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Abstract—In this paper a numerical algorithm is described for 
solving the boundary value problem associated with axisymmetric, 
inviscid, incompressible, rotational (and irrotational) flow in order to 
obtain duct wall shapes from prescribed wall velocity distributions. 
The governing equations are formulated in terms of the stream 
function ( , )x y and the function ( , )x y as independent 

variables where for irrotational flow  ( , )x y can be recognized as 

the velocity potential function, for rotational flow ( , )x y ceases 
being the velocity potential function but does remain orthogonal to 
the stream lines. A numerical method based on the finite difference 
scheme on a uniform mesh is employed. The technique described is 
capable of tackling the so-called inverse problem where the velocity 
wall distributions are prescribed from which the duct wall shape is 
calculated, as well as the direct problem where the velocity 
distribution on the duct walls are calculated from  prescribed duct 
geometries. The two different cases as outlined in this paper are in 
fact boundary value problems with Neumann and Dirichlet boundary 
conditions respectively. Even though both approaches are discussed, 
only numerical results for the case of the Dirichlet boundary 
conditions are given. A downstream condition is prescribed such that 
cylindrical flow, that is flow which is independent of the axial 
coordinate, exists. 

Keywords—Inverse problem, irrotational incompressible flow, 
Boundary value problem.  

I. INTRODUCTION

ESIGNERS of ducts require numerical techniques for 
calculating duct geometries from a prescribed velocity 

distribution. The objective of the prescribed velocity is 
typically to avoid boundary layer separation. At inlet a 
velocity distribution is prescribed to allow for a vorticity 
vector to be present calculated from v  where the 

 denotes the usual cross product of vectors,  is the 
vorticity vector and v the velocity vector respectively. This 
paper describes a numerical algorithm for solving the 
boundary value problem that arises when the independent 
variables are  and  which have been previously defined. 
The dependent variable is y, is the radial coordinate.  
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II. DESIGN PLANE 
Defining  

iqeivuw and  iyxz .

Then using the Cauchy-Riemann equations the identity 

   )(
2
1 i

z
w

is easily verified where  

y
v

x
u

and  

y
u

x
v

In application to steady plane flow, with rectilinear 
coordinates x, y and velocity components u, v in the x, y 
directions respectively q is the flow speed,   is the flow 
direction measured from the x axis, is the component of 
vorticity normal to the plane and  is the rate of expansion or 
dilation. If  is zero everywhere apart from at isolated 
singularities e.g. point sources the velocity components can be 
derived from a stream function  level lines of which 

coincide with the streamlines. If  is zero everywhere 
except at point vortices then the velocity components can also 
be derived from a velocity potential , level lines of which 
are orthogonal to the streamlines

III. THE FIRST AUXILIARY FLOW

Consider a flow of complex conjugate velocity w(1) where   
(1) iw e

n
                                                              (1) 

with   real and 
n

 its derivative in a direction  

( )
2

 from the x-axis. This auxiliary flow and the actual 

flow (of complex conjugate velocity w) clearly share the 
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direction   and taking
s

, the derivative in the direction 

, to vanish over either flow field then  

    
cos sin

0
s x y                                      (2)      

while  

sin cos

cos sec

n x y

ec
x y

and substituting in definition (1)  

    ( )iw i
y x

so that  
zz

i
z
w 2)1(

2                                                     (3) 

Certain observations can be made on this auxiliary flow 
characterized so far, by equation (2) and (3). From equation 
(3) it has zero rate of expansion and a vorticity given by 
        (1) 2w
Level lines of ( , )x y define its stream line pattern and also 
that of the actual flow, but the distribution of  across the 
stream has not yet been allocated.

IV. THE SECOND AUXILIARY FLOW

Next consider a flow of complex conjugate velocity (2)w ,
where  

(2) iw e
s

                                              (4) 

with ( , )x y  real. This flow also shares direction and 
streamline pattern with the actual flow but in order to establish 
a family of curves orthogonal to the streamlines, this time 

n
 is taken to vanish over the flow field, i.e., 

sin cos 0
n x y

so that  

cos sin

sec cos

s x y

ec
s x y

and substituting in definition (4)  
(2) 2

(2) 2ww i
x y z z z

This second auxiliary flow therefore has zero vorticity but a 
rate of expansion given by 

(2) 2

level lines of ( , )x y define a family of curves orthogonal to 
the streamline pattern common to both auxiliary flows and the 
actual flow but the distribution of  along the stream has yet 
to be allocated.  

