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Abstract—In this study, the effects and interactions of reaction 

time and capping agent assistance during sol-gel synthesis of 
magnesium substituted hydroxyapatite nanopowder (MgHA) on 
hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P 
ratio and mean crystallite size was examined experimentally as well 
as through statistical analysis. MgHA nanopowders were synthesized 
by sol-gel technique at room temperature using aqueous solution of 
calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and 
potassium dihydrogen phosphate as starting materials. The reaction 
time for sol-gel synthesis was varied between 15 to 60 minutes. Two 
process routes were followed with and without addition of 
triethanolamine (TEA) in the solutions. The elemental compositions 
of as-synthesized powders were determined using X-ray fluorescence 
(XRF) spectroscopy. The functional groups present in the as-
synthesized MgHA nanopowders were established through Fourier 
Transform Infrared Spectroscopy (FTIR). The amounts of phases 
present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders 
were determined using X-ray diffraction (XRD). The HA content in 
biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized 
MgHA nanopowders increased effectively with reaction time of sols 
(p<0.0001, two way ANOVA), however, these were independent of 
TEA addition (p>0.15, two way ANOVA). The MgHA nanopowders 
synthesized with TEA assistance exhibited 14 nm lower crystallite 
size (p<0.018, 2 sample t-test) compared to the powder synthesized 
without TEA assistance. 

 
Keywords—Capping agent, hydroxyapatite, regression analysis, 

sol-gel, 2- sample t-test, two-way ANOVA. 

I. INTRODUCTION 

ITHIN the last four decades a revolution has occurred 
in the innovative use of specially designed ceramics for 

the repair and reconstruction of a diseased or damaged part of 
the bone [1]. Synthetic HA, [Ca10 (PO4)6(OH)2] has widely 
been used for repairing hard tissues due to its chemical and 
structural similarity to the mineral phase of bone and tooth [2]. 
This inorganic phosphate has been studied extensively for 
medical applications in the form of powders, composites, and 
coatings [3]. Biological apatite contains trace ions like Na+, 
Mg2+ and K+, which are essential in biological processes. 
Magnesium plays a key role in bone metabolism as it affects 
osteoblast and osteoclast activity and thereby bones growth 
[4]. Mg2+ ion stabilizes the crystal lattice of HA [5]. The 
properties and applications of synthetically prepared HA are 
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influenced by the size and morphological characteristics of 
their particles [6]. The crystallite size of HA for adult enamel 
is 130 nm, for dentine is 20 nm and for bone is 25 nm [7]. 
Published work show that the synthesis procedure, control of 
experimental parameters and reagents used influence the 
resulting crystallite size. In addition, the process parameters 
also cause change in the constituent phases and Ca/P ratio of 
the final product. The Ca/P ratio of HA and β-TCP is 1.67 and 
1.50, respectively and for a biphasic mixture consisting of HA 
and β-TCP, it is between 1.50-1.67. In order to have uniform 
chemical composition and particle size, sol-gel synthesis route 
was selected for present study.  

The HA powder with different phase constituents and sizes 
find different implications in biological applications. In view 
of this, the present investigation deals with the study on the 
influence of reaction time of sols and capping agent (TEA) 
assistance on the HA/β-TCP ratio, Ca/P ratio and crystallite 
size of resulting MgHA powders through experimental results 
and their statistical analysis using 2 sample t-test and two way 
ANOVA.  

II.  MATERIALS AND METHODOLOGY 

A. Synthesis of HA with and without TEA 

 To synthesize MgHA nanopowders (MgzCa10-z(PO4)6OH2, 
z = 0.2), calcium nitrate tetrahydrate (CNT, Ca(NO3)2.4H2O, 
Merck, AR grade) and potassium dihydrogen phosphate 
(KDP, KH2PO4, Merck, AR grade) were used as precursors of 
calcium and phosphorous, respectively. Magnesium nitrate 
hexahydrate (MNT, Mg (NO3)2.6H2O, Merck AR grade) was 
used as magnesium precursor. 1.0 M solution A was prepared 
by mixing 0.98 M of aqueous solution of CNT and 0.02 M 
aqueous solution of MNT. The Solution A was then added 
drop-wise to 0.6 M KDP solution under vigorous stirring at 
2100 rpm for 1 hour at 10°C. (Ca+Mg)/P molar ratio was 
maintained at 1.67. The pH was continuously monitored and 
adjusted to 10±0.1 by adding 25% NH4OH solution to 
improve gelation and polymerization of HA structure. MgHA 
nanopowder with TEA assistance was synthesized by adding 
0.6 M TEA (Merck, India) into KDP and then following the 
procedure as explained above. The molar ratio of CNT + 
MNT: TEA was maintained at 1:0.6.  

