) and Estimated Travel Time 
(TTE). TTM represents the actual travel time required to 
traverse the freeway section. The notation and formulations 
are discussed as follows: 

 
Notation: 
 
n -  Number of TMSs on the freeway section (= number of 
 zones of influence) 
i -   Index of the ith TMS 
L -  Length of the freeway section 
xi - The distance from the origin of the freeway section to 
the  ith TMS location 
ZOIi - Length of Zone of influence of the ith TMS 

          
1

n

i
i

L ZOI
=

=∑  

Vi - Speed reported by the ith TMS  

TTi - Travel time for ZOIi ( i
i

i

ZOI
TT

V
= � 

TTE (=TTEF or TTES) - Estimated travel time for the freeway  

        section (
1

n

ii
TT

=∑ )  

TTM (=TTMF or TTMS) - Measured travel time for the freeway 
        section 

ε - Estimation Error = E MTT TT−   

 
Travel time for each ZOI is estimated from the speed data 

obtained at the TMS location. The length of the ZOI divided 

by this speed gives the travel time value ( i
i

i

ZOI
TT

V
= ) at 

each TMS location. TTE for the entire freeway section is 
obtained by summing individual travel time estimates (TTi) 

for all constituent ZOIs (
1

n

ii
TT

=∑ ). The travel time error is 

given by: 

ε = 1
n TT TTii M−∑ =  = 1

ZOIn i TTi MVi
−∑ =               (1)                                                    

For the first TMS in the freeway section,  

2 1 1 2( ) ( )1 1 2 2

x x x x
ZOI x

− +
= + = , for i = 1                  (2)                      

         
For all intermediate TMSs in the freeway section,  

1 1
2

x xi iZOIi

−+ −=                                                 (3) 

For the last TMS in the freeway section,  

1 1( ) ( ) ( )
22

x x x xn n n nZOI L x Ln n

− +− −= − + = − ,  

for i = n                                                                               (4)                                                                                                                          
                                                                                                 
Substituting (2), (3) and (4) in (1), the travel time error 
becomes: 
 

1 1 1 11 2
2

1

{( ) ( ) ( )}
2 2 2

n i i n n
Mi

i n

x x x xx x
L TT

V V V
ε − + − −

=

− ++= + + − −∑                                                                                             

                                                                                            (5)                                                               

IV.  RESULTS 

A. Travel Time Prediction with Field Data 

Fig. 4(a) and 4(b) summarizes the results obtained from 
field data analysis. Fig. 4(a) shows that there is a weak trend 
between travel time error for different TMS spacing. 
However, the spread appears to be big and varied with the 
increase in TMS spacing. There are inconsistencies which 
do not follow the trend such as: specific scenarios in Mile 1, 
Mile 2.5 and Mile 3. This is probably due to the actual 
location of TMS in those scenarios. Similar observations are 
noted in Fig. 4(b), which provides the relationship between 
travel time error versus the number of TMS deployed for 21 
detector spacing scenarios. There appears to be a weak 
relationship between travel time error and number of TMS 
deployed with some anomalies. These anomalies are likely 
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due to the difference in the location of TMSs in different 
scenarios.  

 

 
Fig. 4 Field Results (a) Travel time error as a function of TMS 
spacing (b) Travel time error as a function of number of TMS 

deployed 
 

B. Travel Time Prediction with Simulation Data 

Fig. 5(a) and 5(b) present the results obtained from the 
micro simulation using VISSIM. Fig. 5(a) shows the plot of 
the travel time errors versus TMS spacing for different 
spacing scenarios. Similar to the field results, there is a 
weak relationship between the travel time error and TMS 
spacing. However, the spread appears to become broad and 
varied with the increase of TMS spacing. Further, there are 
some scenarios that deviate from the general trend. This is 
likely due to the location of TMS in an individual scenario. 
Fig. 5(b) provides the relationship between the travel time 
errors and the number of TMS deployed for 21 spacing 
scenarios. There appears to be weak trend suggesting some 
correlation between the travel time error and the number of 
TMS deployed with few anomalies. 