V. INTRINSIC FLOW EQUATIONS

The differential operator identity  

2 ii e
s n z

is easily verified and when applied to the function log ( )e w
there follows after some simple manipulation  

1( ) log ( ) ( )ei w i
s n q

                                (5) 

Applying equation (5) to the actual flow and each subsidiary 
flow gives 

1( )(log ( ) ) ( )ei q i i
s n q

                       (6) 

2( )(log ( ) )ei i i
s n

                         (7) 

2( )(log ( ) )ei i
s n

                            (8) 

where  and  represent the reciprocals of  
s

 and 
n

respectively. The system of implicit flow equations comprises 
the real and imaginary parts of equation (6), the real part of 
equation (7) and the imaginary part of (8) 

(log ( ))e qs n q
                                                 (9) 

(log ( ))e qn s q
                                       (10) 

(log ( )) 0es n
                                               (11) 

(log ( )) 0es s
                                               (12) 

VI. THE FUNDAMENTAL DESIGN PLANE EQUATIONS

Eliminating  between equations (9) and (10) and again 
between equations (11) and (12) gives 

(log ( ))

(log ( ))

e

e

q
s q

q
n q

substituting A q   and B q . The last pair of 
equations can be written as 
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2(log ( ))e A B
q

                                            (13)                       

2(log ( ))e B A
q

                                           (14) 

whilst equations equation (11) and (12) similarly become 

))(log(
A
q

B
A

                                           (15) 

and 

(log ( ))e
B q
A B

                                               (16) 

eliminating between equations (15) and (16) gives 

log log 0e e
A q B q
B A A B

                                                                                    (17) 
Regarding temporarily ,  and q as known functions of 
and  the system (13) and (14) is quasi-linear hyperbolic 
with characteristics parallel to the  and  axes which maps 
the physical flow field into an infinite strip in the 
( , ) plane. Bearing in mind the freedom available in the 
stream wise variation of  and the cross stream variation of 

, suitable values of A can be prescribed along one 
characteristic and those of B can be prescribed along one 
characteristic.  
Regarding similarly A and B as known functions of  and 

 equation (17) is linear elliptic and although boundary 
conditions for it will depend on the particular application, the 
Dirichlet choice involves the prescription of q over the flow 
field. Numerical coupling of the two schemes yields the 
solution in the design plane.  

VII. PHYSICAL COORDINATES

From elementary geometric considerations and definitions 
given previously  

( )i

i

dz e ds idn
e Bd iAd
q

                                            (18) 

Thus qds Bd  and qdn Ad . So that when , ,q A
and B are known in the ( , ) plane the physical coordinates 
x and y can be calculated. Alternatives to equations (15), (16) 
and (17) which are more convenient in some applications can 
be obtained using the values of  
z

and 
z

given by equation (18), so that  

cos , sin

sin , cos .

x B y B
q q

x A y A
q q

    

 so that
y

A
Bx

                                                          (19) 

and 
y

B
Ax

                                                    (20) 

hence eliminating x in (19) and (20) yields 

0A y B y
B A

                                  (21) 

Equation (21) may be used to replace equation (17) in the 
design system previously described and for use in equations 
(13) and (14) 

2 2

2 2 2

1 1 1y y
q A B

this time completion of the physical coordinates is provided 
from equations (19) and (20) by 

B y A ydx d d
A B

The Dirichlet boundary condition involves the prescription of 
y on the boundaries of the design plane, whilst the Neumann 

the prescription of 
y

or 
y

(depending on which 

bounding surface is being considered). The technique can 
easily be extended to cope with the so-called Cauchy and 
Robin boundary conditions. An analytic treatment of equation 
(21) can be found in [2], [4] and [5].  

VIII. THE NUMERICAL ALGORITHM IN THE DESIGN PLANE

Rewriting the partial differential equation that y satisfies as:  
y ya b c

where ( , , )a a y , ( , , )b b y and 
( , , )c c y , where a, b and c are function of y,  and 

. For problems posed in the design plane c=0, the a and b 
will vary depending on whether the flow field is irrotational or 
swirl free etc.  Writing in finite difference form using central 
differences (with c 0) gives:  

1, , 1, , ,
2

1, , 1,,

( ) 41
( )2( )
i j i j i j i j i j

i j i j i ji j

a a y a yya
a a y

and  

1,,1,

,,1,,1,

2
, )(

4)(

)(2
1

jijiji

jijijijiji

ji ybb
ybybbyb
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Thus at the point ( , )i j (to be denoted by ( , )i j  from 
now on in this paper), the equation is represented by a 
computational molecule as:  