During the mixing and stirring step, a part of sol mixture 
was withdrawn at regular interval of 5 minutes starting from 
15 minutes till 60 minutes and then aged for 24 hours at 
25±2°C. Gelatinous precipitates thus formed were centrifuged 
and washed thoroughly by double distilled lukewarm water. 
The precipitates were dried in an oven at 70°C for 48 hours. 
The dried mass from above step was crushed and ground with 
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the help of a mortar and pestle to obtain fine powders. As-
synthesized MgHA nanopowders were calcined for 2 hours in 
a silicon carbide programmable muffle furnace at a heating 
rate of 5°C/min. at 900°C and finally cooled in furnace by 
switching it off. 

B. Powder Characterization 

The elemental analysis (by weight) of MgHA powders was 
carried out by using wavelength dispersive X-ray 
Fluorescence Spectroscopy (WD-XRF, Model: S8 TIGER, 
Make Bruker, Germany). Approximately 8.0 grams of powder 
was pressed at a load of 15 tons using hydraulic press to form 
pellets of 34 mm diameter and 1.5 mm thickness. The pellets 
were analyzed for 17 minutes in WD-XRF. XRF spectra were 
obtained for determination of elemental concentration in 
powders. Infrared spectra (FTIR, Perkin Elmer) were recorded 
in the region 450–4000 cm-1 using KBr pellets (1% wt/wt), 
with spectral resolution of 2 cm-1 for the nanopowders by 
taking four scans for each sample. The spectra were analyzed 
to identify the various functional groups such as hydroxyl, 
phosphates, nitrates and carbonates present in nanopowders. 
XRD, Philips X’Pert 1710 was used for XRD analysis. The 
test was performed for MgHA powder using 
CuKα radiation, λ = 1.54 Å, 2θ- 20˚ to 90˚, step size 0.017°, 
time per step 20.03 s and scan speed 2.12°/min. XRD analysis 
was carried out to determine the phases, mean crystallite size 
and lattice parameters. Crystallite size of nanopowders was 
calculated using Scherrer’s equation [8], [9]. 
 




cos

9.0
sX                               (1) 

                     
where XS is the crystallite size in nm, λ is the wave length of 
X-ray beam, β is the broadening of diffraction line at half of 
its maximum intensity in radians and 2θ is the Bragg’s 
diffraction angle (o). The silicon standard was used to measure 
the instrument broadening in order to correct the value of β. 
To calculate mean crystallite size of nanopowders, three peaks 
of XRD spectra which were well separated and had high 
intensities were chosen. 

As reported by [10]-[12], thermal decomposition of calcium 
deficient hydroxyapatite, CDHA (Ca10-x(HPO4)x(PO4)6-x(OH)2-

x) results in the formation of a biphasic mixture consisting of 
HA and β-TCP phases at temperatures above 800°C according 
to:  

 

HPO PO 	 OH 	 	 	Ca PO 	 OH
3xCa PO 	 	 	xH O															    (2) 

   

where, x is the calcium deficiency and . The ratio of 

mole fraction of β-TCP to mole fraction of HA in the calcined 
samples is given by (3): 
 

	                                          (3) 

 

		                            (4) 

 
The weight fractions of hydroxyapatite phase (WHA) and β-

TCP phase (Wβ-TCP) estimated from XRD patterns using 
external standard method were converted into mole fractions 
and then used for calculating x and Ca/P values. 

The two way ANOVA test was applied to analyze the effect 
of reaction time on HA/ β-TCP and Ca/P ratios of 
nanopowders. Two sample t test using Minitab software was 
performed to predict the effect of TEA on mean crystallite size 
of resulting MgHA nanopowder.  

