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Abstract—Artificia Immune System is adopted as a Heuristic
Algorithm to solve the combinatorial problems for decades.
Nevertheless, many of these applicationstook advantage of the benefit
for applications but seldom proposed approaches for enhancing the
efficiency. In this paper, we continue the previous research to develop
a Self-evolving Artificial Immune System Il via coordinating the T
and B cell in Immune System and built a block-based artificial
chromosome for speeding up the computation time and better
performance for different complexities of problems. Through the
design of Plasma cell and clona selection which are relative the
function of the Immune Response. The Immune Response will help
the AIS have the globa and local searching ability and preventing
trapped in local optima From the experimental result, the significant
performance validates the SEAIS |1 is effective when solving the
permutation flows-hop problems.

Keywords—Atrtificial Immune System, Clona Selection, Immune
Response, Permutation Flow-shop Scheduling Problems

I. INTRODUCTION

ERMUTATION Flow-shop Scheduling Problems (PFSP)

are regarded as one of the combinatorial problems. As the
definition of the combinatorial problems, is belong to NP-hard.
To solve optimization problems, a common challenge is which
an algorithm may betrapped in thelocal optima of the objective
function when the dimension is high and there are numerous
local optima. Tsai et al. [1] and Chun et al. [2] has proposed the
algorithms for global optimization problems are importance in
many different areas which likes modern engineering design
and systems operation. Genetic algorithm which is proposed by
Holland [3] and Goldberg [4] is a tool based on biological
mechanisms and natural selection theory, have paid much
attention regarding its potential as an optimization technique
for combinational optimization problems and have been
successfully applied in many different areas. The main feature
of the GAs as an optimization method is their implicit
paralelism, which is a result of the evolutionary process.
However, there are two major issuesin GAs; oneislack of the
global search ability and another isthe premature convergence.
Therefore, numerous of algorithms were proposed for solving
the phenomenon. Initialy, the improvements in the GAs have
been sought in the optimal proportion and adaptation of the
main parameters, namely probability of mutation, probability of
crossover and population size. Recently, most researchers
proposed many GA-based approachesto solve the phenomenon,
one of these proposed GA-based algorithm is hybrid Genetic
Algorithm and Immune System.
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The organisms named antibodies in the immune system
which are responsible for protecting the body to against harmful
organisms named antigen. Campelo [5] mentioned the immune
system isable to detect a huge number of antigensusing afairly
limited repertory of gene combinations. To carry out this
recognition task, segments of genes are combined to
accomplish the specificity of amost all the invader antigens
known. A self-recognition task keeps the immune system from
attacking itself, because immune cells are capable of
recognizing themselves.

Il. LITERATURE REVIEW

A. Déefinition of Flow-shop Scheduling Problems

Flow-shops are useful tools in modeling manufacturing
processes. A permutation flow-shop isajob processing facility,
which consists of several machines and several jobs to be
processed on the machines on different machines. In a
permutation flow-shop, all jobs follow the same processing
order. Our objectiveisto find a set of compromise solutions so
that the makespan is minimized. The flow-shop scheduling
problem is a typical assembly line problem where n different
jobs have to be processed on m different machines. All jobs are
processed on all the machinesin the same order. The processing
time of the jobs on machines are fixed regardless of the order in
which the processing is conducted. The problem is
characterized by a matrix P = (p;), i = 1... n, j = 1... m, of
processing time. Each machine processes exactly one job at a
time and each job is processed on exactly one machine at a
time. The problem then is to find a sequence of jobs of
minimizing the makespan which is the completion time of the
last job in the sequence on the last machine. If Ci denotes the
completion time for job i, we are trying to minimize max Ci.
There are many other criteria that can be considered for the
purpose of optimization. We refer the reader to Bagchi [14] for
adetailed discussion of scheduling using GA. For details of the
flow-shop and other scheduling and sequencing problems we
refer the reader to Baker. The flow-shop scheduling can be
formerly defined asfollows: if p (i, j) isthe processing time for
Jobi on Machinej, and ajob permutation { s, t,..., 7.}, where
there are n jobs and m machines, accordingly the completion
times C (m;, j) is calculated as follows which are proposed by
Reeves [13]:

Cr,)=p(m,) (1

C(m,1)=C(my, )+p(m 1), fori=2,...,n (2

C(my,j) =C(m,j-1) +p(my,j) forj=2,...m (3)

C (m, ) = max{C (mi4, ), C (m;, j-D} +p(m.j) (4
fori=2,...,n; forj=2,....m

The makespan is finally defined as:
Cmax(r) = C(m,, m) (5)
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Subsequently, the objective is to find a permutatioin the
set of all permutationf] so that

Cmax@@*) £ Cmaxr) On0[] (6)

A more general flow-shop scheduling problem can bé

defined by allowing the permutation of jobs to biedent on
each machine. However, what work has been doneow sn
the more general flow-shop scheduling problem kaded to
small improvement in solution quality over the patation
flow-shop scheduling problems (PFSP) while incregighe
complexity of the problem substantially. The size tbhe
solution space increases fromh to (n!)™. Other objective
functions for the PFSP also received a lot of sitten For
example, the mean flow-time (the time a job speimdthe
process), or the mean tardiness (assuming soméirde ol
each job) are to be minimized.

