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Abstract—This paper studies the effect of different compression 

constraints and schemes presented in a new and flexible paradigm to 
achieve high compression ratios and acceptable signal to noise ratios 
of Arabic speech signals. Compression parameters are computed for 
variable frame sizes of a level 5 to 7 Discrete Wavelet Transform 
(DWT) representation of the signals for different analyzing mother 
wavelet functions. Results are obtained and compared for Global 
threshold and level dependent threshold techniques.  The results 
obtained also include comparisons with Signal to Noise Ratios, Peak 
Signal to Noise Ratios and Normalized Root Mean Square Error.   
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I.  INTRODUCTION 

PPLICATIONS to Arabic speech compression involve 
real time coding of speech for mobile satellite 

communication, cellular phones, and audio for videophones or 
video teleconferencing system. Other applications involve 
vocoding of speech signals for storage, synthesis and 
transmission [8]. The DWT of a given speech signal 
concentrates speech energy in few neighboring coefficients 
allowing natural compression. In this paper we introduce a 
flexible compression scheme that uses wavelets and their 
transforms. The flexibility of this new paradigm is attained by 
observing: 

i. The analyzing wavelet used 
ii. Decomposition level 

iii. Compression ratios 
iv. Frame size 
v. Measured parameters 

vi. Type of threshold used 
 

In this paper, a flexible paradigm depicted in Fig. 5 is 
introduced to compress Arabic speech signals. The signal is 
first divided it into different size frames, which are then 
analyzed using particular mother wavelets up to a level 7 
representation using DWT. 
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The Arabic digits are the focus of compression, namely. 
Different compression parameters are calculated for these 
signals and compression ratios are derived for to different 
types of compression schemes, namely, the Level Dependent 
and Global Threshold techniques.  The following section 
introduces wavelets and two of their related transforms, 
namely, the Continuous Wavelets Transform (CWT) and the 
DWT. While speech compression is discussed in Section 3 
with some details, the implementation of the system and 
compression parameters used in this work are included in 
Section 4. The last two sections give a detailed discussion on 
the results obtained, and the conclusion of this paper. 
 

II.  WAVELETS 
A wavelet is a finite energy signal defined over specific 

interval of time [1]. The main interest in wavelets is their 
ability to represent a given signal at different. Wavelets are 
used to analyze signals in much the same way as complex 
exponentials (sine and cosine) used in Fourier analysis of 
signals. Unlike Fourier, wavelets can be used to analyze non-
stationary, time-varying, or transient signals [9] [10]. This is 
an important aspect, since speech signals are considered to be 
non-stationary. A given signal is represented by using 
translated and scaled versions of a mother wavelet as it is 
explained below. They are also localized in time and 
frequency domains [9]. 
 

A. Continuous Wavelet Transform 
The wavelet transform is a two parameter expansion of a 

signal in terms of a particular wavelet basis function [1]. 
Given Ψ(t) called the mother wavelet; all other baby wavelets 
are obtained by simple scaling and translation of Ψ(t).  Ψa,t(t) 
= (1/√a) Ψ[(t-b)/a]. 

Where a and b are the scaling and the translation parameter 
respectively. A nice approach to the CWT representation is 
first to inspect the Fourier transform represented 
mathematically by: 
 

F(ω) = ∫s(t)e-jωtdt 
 

Replacing the complex exponential in the Fourier transform 
with Ψa,t(t) yields: 
 

C(S,U) = ∫√a Ψ[(t-b)/a]dt 
 

In other words with wavelet transform, reference to 
frequency is replaced by reference to scale [8], [9][10].  

A 
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B. Discrete Wavelet Transform  
In our application the discrete wavelet transform is applied. 

By choosing scale and position based on power of 2, CWT is 
reduced to DWT without any loss in energy. The scaling 
parameter is discrete and dyadic, a = 2-j. The translation is 
discretized with respect to each scale by using    τ = k2-jT [5]. 
Ψj,k(t) = (2j/2) Ψ[(2jt-kT)]. 