 

 
Fig. 5 Simulation Results (a) Travel time error as a function of 

TMS spacing (b) Travel time error as a function of number of TMS 
deployed 

C. Comparison between Simulation and Field Results 

       Fig. 6 presents the comparison between travel time 
errors obtained from field versus simulation using VISSIM. 
The travel time error for all 21 scenarios were plotted to 
facilitate the comparison. The plot shows that the micro 
simulation is closely consistent with the field based analysis 
(R2 = 0.85). Comparing both Figs. 4 and 5, it is observed 
that VISSIM model underestimates travel time error by 
about 2 min; however this underestimation is consistent and 
therefore does not significantly affect the overall 
relationship between travel time error and number of TMSs. 
Further, the good correlation between the travel time error 
derived from cleaned field measurements, and micro 
simulation, suggests that the findings are reliable. 
Comparison between both data also proves the validity of 
the methodology. Table II provides a summary of the travel 
time error obtained from simulation and field data analysis. 
It is evident that there is a broad and varied trend that 
suggests that as the TMS spacing increases, so does the 

travel time error. However, there are many inconsistencies 
to the general trend. This is likely due to the actual location 
of the TMSs in the scenarios.  Simply put, optimal detector 
placement is essentially idiosyncratic. So, bland generalized 
modeling of freeway segments will deliver sub-optimal 
locations which would be little better than location guesses 
made by a traffic engineer. There is a need to determine the 
optimal number and location of TMS which requires a 
sound and robust optimization technique. 
  

 
 

Fig. 6 Comparison between Simulation and Field results 

 
TABLE II 

SUMMARY OF TRAVEL TIME ERROR FOR TMS SPACING 

 
 

V. OPTIMAL LOCATION OF TMS 

The problem of the placement of TMS within a roadway 
network is not unique. It belongs to the broad field of 
location theory that deals with the placement of 
infrastructure facilities in a given space by optimizing 
certain desired objectives [21]. Literature shows that 
operations research techniques, especially optimization, 
have been used successfully to determine the optimal 
location of desired facilities, such as placement of detectors 
for O-D estimation, AVI readers for travel time estimation 
etc [5], [22], [23].            
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Baseline 0.5 57 3.61 1.01 3.61 1.01

1 1.0 29 0.14 0.61
2 1.0 28 4.72 1.93
1 1.5 19 5.04 2.71
2 1.5 19 5.60 3.64
3 1.5 19 3.89 4.14
1 2.0 15 5.82 7.32
2 2.0 14 3.41 4.85
3 2.0 14 7.03 4.47
4 2.0 14 6.63 6.52
1 2.5 12 6.35 3.59
2 2.5 12 4.19 1.62
3 2.5 11 15.78 16.64
4 2.5 11 5.18 2.92
5 2.5 11 7.29 4.51
1 3.0 10 8.07 5.21
2 3.0 10 4.11 2.90
3 3.0 10 6.16 2.60
4 3.0 9 6.21 5.12
5 3.0 9 14.83 15.80
6 3.0 9 4.25 2.12

Scenarios TMS Spacing (mile) No. of TMS

5.867.76

5.637.27

Travel Time Error (min) Average Travel Time Error (min)

1.272.43

3.504.84

5.795.72



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:4, No:6, 2010

145

 

 

However, unlike some other location theory problems, 
problem of placing TMSs within roadway, in such a way to 
minimize both number of TMSs and travel time estimation 
error, cannot be easily reduced to a single-objective 
optimization problem. Sometimes, multi-objective 
optimization problems are transformed into single-objective 
optimization problem by finding a 'common denominator' 
by which both of the objectives can be represented. The 
'common denominator' is often expressed as a monetary 
value. In this problem, however, costs can be assigned to 
number of TMSs (e.g. operating and maintenance costs) but 
it is very difficult to assign a monetary value to the fact that 
there is an error in estimated travel time. Our ability to 
accurately estimate travel time does not directly impact the 
traffic conditions in the field. 

In such a situation, when multiple objectives are present, 
a front of Pareto optimal solutions can be very helpful. By 
using Pareto front decision-makers can visually recognize 
solutions that will fit their current goals regarding one of the 
objectives and yet making sure that they get the best of the 
other objective, in the solution they selected. Pareto optimal 
set are feasible solutions that are not dominated by any other 
solutions. A Pareto-optimal solution cannot be improved 
upon without hurting at least one of the criteria. 