, , 1

, 1, , , , 1, ,

, , 1

i j i j

i j i j i j i j i j i j i j

i j i j

N y

W y C y E y R
S y

                          (22) 

Where the N, S, E and W and R may be identified as:  

2
, , 1,

2
, 1, ,

2
, , 1 ,

2
, , 1 ,

2 2
, , ,

2 2
, ,

( ) ( )

( ) ( )

( ) ( )

( ) ( )

4(( ) ( ) ))

2( ) ( )

i j i j i j

i j i j i j

i j i j i j

i j i j i j

i j i j i j

i j i j

W a a

E a a

N b b

S b b

C a b

R c

IX. THE DIFFERENCE EQUATIONS

Equation (22) applies for i=1 to M; j=1 to N on a uniform 
mesh as described in [5], with special consideration at j=1 and 
j=N, so that with Dirichlet boundary conditions, say for j=N 

, , 1

, 1, , , , 1, , , , 1

i N i N

i N i N i N i N i N i N i j i N i N

N y

W y C y E y R S y
with 1,Niy prescribed as the Dirichlet  data for  

0  i  M. For j=2 to N-1 

, , 1

, 1, , , , 1, ,

, , 1

i j i j

i j i j i j i j i j i j i j

i j i j

N y

W y C y E y R
S y

and for j=1 

,1 1,1 ,1 ,1 ,1 1,1 ,1 ,1 ,0

,1 ,2

i i i i i i i i i

i i

W y C y E y R N y
S y

                    

similarly yi,0 prescribed as the Dirichlet data for  
0  i  M. 

X. VECTOR  FORM OF THE DIFFERENCE EQUATIONS

The above equations can be written more conveniently in 
matrix-vector form as:

,1 1,1

,2 1,2

,3

, 1,

,1 ,1 ,1

,2 ,2 ,2 ,2

,3 ,3

, ,

,1

,2

,3

,

0 0 . .
0 0

0 . . . .
. . .

0 . .
0 .
. . . .
. . .

0 0 . .
0 0

0 . .
. .

i i

i i

i

i N i N

i i i

i i i i

i i

i N i N

i

i

i

i

W y
W y

W

W y

C S y
N C S y

N C

C y

E
E

E

E

1,1

1,2

1,

,1 ,1 ,0

,2
( )

, , , 1

. .

.

. , .

.

i

i

N i N

i i i

i
i

i N i N i N

y
y

y

R N y
R

R say

R S y

            (23)

XI. DIRECT SOLUTION OF THE DIFFERENCE EQUATIONS

The matrix-vector equation (equation (23)) can be written 
as 

(i-1) (i) (i+1) (i)(i) (i) (i)W Y  + A Y + E Y  = R                        (24) 

With diagonal matrices (i)W  and (i)E  and tridiagonal matrix 
(i)A  all of order (NXN), and column vectors (i) Y and (i)R of 

order N. To solve the vector recurrence relation a speculation 
is made that the (i-1)Y  vector can be related linearly to the 

(i) Y vector as follows: 

(i-1) (i) (i)(i)Y  = B Y  + K                                             (25) 

where the (i)B  and the (i)K are at present unknown matrices 
and column vectors respectively. Substituting (25) into (24) 
gives  
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(i) (i) (1) (i+1)(i) (i) (i) (i) (i)(W B  + A )Y  = R  - W  K  - E Y
(i) (i+1)(i) (i) (i) -1 (i)

(i) (i)(i) (i) (i) -1 (i)

Y = - (W B  + A )  E Y  

+ (W B  + A )  (R  - W  K )
but (i) (i+1) (i+1)(i+1)Y  = B  Y   + K

Thus equating coefficients implies  

(i+1) (i) (i) (i) -1 (i)B  = - (W B  + A )  E                                   (26) 

and  

(i+1) (i) (i)(i) (i) (i) -1 (i)K  = (W B  + A )  (R - W  K )

For i=0 this gives,  

(0) (1) (1)(1)Y  = B  Y   + K                                            (27) 

To determine the (1)K , if the first iterate  (1)B 0  then 
(1) (0)K Y

The matrix and vector sequences are now defined by 
equations (26) and (27) for i=1 to M. The Y(i) vectors are now 
calculated starting from right to left (as Y(M+1) is known) using  

(M) (M+1) (M+1)(M+1)Y  = B  Y   + K
The diagonal matrices (i)W and (i)E  have elements 