Other real problems from the manufacturing indestsuch
as their jobs may have non-identical release dates,there
may be sequence-dependent setup times, and lirnitéfdr
storage between machines and so on. These chisticseof
the real world problems will make the problem mor
complicated to be solved within a reasonable timané.
However, GA approaches provide a more realistis iz the
problem. Since it can generate alternatives ofeecgs (in the

evolving process, each chromosome represents abléeas

solution to the problem) to the decision maker, arem
applicable sequence can be decided to solve thesrtur
problem with satisfactory results.

B. AlSrelative researches

In the application of computational intelligence]SAis
usually been adopted for solving the combinatquiablems.
Chang et al. [6] mentioned HGIA contains two pha3ée first
part is to take advantage of GA to fast convergeelVHGIA
trapped in local optima or cannot converge anymibre pure
AIS stage will be active. In the stage of AIS, Becell is
responsible for continuing evolution. NevertheleEssell is
responsible to offer the information and diverslfiartificial
chromosome to enhance the diversity of the popuafor
escaping the local optima. Tan et al. [7] ever pegpan
algorithm which used the GA and the improved claadéction
to combine as AIS for solving the multiple objeetiproblems
(MOPs). The above researches did not have a spisan of
AIS viewpoint but establish the collaboration modéh GA.
Therefore, this research aims at developing therA¢8hanism
which including the T and B cell. We also discussdesign of
Plasma cell and clonal selection which are relatiesfunction
of the Immune Response. The design of the Immuspdtese
will help the AIS have the global and local seangrability and
preventing trapped in local optima.

Artificial immune system is an algorithm which silates the
immune system, with different evolutionary stragsgito

SELF-EVOLVING ARTIFICIAL IMMUNE SYSTEM

e
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identify the unknown virus which is so-called Argig The
antibodies are regarded as the protectors whicheaponsible
to eliminate the antigen. Therefore, in this patiex,antigen is
defined as the best found solution and acceptshidenge
from the antibodies. In other words, the winners toé
antibodies are defined as the antigens in iteration
As shown in Fig. 1, when the initial solutions dreided to
Antigen and Antibodies, T-cell mechanism startarnialyze the
composition information. There will be two cells penerated
which are TH and TS. TH is responsible to speedthg
identification the evolutionary information of Aggn. TS
contains the diversity of the composition.
Initial
population

Identify
Antigen(Ag) and Antiboies(Abs)

Fi

‘ Ag ‘

!

Generate Yes

T-Cell Diversity of Ab s
Mechanism < threshold

<g‘g> No

=

Immunec
Response

Evaluate
the Abs
via Cmax

Binary

I Tournament

—
m

‘ermination
condition

These two components will act different mechanishictv
helps the evolution process according to differgnategies.
The new composited cell with the injection of THT® is the
cell who are responsible to generate the new Adtdsowhich
with the identification ability and diversity, is<alled Plasma
cell in this research.

The definition of B-cell is responsible to colléke effective
Antibodies which is also called the Memory cell.c8l
contains two parts which actives the Mutation me&ra when
the worse Antibodies are met. In another hand Atfitédbodies
with the top 10 performance will be considered tores in
B-cell for the next Antigen. This research adoptsriespective
evolutionary strategy to search the different Aotiles for
widespread identification of Antigen. Meanwhileg tthesign of
the collaboration of T and B cell helps to identifig Antigens.

The pseudo codes of SEAIS Il are described in the
following:

1. Initial population();
2. While stopping criterion is not satisfied
3. Define the best antibody from mutated antibodies,
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memory cells and elite cells as antigen, and therst
as antibodies.

