
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:12, 2017

498

The DAQ Debugger for iFDAQ of the COMPASS
Experiment

Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract—In general, state-of-the-art Data Acquisition Systems
(DAQ) in high energy physics experiments must satisfy high
requirements in terms of reliability, efficiency and data rate capability.
This paper presents the development and deployment of a debugging
tool named DAQ Debugger for the intelligent, FPGA-based Data
Acquisition System (iFDAQ) of the COMPASS experiment at CERN.
Utilizing a hardware event builder, the iFDAQ is designed to be
able to readout data at the average maximum rate of 1.5 GB/s of
the experiment. In complex softwares, such as the iFDAQ, having
thousands of lines of code, the debugging process is absolutely
essential to reveal all software issues. Unfortunately, conventional
debugging of the iFDAQ is not possible during the real data taking.
The DAQ Debugger is a tool for identifying a problem, isolating
the source of the problem, and then either correcting the problem
or determining a way to work around it. It provides the layer
for an easy integration to any process and has no impact on the
process performance. Based on handling of system signals, the
DAQ Debugger represents an alternative to conventional debuggers
provided by most integrated development environments. Whenever
problem occurs, it generates reports containing all necessary
information important for a deeper investigation and analysis. The
DAQ Debugger was fully incorporated to all processes in the iFDAQ
during the run 2016. It helped to reveal remaining software issues
and improved significantly the stability of the system in comparison
with the previous run. In the paper, we present the DAQ Debugger
from several insights and discuss it in a detailed way.

Keywords—DAQ debugger, data acquisition system, FPGA,
system signals, Qt framework.

I. INTRODUCTION

THE DAQ Debugger is a tool to detect, investigate

and fix software problems in the iFDAQ. It has

become an essential component of the iFDAQ during the

run 2016 and 2017 and helped to improve the stability

of the iFDAQ significantly. In general, it is considered

as an useful tool for bugs identification and backward

debugging. The paper describes the route of events trough

development and deployment of the DAQ Debugger for the

intelligent, FPGA-based Data Acquisition System (iFDAQ) of

the COMPASS experiment at CERN.

O. Subrt is with the Czech Technical University, Department of Software
Engineering, Prague, Czech Republic and the European Organization for
Nuclear Research – CERN, Switzerland (corresponding author, e-mail:
ondrej.subrt@cern.ch).

M. Bodlak, V. Jary, J. Novy and M. Virius are with the Czech Technical
University, Department of Software Engineering, Prague, Czech Republic.

D. Steffen is with the Technische Universität München, Physik-Department,
Munich, Germany and the European Organization for Nuclear Research –
CERN, Switzerland.

Y. Bai, S. Huber, I. Konorov and D. Levit are with the Technische
Universität München, Physik-Department, Munich, Germany.

V. Frolov is with the Joint Institute for Nuclear Research, Dubna, Moscow
region, Russia.

The purpose of the COMPASS (Common Muon and Proton

Apparatus for Structure and Spectroscopy) experiment [1] is

the study of nucleon spin structure and hadron spectroscopy.

The experiment, which utilizes a polarized target and is

situated at the Super Proton Synchrotron (SPS) at CERN

in Geneva, Switzerland, was approved conditionally in 1997

and commissioned in 2001. In 2002, the experiment started

operating and has since been making use of the various particle

beams available at the CERN M2 beam line, primarily the

muon and hadron beams. Typical data rate of this experiment

is approximately 1.5 GB/s during 10 seconds on-spill, the

off-spill time varies between 30 and 50 seconds depending

on SPS super cycle.

In 2010, an extension of the experiment, COMPASS-II [2],

has been approved. Based on the approval, the COMPASS-II

program consists of two physics programs – the polarized

Drell-Yan (DY) process in 2014, 2015 and 2018 and Deeply

Virtual Compton Scattering (DVCS) in 2016 and 2017.

The paper is organized as follows. In Section II, an overview

of the essential hardware technologies used in the iFDAQ is

provided, followed by a description of the hardware structure

of the iFDAQ and the role of the technologies in it. Moreover,

the section gives an overview of the software technologies and

the software structure.

Section III deals with the exact definition of debugging. It

describes steps from finding to resolving of defects that prevent

correct operation of computer software or a system.

Section IV is concerned with the implementation of the

DAQ Debugger. It starts with the library description and

discusses the integration procedure to any process in a

detailed way. The implementation part and scenarios give more

information about inner mechanisms of the library.