W(i) = Wi,j  and E(i) = Ei,j

The tridiagonal matrix A has entries  

Aj,j = - Ci,j     j = 1 to N 
Aj,j+1 = Si,j   ,   Aj,+1,j = Ni,j+1,  j = 1 to N-1 

XII. THE BOUNDARY CONDITIONS

Initially the Neumann boundary condition will be analysed. 
In this case the vector of unknown y values is extended to 
include the j=0 row (for the top boundary) and j=N+1 for the 
bottom boundary, (as shown in [6]). The difference scheme is 
now applied over this extended set i.e. the scheme is centered 
on the point j=0, (and j=N+1 for the bottom boundary). 
Considering for the moment only having a Neumann 
condition on the top boundary, the centering the scheme on 
j=0 will involve the value of y at j=-1, this term is expressed 
in terms of the value of y at j=1 using the known normal 
derivative, such that: 

, 1 ,1

,0

exp
2
i i

i

y y y known ression

so at the mesh point (i,0) (i=1,2,….M) the finite difference 
scheme gives 

,0 1,0 ,0 ,0 ,0 1,0 ,0 ,0 , 1

,0 ,1

i i i i i i i i i

i i

W y C y E y R N y
S y

Applying the boundary condition gives 

,0 1,0 ,0 ,0 ,0 1,0 ,0 ,0
,0

,0 ,0 ,1

2

( )

i i i i i i i i
i

i i i

yW y C y E y R N

S N y

Using 

2

0,
2
0,

2
0,

2
0,

0,

11

iii
i

i

y
Bq

Ay

The normal derivative is now known in terms of the 
prescribed speed which in this case is along the top boundary. 
The matrix-vector equations become  

,0 1,0

,1 1,1

,2

, 1,

,0 ,0 ,0 ,0

,1 ,1 ,1 ,1

,2 ,2

, ,

,0

,1

,2

0 0 . .
0 0

0 0 . . .
. . .

( ) 0 . .
0 .
. . .
. . .

0 0 . .
0 0

0 .

i i

i i

i

i N i N

i i i i

i i i i

i i

i N i N

i

i

i

W y
W y

W

W y

C S N y
N C S y

N C

C y

E
E

E

1,0

1,1

, 1,

,0 ,0
,0

,1

, , , 1

. .
. . .

2

.

.

i

i

i N i N

i i
i

i

i N i N i N

y
y

E y

yR N

R

R S y
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Similar analysis can be performed if the bottom boundary is to 
have a Neumann boundary condition as described in [5]. The 
technique can also be applied to the case of Robin boundary 
conditions.    

XIII. AXISYMMETRIC FLOW IN THE ABSENCE OF BODY 
FORCES: PRESCRIPTION OF THE AXIAL AND SWIRL VELOCITY 

COMPONENTS

Here numerical solutions to inviscid axisymmetric flow 
with constant vorticity and a swirl velocity will be derived. 
The axial velocity component ( )xu y at inlet will be chosen to 
be of the form:  

2( )xu y ay by c

where that a, b and c are constants and chosen so that this 
parabolic inlet axial velocity profile is chosen such that  

1 1

2 2

3 3

( )
( )
( )

x

x

x

u y u
u y u
u y u
where the ,i iy u , 1, 2,3i  are prescribed (known) radii and 
axial velocity values respectively.  

XIV. THEORETICAL/MATHEMATICAL JUSTIFICATION OF 
CHOOSING A PARABOLIC AXIAL VELOCITY PROFILE AS 

OPPOSSED TO ANOTHER WITH SIMILAR CHARACTERISTICS

For simplicity the variation of velocity ( )xu y will be 
considered in a cylindrical pipe of inner radius Y. Considering 
the flow of a cylindrical element of fluid coaxial with the pipe 
of length L then the net force on the pipe due to the static 
pressure is:   

2
1 2( )F y p p

where the p1 and p2 are the inlet and exit values of the pressure 
p. If the element does not accelerate then this force is equal to 
the viscous retarding force on the element which is given by  

2F yL

where xdu
dy

 with  equal to the coefficient of 

dynamic viscosity, equating these two forces gives 

0 '1 2

1 2

2

' '
2

x

x
xu

Y

y

du p p y du
dy L

p p y dy
L

where of course the no-slip hypothesis has been incorporated 
at the wall of the pipe. Thus 