4. Generate T-Cells(antigens) by dominance_matrixths T
and Generate T-Cells(antigens) by
complementary_matrix as TS.

5. If diversity of antibodies < threshold then

If affinity of antibodies < threshold then
Immune_response(antibodies, TH);
Else
Immune_response(antibodies, TS);
Endif
Collect these antibodies to plasma cells archive.
Endif

6. Sorting antibodies by Cmax and classify them astedt
antibodies, memory cells and elite cells.

7. Collect them as antibody colony.

8. Endwhile

A. Affinity

Affinity chromatography
biochemical mixtures and based on a highly speiiferaction

is a method of separating

N > threshold,

non-update Ag (10)

Evaluate the
Absviadiversity

Diversity of Abs
> threshold

TH immune
response

TSimmune
response

_

Plasma cells

Fig. 2 Architecture of Immune response

such as that between antigen and antibody, enzynde a When the diversity of antibodies is not enoughnimiune

substrate, or receptor and ligand. Chang et alji&)osed the
approach for evaluation of the Affinity.

Affinity  =C,,

max 7
In this paper, we proposed one more approach toaesthe
Affinity which adopts the Hamming distance to ekl the
Affinity of the linkage is represented as follows:
Affinity,, ... = HammingDistanceC, (8)

Here, we make an assumption which defines the higffiaity
between two cells, the higher identification. Aatiog to the
index of the Affinity, we can take of advantaged®velop the
survival strategy for keeping the good Antibodi€ke index
via the completion time and Hamming Distance nst jised to
evaluate the similarity between Antibodies, but engpecified

evaluation the fitness relationship in differenagg and the
influence to the whole Antibodies.

B. Immune response

Antibodies use swap mutation for evolution stratégy\B
cells mechanism, and immune response mechanisnheipl
antibodies’ evolution under the two situations. Ogrethe
evolution inefficient; the definition in our reseéris according
to the equation (9).

6 = Amakespan / Ageneration < threshold, 9)

Another is the evolution into the local optimizatjothe
definition in our research is according to the eigua(10).It
means if antigen is not update for a several géoes the
evolution may be in local optimization.

response process, the immune response mechanism wil
provide TS cells for antibodies in order to imprdive diversity

of antibodies, and this will help to escape intocalo
optimization. If antibodies have diversities, itanes antibodies
don’t have enough information of antigens. So, imeu
response will provide TH cells for antibodies makithe
convergence with more efficiency.

C. Tcell

The probability matrix is updated according to tinders of
the Antigen in iterations. T-cell in this paperrésponsible to
fine the dominate “linkage information” from the g and
define these as the Gene-Linkage, shown as Fidgn 3he
mechanism of T-cell, TS is composited by TH and TH.is
defined as the helper cell. Therefore, we assigoseth
Gene-Linkage with dominate information to TH. Iihet hand,
TS is defined the suppressor cell, is applied tohaene the
diversity for escaping the local optima.

D. Becdl

The principal functions of B cells are to make baotlies
against antigens, perform the role of antigen-prisg cells
(APCs) and eventually develop into memory B celiera
activation by antigen interaction. B cells are assemtial
component of the adaptive immune system. B-celbissists of
mutated antibodies, memory cells and elites, whietfrom the
mutation strategy, memory cell and the elite cells.

As shown in Fig. 4, the three different types ofiBadies
has individual function. Mutated antibodies repraséhe
possibility by taking advantage of Mutation to gsedhe local
optima. Memory cells represent the collections afam
iterations. Elites is responsible for storing thp 1.0 Antigen
for the elite strategy.
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Fig. 4 Architecture of B-Cell

IV. EXPERIMENTAL RESULTS

This research adopted the instances of Reevesaitard in
OR-Library to validate the performance. Each instatis
executed for 30 runs, n represents the job numbdrma
represents the machine number. Table | is given tlier
experimental date for Taillard’s instances, the parison is
based on Zhang et al. [17]. CDPSO-R and CDPSOtfs thve
local search, however, CDPSO-R-A is the standapdcgeh of
CDPSO. Due to SEAIS Il does not uses the stratédgaal
search. That is to say, SEAIS Il outperform CDPS®-&h the
eight instances.

TABLE |
PERFORMANCECOMPARISONOF TAILLARD 'S INSTANCE

SEAIS I CDPSO-RA CDPSO-R CDPSO
Ins. nm opt Min Error Min Error Min Error Min Error
_rate _rate _rate _rate
123 124 065 128 000 128 000 123 _ 0.00

1005 205 5 3 % 5 % 5 % 5 %
110 110 000 110 000 110 000 _ 110 _ 000

@00 205 8 % 8 % 8 % 8 %
159 159 050 160 107 160 107 159 _ 0.0

@020 2010 X o o Pt o Pt ] Pt
217 218 032 218 014 218 014 217 _ 000

@030 2020 5 % 1 % 1 % 8 %
306 315 300 312 179 312 179 312  1.79

1050 5010 "5 7 % o % 0 % 0 %
369 390 565 387 471 387 471 383 3.65

1060 5020 "¢ 5 % 0 % 0 % 1 %

ta07¢ 100.% 532 534 0.3¢ 532 0.11 532 0.11 532 0.11

2 2 % 8 % 8 % 8 %

os 1001 584 590 099 590 099 590 099 586 026
0 5 3 % 3 % 3 % 0 %

142 229 110 073
Avg. % % % %

Table 1l shows the performance comparison on Tdia
instances. The comparison standard is based ongGktaal.
[18]. From the result, the average error rate i64%,
outperforms the other algorithms. From the resuflidble | and
Table II, SEAIS Il has good performance even tloping
criteria are different.