III. RESULTS AND DISCUSSION 

A. XRF Spectroscopic Analysis 

The energy dispersive spectra of MgHA nanopowders 
synthesized by reaction of sol for 15 minutes with and without 
TEA assistance were used to determine the amount of Ca, Mg 
and P in nanopowders. The MgHA nanopowder synthesized 
with and without TEA assistance consisted of 0.13 wt.% and 
0.21 wt.% of Mg, respectively. This confirmed substitution of 
Mg in hydroxyapatite at an early stage of synthesis.  

Figs. 1 (a) and (b) show the FTIR spectrum of MgHA 
powders synthesized by reaction of sol ranging from 15 to 60 
min. with TEA assistance and without TEA, respectively. All 
characteristic peaks of hydroxyapatite in the spectra i.e. 
phosphate vibrations of apatite:ν1 PO4

3- (962 cm-1), ν2 PO4
3-

 (473 cm-1), ν3 PO4
3- (broad band 1031-1093 cm-1) and ν4 PO4

3-

 (569 cm-1 and 602 cm-1); and hydroxyl group of hydrogen 
bonded to OH-at 3569 cm-1 and 631 cm-1were present in 
MgHA powders. The weak absorption peak at 868.7cm-1 in 
MgHA powder was ascribed to P–O–H vibration in HPO4

2-

 group, typical of CDHA [13]. The stretching vibration of 
CO3

2- at around 1400.3 cm-1 was detected. The incorporation 
of carbonate ions in the apatite structure might have taken 
place during the synthesis of HA, where the atmospheric CO2 
reacted with OH- in the HA, forming carbonate ions [14]. 
Bone apatite contains 2-6 wt.% carbonate which commonly 
substitutes for PO4

3- group in the HA structure [15]-[18]. As 
reported earlier CO3

2- presence can improve the bioactivity of 
HA [17].  

Broad envelop around 3400 cm-1and 1648 cm-1 was ascribed 
to the O-H and H-O-H vibrations of the absorbed water 
molecules on the HA crystal structure, respectively. As the 
reaction time of sol was increased from 15 to 60 min., strength 
of PO4

3-and OH- bands in resulting powders increased while 
that of HPO4

- band decreased.  

B. XRD Analysis 

Figs. 2 (a) and (b) show the XRD patterns of MgHA 
powders synthesized by reaction of sol ranging from 15 to 60 
min. with TEA assistance and without TEA, respectively. The 
lattice parameters of TEA assisted MgHA powder changed 
from 9.42 to 9.46Å (for a) and 6.82 to 6.86 Å (for c) and 1816 
to 1833 [Å] 3 (for volume of HA unit cell) and the mean 
crystallite size changed from 8.75 to 29.43 nm as the reaction 
time was increased from 15 to 60 minutes.  
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D. Variation of Ca/P ratio 

The data collected for Ca/P ratio was calculated using (5) 
reaction time from 15 to 60 min. To investigate the 
relationship between Ca/P ratio and reaction time orthogonal 
regression tool was used. The correlation graphically 
presented in Fig. 9 was estimated and p and R2 were found and 
results obtained were significant as p < 0.05 and R2= 0.946. 
The fitting equation (5) correlated Ca/P ratio with reaction 
time: 
 

1.568 0.006141	 0.000189	 	 0.000001	 m    (5) 
 
where t is the reaction time. 

IV. CONCLUSIONS 

The effect of reaction time and assistance of capping agent 
like TEA during the sol-gel synthesis of magnesium doped 
hydroxyapatite powder has been studied on proportion of 
hydroxyapatite phase and Ca/P ratio and the crystallite size. 
The magnesium doping occurred in HA as early asat a 
reaction time of 15 minutes. There were 90% chances to 
obtain MgHA powder during sol-gel synthesis by TEA 
assistance with crystallite size lower by 14 nm than that 
without TEA. The reaction time has significant influence on 
the HA phase proportion in the biphasic mixture of Ha and β-
TCP and Ca/P ratio of synthesized powder while TEA has 
trivial impact. The Ca/P ratio had cubic relation with reaction 
time given by equation Ca/P = 1.568 + 0.006141 t – 0.000189 
t2 – 0.000001 t3. Only 58.3% of sol-gel synthesis of MgHA 
nanopowder could be completed in 60 min. of reaction time in 
present investigation. 
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