2 2 21 2( ) ( )
4x
p pu y Y y A ay

L
, say 

which is clearly of degree two and hence parabolic. Thus even 
though there exist many functions in mathematics that 
resemble the parabola (in parts) it must be a quadratic 
expression that is chosen to model viscous behavior. For the 
general case it can be shown that the constants a, b and c are 
given by:  

1 2 2 3 2 3 1 2
2 2 2 2
1 2 2 3 2 3 1 2

2 2 2 2
2 3 1 2 1 2 2 3
2 2 2 2
1 2 2 3 2 3 1 2

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

u u y y u u y ya
y y y y y y y y
u u y y u u y yb
y y y y y y y y

and c now following from the a, b above and 

1 1( )xu y u .The swirl velocity ( )u y , will be of the form 

y
lkyyu )( where the k and l are constants with 

ky representing solid body rotation and /l y the so-called 
free vortex term respectively.  

XV. THE FLOW EQUATIONS IN THE PHYSICAL PLANE 

( , , )y x
Adopting cylindrical polar coordinates with y being the 

radial coordinate,  the circumferential and x the axial 
coordinate, defining velocity components yu ,u  and xu
with corresponding vorticity components y  , , x  in 

the  
direction of increasing y,  and x respectively, then the 
equation of motion with unit density becomes:  

.Du p
Dt

                                                             (28) 

 Where
Dt
D

is the material derivative. Equation (28) can be 

written using well known vector identities as: 
2

0

y y y
x y

y
x y

x x x
x y

u u u u pu u
t x y y y

u uu u uu u
t x y y
u u u pu u
t x y x

                           (29) 

Furthermore  

( . ) .u u u p
t
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can be written (once again using an appropriate vector identity 
as)

)
2
1()( 2qpu

t
u

.

Thus for steady flow Crocco’s form of the equation of motion 
is obtained, i.e.  

Hu )(                                                          (30) 

where H is the total head defined by 21
2

H p q .

Calculating the cross product on the left hand side of equation 
(30), gives  

0

x x

x y y x

y x

H u u
y
u u

H u u
x

                                                         (31)   

In addition for axisymmetric flow the vorticity vector 
becomes  

( )1

y xuu uu y
x x y

yu x
y y

             (32) 

The equation of continuity becomes 
( )( ). 0yx yuyuu

x y

XVI. THE DESIGN PLANE COUNTERPARTS

In order to compute numerical solutions in the design plane, 
expressions are required for the terms A, B and , thus  

2

1

(log( ))

(log( ))

yx
x y

uu yu u
x y y x

q y
s

or
q y
B

but  

))(log(
2

A
B
q

thus ( )Ay f , that is 
)(f

yq
n

. The arbitrary 

function ( )f represents the freedom in the cross stream 
distribution of  and choosing ( )f to be unity everywhere 

 can be identified as the usual Stokes stream function given 
by 

xy yu
y

yu
x

;

Equation (32), (circumferential component) gives  

y
yu

u
x
yu

u yx
)()(

0

Referring to the meridional plane of fig 16.1, it may be 
deduced that  

)(

0)(

;

Cyu

yu
s

s
yqu

s
xqu yx

where 
dsq
dt

. In terms of ( )C the vorticity vector 

(equation (32)) becomes  
=

1 1y xu uC Cu y x
y x x y y y

           y xy x , by definition.  

An expression for is required as this appears in the 
expression for B, so using the radial component of equation 
(31) gives   

y
H

uy
C

yu
u

x

x 11

using the Stokes’ stream function this becomes 

d
dHy

d
dC

y
C )(

which is the required expression to be used in calculation of B 
according to definition (14). If far upstream the flow is 
assumed to be cylindrical so that all quantities are independent 
of x, then with unit density the equation of motion and the 
Stokes’ Stream function give  

xy yu
yxy

u
y
p

x
pu ;0;;0;0

2

giving  

yu
uuu

d
dy

d
dC

y
C

x
x

2
22 )(

2
)(

With 2( )xu y ay by c  and 
y
lkyyu )(  as 

previously defined. Once 
d
dH

 has been calculated upstream 
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it takes this value throughout the  ( , )  plane since as is 
self evident the expression is independent of . This last 

expression for  is required in the calculation of B and 
numerical coupling with equation (21) gives the numerical 
solution in the design plane. 