During the past two decades, GAs has successfully been 
used for optimization of difficult problems. Unlike most 
conventional search algorithms, GA’s search from a 
population of points, producing an entire set of solutions as 
the optimization outcome. Foundations of GA are found in 
Goldberg [12] and a comprehensive survey with engineering 
applications is given by Gen and Cheng [24]. The interest in 
application of GAs in the area of detector location is still in 
its early stage. One study has illustrated GA application to 
evaluate optimal placement of detectors on Virginia’s 
freeways [20]. However, the results were based on single 
objective optimization of the travel time estimate function. 
The optimal location problem is essentially an iterative 
process involving conflicting objectives and constraints. A 
better approach is to look upon this design problem as a 
multiobjective optimization problem. Genetic algorithms 
have also been found to be most successful in multi-
objective optimization [13]. In this paper, the Nondominated 
Sorting Genetic Algorithm II (NSGA II) proposed by Deb et 
al. [25] is applied to simultaneously optimize (minimization) 
the competing objectives: travel time error and number of 
TMS. This will deliver optimal number and location of 
TMSs. NSGA-II is a heuristic multi-objective optimizer 
based on the genetic algorithm optimization approach. It is 
one of the most popular and best performing multi-objective 
genetic algorithms [26]. To achieve a robust algorithm, a 
Pareto optimal scheme is applied to ensure a near optimal 
Pareto solution [27].  

The proposed algorithm (NSGA-II) generates a Pareto 
optimal subset from which a robust and compromise design 
can be selected. Through iteration of the optimizer, the 
population will converge toward a Pareto front, which 
describes a near-optimal trade-off curve. Existing literature 
shows that the Pareto-based multi objective GA has not been 
used in the optimization of detector locations.          

  

A. Using NSGA-II to Optimize TMS locations 

 An intuitive way of representing a solution for the TMS 
location problem is using a string of cells as shown in Fig. 7.  

 

 
Fig. 7 Solution representation 

 
The study area is divided into m discrete cells and each 

cell corresponds to a potential TMS location. The value in 
the cell indicates the existence of a TMS. A value of 1 
means that a TMS is deployed at that location and a value of 
0 means there is no deployment. The sum of all cell values, 
or the length of the string, is equal to the number of TMS to 
be deployed. 
  The NSGA-II is evaluated using the aforementioned binary 
encoding of the decision variables. The aim of the algorithm 
is to simultaneously optimize both travel time error, ε (Refer 
to 5) and the number of TMS, n, to arrive at a solution that 
delivers the optimal number and locations of TMS. A 
population of size 100, a uniform crossover (probability of 
0.98), and a mutation probability of 0.01 are used in the 
algorithm. The NSGA-II is run for 250 generations. Field 
data for I-15 NB for August’07 (AM peak period) was used 
in the algorithm. Fig. 8(a) shows the step-by-step procedure 
how the NSGA-II algorithm works.  
     Initially, a population of individuals, Po (size N=100) is 
created in the search domain. Then, the fitness (objective) 
functions for the individuals are calculated. The usual 
tournament selection, recombination, and mutation operators 
are used to create an offspring population Qo of size N. A 
combined population Rn = Pn�Qn is formed. The population 
is of size 2N. Next step is to sort the population based on 
non domination. Each solution is assigned a fitness (or rank) 
equal to its nondomination level (1 is the best level, 2 is the 
next-best level, and so on). The next step involves 
discrimation between individuals with identical domination 
rank. This is performed by favoring individuals in less 
crowded regions of the objective space. This encourages the 
discovery of a diverse approximation to the Pareto set. Fig. 
8(b) shows schematically how the sorting based on 
nondomination and crowded distance works in the nth 
generation. Since all previous and current population 
members are included in Rn, elitism is ensured. Now, 
solutions belonging to the best nondominated set F1 are of 
best solutions in the combined population and must be 
emphasized more than any other solution in the combined 
population. If the size of F1 is smaller than N, we definitely 
choose all members of the set F1 for the new population 
Pn+1. The remaining members of the population Pn+1 are 
chosen from subsequent nondominated fronts in the order of 
their ranking. Thus, solutions from the set F2 are chosen 
next, followed by solutions from the set F3, and so on. This 
procedure is continued until no more sets can be 
accommodated. Say that the set Fn is the last nondominated 
set beyond which no other set can be accommodated. In 
general, the count of solutions in all sets from F1 to Fn would 
be larger than the population size. To choose exactly N 
population members, we sort the solutions of the last front 
Fn using the crowded-comparison operator in descending 
order and choose the best solutions needed to fill all 
population slots. The new population Pn+1 of size N is now 
used for selection, crossover, and mutation to create a new 
population Qn+1 of size N. 
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Fig. 8 NSGA-II algorithm (a) Flowchart of algorithm (b)  Procedure at nth generation 
 