The integer k represents the translation of the wavelet 
function; it indicates time in wavelet transform. Integer j, 
however, is an indication of the wavelet frequency or 
spectrum shift and generally referred to as scale. The DWT 
transforms a discrete input signal vector into two sets of 
coefficients the approximation CA containing low frequency 
information and the detail coefficients CD containing high 
frequency information. Fig.  1 shows a level 2 DWT 
decomposition of an input signal s (t) [8] [9] [10]. 
 

 
Fig. 1 Level 2 Decomposition 

Most commonly used wavelets are categorized into two 
classes: orthogonal and bi-orthogonal wavelet system. 
Orthogonal wavelets decompose signals into well behaved 
orthogonal signal spaces. Biorthogonal wavelets are more 
complicated and are defined based on a pair of scaling and 
wavelet function. The wavelet of interest, the one used in this 
work, is the Daubechies wavelet family, in which carry out 
very unique compression properties, intended for wavelet 
coefficients. 
 

 

Fig. 2 Plots of Different Daubechies Orthogonal Wavelets 

 
Fig. 2 shows many of the Daubechies orthogonal wavelets. 

One notes that db10 is a much smoother function than the 
rest. In general for the Daubechies orthogonal wavelets dbi; as 
i increase the wavelet becomes smoother. In this paper, the 
analyzing functions chosen were db4, db8, db10 and db20. 
The DWT can be computed using octave band filter bank [6] 
[9]. The signal is split into two segments via a two-band filter 
bank, a low pass or lower resolution version, and a high pass 
one. The lower resolution version is then split again, and so 
on. This is illustrated in Fig. 1 and 3. The high pass filter HP 

generates high frequency coefficients containing low energy; 
these are the detail coefficients of the signal indicated as CDi. 
Low pass filter LP generates the approximation coefficients; 
designated by CA. Those coefficients contain most of the 
energy in the speech signal [10]. For multi resolution analysis 
CA are decomposed a level further into detail and 
approximation coefficients. The output of the HP filter is 
down sampled and fed into a detector to detect all coefficients 
below a certain threshold and replace them by a zero. The 
down sampling will retain N/2 of the signal coefficient the 
ones that are only needed. To reconstruct the signal we apply 
the Inverse Discrete Wavelet Transform (IDWT) illustrated in 
Fig. 4. 
 

 

Fig. 3 DWT Decomposition (Analysis) 

 
Fig. 4 IDWT Reconstruction (Synthesis) 

 

III.  WAVELET COMPRESSION 
In many applications, speech signals are either stored for 

later use or transmitted over some media. In both cases, one is 
interested in reducing the size of the signal because of the 
cost, time and other benefits. The search arises for a 
mechanism to compress the signal and obtain lower bit rates. 
Different techniques were implemented each having its 
advantages and disadvantages. In general, they can be 
classified into two types, lossy and lossless. The Hufmann 
coding, for example, is considered to be lossless compression. 
The original data will be totally restored without any 
modifications. Lossy compression does not completely retain 
the original signal; consequently some of the information is 
lost. For speech signals, this loss is acceptable since we are 
interested only in recognizing the signal. Wavelets 
compression technique is considered to be lossy where the 
reconstructed signal is not an exact match of the original 
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signal. One of the most important advantages of wavelet 
transform is that it concentrates speech formation (energy and 
perception) into a few neighboring coefficients [3]. Also when 
applying the DWT to a given speech signal many coefficients 
of small values (depending on level we choose) are thus 
considered insignificant. The retained coefficients will still 
have the larger percentage of energy in the signal. The process 
of compressing the digit signals is discussed in the next 
section which also contains the different mechanisms to be 
used during the process. 
 

A. Data Base 
The signals are chosen from the Arabic digit speech data 

base. The digits were spoken by different speakers and 
recorded in the studio at the Lebanese American University, 
Byblos. The small size studio is designed to minimize noise 
and equipped with a multi directional microphone made by 
Neumann to collect the speech signal with the best quality. 
The signals are then recorded and transformed into wave 
sounds (.wav). The tools used are the PRO-Tools Control 24 
Dig-Design Device. This device is a computerized digital 
mixer.  
 