XVII. DOWNSTREAM CONDITIONS

Downstream a cylindrical flow condition as discussed 
below will be prescribed. Defining the pressure function 

( )H  and the function ( )C as
puuH x )(

2
1)( 22  and yuC )(

for cylindrical flow radial equilibrium (from equation (29) 
radial component gives 

y
u

dy
dp 21

Integrating gives 

inneryinnery
innery dy

y
Cdy

y
upp 3

22 )()(1

Which gives H( )  as  
2

2 2
3

1 ( )( ) ( )
2

y inner
x

y inner

p CH u u dy
y

             

Now   

inneryinnery

ydCdy
y

C )/1(
2
1)( 22

3

2

inneryinnery

dy
dy
dC

yy
C

y
C 2

22

2

2

2 1
2
1

2
1

Therefore 

innery
innery

x u
p

uH )(
2
1

2
1)( 22

           
0

2

2

1 d
d
dC

y
Suppose )(1,1, xx uu and )(1,1, uu , where the 

subscript 1 denotes upstream conditions, then  
)(2,2, xx uu and )(2,2, uu  are required as 

functions of , where the subscript 2 similarly denoting 
downstream conditions, so that   

2,2 2
,2 ,2

2

2
10

1 1( ) ( )
2 2

1 1
2

inner
x inner

p
u H u

dC d
y d

                        (33)       

and 
0

2
,2

2
2

2, 2
1

inner
x

yyd
u
d

Furthermore 2,21,1)( uyuyC  and equation (33) 
now gives 

1, 2,2 2
,2 ,1

2 2 2
,1 ,2 2 2
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where 
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with ux,2 in this case given by (34). 

XVIII. CALCULATION PROCEDURE

The calculation of the downstream radii 2 ( )y  follow 

from equation (35) with ,2xu  given by equation (34), which 
can be written as  

Kgux )(2
2, , where                                            (36) 

2
2
,1 2 2

1 20

1 1 ( )( ) x
d Cg u d

y y d
In order to calculate the (n+1)th  iterate it is known that:   
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outer

n
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K

          (37) 

from which as can be seen from equation (37) the K(n) must be 
calculated iteratively with (0) 0K . Once the ( 1)nK  has 
been calculated it is introduced into equation (36), giving rise 
to a new )1(2

2, )( n
xu which in turn gives a new 

)1(2
2, )( n

xy from equation (35) and the process repeated until 
some convergence criteria is satisfied. 
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XIX. PRESCRIPTION OF WALL GEOMETRIES

In this paper the Dirichlet boundary conditions will be 
prescribed on the wall boundaries so that it is the radii values, 
y that are given as a function of  on the boundaries. The 
function chosen to give a y distribution is based on the 
hyperbolic tangent, choosing ( ) tanh( )y
where C, a, b and k are constants, applying the conditions that 

uy y  at 0  and dy y  at  taking 

3a b  (arbitrary) and b=-3, so that tanh( ) 1a b
and tanh( ) 1b , then it follows that:  

2
)tanh(

2
)( udud yybayyy       (38) 

Replacing  by x in equation (38) gives a ( )y x  distribution. 
The inner radius is prescribed to be equal to unity in this paper 
(arbitrary).  The geometries produced are shown in figs 
19.1.1, 19.1.2 and 19.1.3 respectively.  

XX. CONCLUSIONS

As shown, geometries have been produced subject to given 
upstream and downstream conditions with prescribed 
Dirichlet boundary conditions. In this case vorticity at inlet 
has been specified by defining the axial velocity to be of the 
form 2( )xu y ay by c  with swirl velocity given by 

y
lkyyu )( , where the k and l are constants, defining 

the so-called free and forced vortex whirl respectively. The 
downstream conditions were such that: cylindrical flow was 
present. Dirichlet boundary conditions were prescribed 
however the case with Neumann conditions can be 
accommodated using the algorithm, in addition so can the 
case with Robin boundary condition. Further examples of the 
algorithm with a combination of boundary condition is given 
in [6]. It was found that at most eight iterations were required 
to achieve an acceptable level of convergence, with the 
technique accelerated using Aitken’s Method.
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XXI. FIGURES 

Fig. 16.1. The meridional plane

Fig. 19.1.1 The geometry and speed distribution (along the top boundary) produced given a swirl velocity 0.1/u y  and an axial velocity 

at inlet given by 2( )xu y ay by c .
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Fig 19.1.2. The geometry and speed distribution (along the top boundary) produced given a Swirl velocity 0.3 0.6 /u y y  and an 

axial velocity at inlet given by 2( )xu y ay by c .
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Fig 19.1.3.  The geometry and speed distribution (along the top boundary) produced given a Swirl velocity 

0.2 0.6 /u y y  and an axial velocity at inlet given by 2( )xu y ay by c .