TABLE I
PERFORMANCECOMPARISONOF TAILLARD 'S INSTANCE

AC2GA HGIA PSO-Lian SEAIS I
Ins. nm opt Min Error Min Error Min Error Min Error
_ra[e _Va[e _rate _ra‘e
123 123 000 123 000 123 000 123 000

@005 205 g 5 % 5 % 5 % 5 %
110 110 000 110 _ 000 110 _ 000 _ 110 _ 0.00

@010 205 g 8 % 8 % 8 % 8 %
159 161 163 159 044 161 163 159 044

@20 2010 % S . . . S . . o
217 219 083 218 037 219 083 218 037

18030 2020 g 6 % 6 % 6 % 6 %
306 317 346 311 150 317 346 311 150

@0s0 5010 3 ! " T - T o f .
369 391 579 382 344 391 579 382 344

1060 5020 g 0 % 3 % 0 % 3 %
532 532 004 532 011 532 004 532 0.1

@70 1005 5 " ” o ” " ” S "
woso 1001 584 589 082 584 005 589 082 584 005

0 5 3 % 8 % 3 % 8 %
157 074 157 074

AG. % % % %

Table 11l shows the result for testing the Reevésssances.
The comparison standard is based on Chang et JalTF@
average error rate is 0.6%, outperforms the thmapared
algorithms. From the result, SEAIS Il performs #féective
searching ability on different problems and comjties.

TABLE Il
PERFORMANCECOMPARISONOF REEVES S INSTANCE
SEAIS T SGA AC2GA HGIA

Ins. nm opt Min Error Min Error Min Error Min Error

_rate _rate _rate _rate
Rico 205 1247 1249 00'20 1249 00'/106 1249 0‘;;6 1247 0;:0
REO 208 100 1100 %P a1 %% w00 000 1100 02
ReO 205 1202 1205 02 a2as 2% a5 020 aaas 02
REO 2010 1566 1566 00 1sss 0% 1ses 000 1ses  O°
RSCO 20,10 1537 1537 00‘20 1565 10'/802 1537 °£° 1537 0620
Reel 2010 w4z wam %0 wse N5 wam O am O
Reel 2015 1030 1032 %% 1070 207 1030 O aem G0
Reel 2015 1950 1954 0% 1900 20 1es1 00 qgm 008
R‘;Cl 20,15 1902 1902 0(;20 1960 3£5 1902 0,;/20 1924 1(;/16
Rgﬂ 30,10 2093 2099 00'29 2162 30'/300 2099 0‘;29 2103 O;:S
Reez 3010 2007 2034 Y% 20ea 23 g0m 020 s0ee LM
Ree2 3010 201 2020 %% 2075 3% 20m O30 2020 O
Re2 3015 2513 2525 0% se23 438 oms 008 am3 008
R‘;CZ 30,15 2373 2391 00‘25 2461 30'/701 2387 0‘;/“:9 2394 0628
Reez 3015 2287 207 %2 ;02 Y39 a9 000 a1 O
Re® s010 3045 3075 30 w07 5P s B gorr LS
Ree®  s010 314 3z Ot mee XY mm 0% aus O
R§°3 50,10 3217 3277 0(;20 3280 °£9 3277 0,;/20 3277 0(;20
ReeS 7520 4951 s07s 2% sas1 008 s100 483 soss 209
Ree® 7520  s087 5189 40° sson 42 sms 380 ms0 T2
Reet 7520 4960 s100 5% s2e3 St siea ML sogr 276
e, 00 273 03 055

6 6 o
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V. CONCLUSION

In the mechanism of SEAIS I, B-cell polarizes different
Antibodies. In different evolutionary strategies, the Immune
Response offers different co-evolutionary  effectiveness
according to different evolutionary requirements. From the
experimental result, SEAIS |l is validated has good
convergence speed in small instances. Furthermore, SEAIS |1
has good performance to escape the local optima in the large
instances. The future research will focus on the linkage of
T-cell and enhance the effectiveness of the produced Plasma
cell from the combination of T and B cells.
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