B. Choosing the Decomposition Level 
The DWT on a given signal, the decomposition level can 

reach up to level L = 2K, where K is the length of the discrete 
signal. Thus we can apply the transform at any of these levels. 
But in fact, the decomposition level depends on the type of 
signal being analyzed. For the processing of speech signals, 
decomposition up to scale 7 is adequate [7]. In this paper, 
level 5 DWT is obtained for every signal and comparisons 
were made with level 6 and 7 decompositions. 

 

C. Choosing Appropriate Wavelets 
The type of wavelet is of high importance for such 

experiments. It directly affects the Signal to Noise Ratio 
(SNR) of the output signal. Choosing the appropriate wavelet 
will maximize the SNR and minimizes the relative error. As 
mentioned earlier Daubechies wavelets have good 
compression property for wavelet coefficients [1], giving 
better SNR ratios. Wavelets with more vanishing moments 
provide better reconstruction quality. Daubechies wavelets are 
developed with maximum regularity; the number of zero 
moments is maximized, leading to the best wavelet family for 
compression. The selected members of this orthogonal 
Daubechies family are db4,   db8,   db10 and   db20. 

D. Choosing the Frame Size 
Dividing the speech signal in different frame sizes is used 

to examine their effect on the overall compression 
performance, since framing aims to improve the compression 
ratios effect. Framing aim to improve the compression ratios 
obtained. Three frame sizes are tested in this paper (20ms, 
0.25s, and 0.5s). The frames obtained are analyzed separately 
being considered a vector in its own right. 

 

E. Threshold Techniques 
The coefficients obtained after applying DWT on the frame 

concentrate energy in few neighbors. Thus we can truncate all 
coefficients with “low” energy and retain few coefficients 
holding the high energy value. The two thresholding 
techniques are implemented according to the following 
algorithms [3]. 

 
 

1. Global Threshold 
The global threshold technique works by retaining the 

wavelet transform coefficients which have the largest absolute 
value. For a given speech signal, the global threshold 
algorithm first divides the speech signal into frames of equal 
size F. Then the wavelet transform of each frame is computed. 
Usually with length T > F. These coefficients are sorted in an 
ascending order and the first L coefficients are retained. In 
practice, these coefficients along with their positions in the 
wavelet transform vectors are stored or transmitted [3][5]. For 
these reasons,  2.5*L coefficients are used to represent the 
original F samples distributed as follows:  8 bits for the 
amplitude and 12 bits for the position leading to 2.5 bytes. 
The Compression Ratio CR, can then be defined by: CR=F / 
2.5*L.  

Each frame is reconstructed by replacing the missing 
coefficients by zeros.  

 
2. Level Dependent Threshold 
The level-dependent threshold technique is derived from 

the Birge-Massart strategy [5]. This strategy works on 
selecting the retained wavelet coefficients as follows. Let J0 be 
the decomposition level, m the length of the coarsest 
approximation coefficients over 2, and α be a real greater that 
1. At level J0+1 (and coarser levels), everything is kept. For 
level J from 1 to J0, the KJ larger coefficients in absolute value 
are kept using this formula: 
KJ =              m            . 
          (J0 + 1 – J) α 
The value of α used is 1.5 as suggested in [5]. 
 

The value of the threshold applied depends on the 
compression ratio we want to achieve. The task is to obtain 
higher compression ratios and an acceptable SNR needed to 
reconstruct the signal and detect it. The signal is reconstructed 
by applying the Inverse Discrete Wavelet Transform IDWT as 
it is shown in Fig. 5. 
 

IV. DESIGN AND IMPLEMENTATIONS 

The introduced system is depicted in Fig.  5 and 
implemented and simulated to study its performance using 
Matlab®. Some of the functions used are, Wavdec, which 
computes the multi-level decomposition of the signal and 
wavrec that reconstructs the signal from the coefficients 
obtained. Two other important functions are: wdencmp returns 
the coefficients after applying a determined threshold. It also 
computes the percentage of energy retained and the 
percentage of truncated zeroes.  
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A.  The Compression Parameters 
In this paper, four compression parameters are used. They 

are defined next along with their mathematical expressions. 
 