 

The diversity among nondominated solutions is introduced 
by using the crowding comparison procedure, which is used in 
the tournament selection and during the population reduction 
phase. Solutions that dominate other solution are favored for 
selection by a tournament selection procedure. Tournament 
selection randomly choose a few (the exact number is based 
on evolution pressure) individuals and then always take the 
single best individual. In the next step, crossover and mutation 
are employed to generate new children from the selection 
procedure. Crossover allows for the combination of useful 
traits. Mutation induces random alterations to the decision 
variables to allow for the examination of new search points as 
well as the restoration of lost genetic material. An elitist 
replacement scheme is used to determine the constituents of 
the subsequent generation by combining the parent and the 
child populations and keeping only the N best individuals 
based on domination ranks.  

B. Results from NSGA-II 

Results of the NSGA-II runs for the I-15 NB section are 
shown in Fig. 9, 10, 11and 12. The results for the best variant 
of NSGA-II (uniform crossover, tournament selection) were 
investigated. Several optimization runs corresponding to 
different random seeds were examined to arrive at the best 
pareto optimal solution. The Pareto front generated by multi-
objective optimizer for TMS location problem is graphed in 
Fig. 9.  

 

 
Fig. 9 Pareto front for NSGA-II 

 
The Pareto front consists of the set of objective vectors 

associated with the Pareto optimal set. Pareto optimal set are 
those solutions that are not dominated by any other solutions. 
These solutions represent the best possible compromises with 
respect to the competing objectives of optimizing both travel 
time error and number of TMS. The plot shows that the error 
value is high when only a few TMSs are deployed; however, 
as the deployment increases the error value decreases. After 
reaching approximately 10 (strategically-located) TMSs, any 
further increase in the number of TMSs may not significantly 
decrease the error. The optimal placement of 13 TMS gives an 
accurate estimate of travel time. The corresponding location of 
these 13 TMS as obtained from the optimization program is 
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shown in Fig. 10. Fig. 11 depicts a three-dimensional plot 
showing the convergence of the algorithm over 250 
generations. As the number of generation increases, the 
algorithm reaches convergence and generates the Pareto front 
of the optimal solutions. In the first 100 generations, most of 
the individuals use a larger number of TMS and travel time 
error is high. As the number of generation increases, the 
Pareto front is starting to get a shape-the algorithm finds that a 
lower number of TMSs can achieve the same (or smaller)  low 
travel time error. In addition, the algorithm tests some 
solutions with only few detectors and it finds that these 
solutions generate very high travel time errors. After 200 
generations, the results seem to have reached an optimum 
level between both the competing criteria. Fig. 12 shows the 
number of times a potential TMS location is present in the 
optimal solution. This plot specifies the location of the most 
critical TMS along the study stretch. The TMSs which lie on 
the zero line are not important. TMSs which are between 0 
and 6 (excluding 6) are moderately important, whereas the 
TMSs which are placed 6 or more times in the optimal TMS 
solution are very important. Of the 13 sets of TMS 
deployments, for example, locations 22, 36, 41 and 42 are 
selected 11 times. This indicates that these locations are 
critical for TMS deployment. Location 22 corresponds to the 
TMS located immediately downstream of the I-215 
interchange (Belt Route) and locations 36, 41 and 42 are 
located near the interchange of UT-154/Bangerter highway 
(Fig. 10). 