• Signal to Noise Ratio (SNR) 

 
SNR = 10*log (σx^2/ σe^2) 

  
Where σx^2 is the mean square of the speech signal and 
σe^2 is the mean square difference between the original 
and reconstructed signals. 
 

•   Peak Signal to Noise Ratio 
 

PSNR =10*log (NX2 / ||x-r||2) 
 

Where N is the length of the reconstructed signal, X is the 
maximum absolute square value of the signal x and ||x-r||2 

is the energy of the difference between original and 
reconstructed signals. 

 
• Normalized Root Mean Square Error 
 

NRMSE = sqrt[(x(n)-r(n))2/(x(n)-μx(n))2] 
 

Where X(n) is the speech signal, r(n) is the reconstructed 
signal, and μx(n) in the mean of the speech signal. 

 
• Retained Signal Energy 
 

RSE = 100*||x(n) ||2 / ||r(n)||2 

 

Where ||x(n) || is the norm of the original signal and ||r(n) || is 
the norm of the reconstructed one. For db orthogonal wavelets 
the retained energy is equal to the L2-norm recovery 
performance.  

The speech signals compressed are the Arabic digits “Zero’ 
and “eight”. They are depicted in Fig.  6 and Fig. 7 
respectively along with their compressed versions. These 
compressed versions were obtained using “db8” and the size 
of frame is 0.02s. Different Compression Ratios (CR) were 
obtained. The compressed speech signal is still audible and 
you can still recognize the output signal. Different parameters 
were examined when simulating the code. The 8 KHz sampled 
signals are divided into frames (0.2ms, 0.25s, and 0.5s) and 
decomposed up to level 5. Each frame is decomposed 
separately. At this stage the threshold is applied on the 
coefficients to truncate whatever unnecessary. The obtained 
coefficients are then used to reconstruct the output 
compressed signal. Different results were obtained allowing 
efficient evaluations and comparisons of the used methods and 
parameters.  
 

V.  DISCUSSION 
Average SNR, PSNR, and NRMSE are all measured given 

the frame size, the type of the mother wavelet ψ(t) and value 
of the threshold. Also, the percentage of Zeros (%Z) and the 
percentage of the Energy Retained (%ER) are included. 

Another set of experiment is done on the Arabic Digit zero.  
In these set of experiments, the threshold does not apply on 
the approximation coefficients. We are able to disregard more 
than 92% of the signal coefficients and still retain about 76 % 
of the energy in the signal using a frame size of 0.02ms and 
applying the global threshold. That is, keeping track of 8% of 
the frame to be reconstructed later. Furthermore, an increase 
in the length of the frame to 0.25s achieved better results. Less 
coefficients containing more energy and the SNR is 
maximized while the NRMSE is minimized. Changing the 
wavelet also has its effect on the compression ratio. If we use 
a smooth analyzing wavelet like db10 the percentage of the 
truncated coefficients decreased. However; they produced 
better SNR. Thus, these wavelets play the role of producing 
better SNR but less compressing ratios. On the other hand, un-
smooth wavelets such as   db4 lead to better compression 
ratios but resulting with low SNR.  

 
 

 

          Fig. 5 The Introduced Flexible Paradigm 

 

 

Fig. 6 Arabic Digit zero with compressed version. The CR = 7.65 
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Fig. 7 Arabic Digit Eight with compressed version. The CR = 5.5 

 
VI.  CONCLUSION 

In this paper, the performance of the Discrete Wavelet 
Transform in compressing speech signals is tested and the 
following points were observed. High compression ratios were 
achieved with acceptable SNR. No further enhancements were 
achieved beyond level 5 decomposition. The effect of frame 
size and the Level Dependent Threshold on the NRMSE is 
evident while this measurement remains almost constant for 
all experiments with negligible changes. Increasing the frame 
size, positively affects the overall performance in both 
threshold techniques used. Overall global threshold leads to 
better results than the level dependent threshold technique in 
the case of SNR and CR. This was the case with and without 
framing and for both tested digits. It is worthwhile noting that 
we could not pinpoint the best compression wavelet.  
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