 
Fig. 10 Location of the Optimal Set of TMSs for I-15 NB Study 

Section (13 TMSs) 

 
 

Fig. 11 Attainment of Pareto optimal solution 

 
 

Fig. 12 Frequency Plot showing the Number of Times a TMS is 
placed at Each Location (I-15 NB, August’07, AM Peak) 

VI. DISCUSSION 

Results have shown that traffic performance in terms of 
travel time estimate was not affected significantly by uniform 
TMS spacing. With the increase in uniform TMS spacing (0.5 
to 3 mile) the travel time error tend to increase, however the 
relationship is weak. There appears to be a broad and varied 
spread of travel time error with the increase of TMS spacing. 
There are some scenarios whose travel time errors tend to 
deviate from the general trend. Part of the complexity is 
attributed to the actual location of the TMSs. This is because 
some scenarios might contain TMS in some locations which 
would translate into overestimating or underestimating the 
travel time error. This indicates that there is a certain 
placement of TMSs that provide better traffic performance in 
terms of travel time estimates than the other placements. 
Assuming that the cost of TMS infrastructure is proportional 
to the number of TMSs installed, higher density does not seem 
to pay off, as the costs rises sharply for little return in 
accuracy.  

Further analysis using NSGA-II algorithm generated the 
Pareto front that consists of the optimal solutions. These 
solutions represent the best possible compromises with respect 
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to the competing objectives of optimizing both travel time 
error and number of TMS. Results suggest that optimal 
placement of 13 TMS would outperform 57 TMS installed at 
0.5 mile spacing (approximately). This is because the average 
of travel time derived from TMSs included in the baseline 
scenario depresses the actual congestion at the congested areas 
on the freeway. Results indicate that these locations are 
critical for travel time computations and the TMSs deployed in 
these locations need to be regularly maintained. One of the 
outputs of the algorithm is the frequency plot that gives the 
number of times a TMS is placed at any location on the 
corridor for different sets of TMSs. Locations with high 
frequencies are the ones that are most critical for deployment 
and/or maintenance. Results showed that TMS at locations 22, 
36, 41 and 42 are crucial to obtain accurate travel time 
estimates on the study corridor. In general, the developed 
method shows that the TMS density needs to be higher in 
congested areas of a corridor. Un-congested sections of the 
corridor need only a nominal deployment. Therefore, the 
general philosophy of more is better is only applicable for 
congested sections of freeway corridors. It was found that 
TMSs (22, 41, 42) are required at merge areas near entrance 
ramps, especially when the acceleration lanes are short. This 
can be attributed to the potential reduction in traffic speeds in 
merge areas due to increased weaving.  

VII.  CONCLUSION 

 The goal of this paper is to determine the impact of 
decreasing TMS coverage on a freeway corridor on metrics 
such as travel time estimates. The methodology developed in 
this study to calculate the travel time error was effective in 
determining the sensitivity analysis between TMS coverage 
and travel time estimate. Findings suggest that there is a 
relationship between travel time errors with respect to the 
TMS spacing. More TMSs are not necessarily better. Rather, 
the quality of estimates varied with TMS spacing and location. 
The analysis shows that actual location of the TMS is the key 
element in the estimation of travel time for the freeway 
section. Depending on the TMSs “selected”, a different picture 
for the congestion measure along the freeway section can be 
obtained.  

Further analysis shows that selection of specific placement 
of the TMSs is essential in obtaining valid measures of travel 
time. Results indicate that substantially fewer TMSs are 
needed for accurate travel time prediction than was true for 
incident detection. With carefully placed TMS detectors that 
are well maintained, travel time estimates can be derived with 
an acceptable level of accuracy. Overall, it is essential to 
deploy more TMSs to cover major bottleneck areas and 
nominal for free-flow regimes. These findings suggest that 
highway agencies can reduce the number of TMSs currently 
maintained and can deploy far less than the current half- mile 
spacing guidelines. This could save in capital expenditure, 
operations, and maintenance costs. Further, the successful 
application of NSGA-II algorithm showed the potential of 
using the optimization formulation in this problem. Results 
reveal that the presented approach is promising as an 

engineering design tool.           
This empirical study illustrates the effect of TMS spacing 

on travel time accuracy under non-incident conditions. 
Incident conditions were not tested within the scope of this 
study. Including information on incidents, road conditions, 
road geometry, and work zones in the analysis may help in 
developing guidelines to support freeway performance 
measures. To sum up, the reliability of travel time estimates 
depends on the network specific idiosyncratic location of 
detector stations; and less on the overall density of detector 
coverage. 
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