II. IFDAQ ARCHITECTURE

COMPASS is in operation since 2002. Since then the

amount of collected data is steadily increasing. The major

growth was caused by improvement of the beam intensity

and increase of trigger rates and it is supposed to continue

to rise in future. Over the years, the electronics of the DAQ

was upgraded several times in order to be able to handle

such amount of data. Furthermore, the hardware upgrades

were getting more and more complicated due to obsolete

technology. Consequently, the COMPASS collaboration has

decided for the considerable iFDAQ improvement during the

shutdown in 2013/2014. Nowadays, the final part of hardware

and software replacement finishes.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:12, 2017

499

Fig. 1 The COMPASS iFDAQ topology

A. Hardware Part

The iFDAQ of the COMPASS experiment can be divided

into five basic layers [9], [11], [12], the first one being

frontend cards which process analog data from 300 000

detector channels and convert them to digital form. A custom

timing and trigger distribution system TCS [3] (Trigger

Control System) uses optical links to provide a unique

event identification and time synchronization to the detectors

frontends, which append these information to the digitized

signal. The frontend cards are connected to data concentrator

modules modules (HGeSiCA, CATCH and Gandalf) which

make up the second layer. The second layer handles the first

level of multiplexing (consolidating multiple data streams into

a single stream). More information about HGeSiCA, CATCH

and Gandalf modules can be found at [15]-[17], respectively.

The data from some of the HGeSiCA and CATCH modules

go through S-Link multiplexers and the data from Gandalf

modules through TIGER VXS data concentrators, creating a

sublayer.

Using S-Links [19], this sublayer is connected to the third

layer, which comprises eight FPGA cards (DHCmx) which

are called Data Handling Cards (DHC). The third layer

handles another level of multiplexing. S-Links are also used

to connect the third layer to the fourth layer, which is made

up of a single DHC with switch firmware (DHCsw) - this

layer handles event building. The fifth layer, again utilizing

S-Links for connection to the previous layer, consists of eight

readout computers which run the iFDAQ software. These

computers are collectively referred to as the readout engine.

The connection of an S-Link and the memory of a readout

computer is handled by a Spillbuffer – a PCI Express card with

an FPGA chip and 2GB RAM, which is also partially used for

buffering. The acquired data which are to be stored are then

sent directly to the CERN CASTOR facility [14]. All DHC

cards are configured and controlled over separate network by

processes using the IPBus [13] based on configuration in XML

connection files and address files.

Online data verification and consistency check is performed

by the proposed hardware builder itself. In sum, the hardware

builder forms more comprehensive control system.

In Fig. 1, the current state – used in the run 2016 and 2017

– is given. It consists of only six FPGA cards (DHCmx) on

the level of multiplexing and four readout engine computers.

B. Software Part

Major parts of the iFDAQ software has been implemented

in C++ language. It is supported by MySQL for database

access and Python with bash scripts for minor tasks. PHP,

HMTL, javascript and AJAX technologies have been used

for development of web-based configuration interface. The Qt

framework, a cross-platform application framework, has been

used for all main graphical user interfaces (GUIs) and to speed

up development of core applications. The iFDAQ software [12]

is deployed on the readout engine, the individual computers

of which run the Scientific Linux CERN 6 (SLC6) operating

system [18].

The DIALOG library [4] (distributed, inter-process,

asynchronous, library, open, general) is used for

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:12, 2017

500

communication between processes of the iFDAQ. The

DIALOG library is a multi-platform library that serves for

an asynchronous one to many communication through the

Ethernet.

In complex softwares, such as the iFDAQ, all features

must be divided into several processes. Then each process is

responsible for its intended purpose and its proper behaviour

is absolutely essential for the overall system stability.

There are six types of processes fulfilling main functions in

the iFDAQ [10]:

• Master process – The Master is a vital process for

the iFDAQ - using DIALOG, it mediates communication

between the Runcontrol GUI and the slave processes as

well as the communication between the slave processes

and the configuration database. It also plays a major role

in the iFDAQ’s error handling.

• Slave-control – The purpose of the Slave-control process

is to configure and monitor the FPGA cards - it is

the only process which communicates with the FPGA

cards directly. All communication with the FPGA cards

is carried out using IPbus.

• Slave-readout – The Slave-readout is a very

resource-demanding process responsible for readout

of data from connected devices, as well as its processing

and subsequent storage. It comprises a large number of

threads.

• Runcontrol GUI – The Runcontrol GUI, which can run

in two different modes, is the means of user interaction

with the iFDAQ. The first mode, Runcontrol, provides

the user with complete control over the iFDAQ as well

as information concerning the current run and status of

the hardware. Only one instance of this mode can run

at a time. The second mode, Monitoring, retains the

information and status providing capabilities, but does not

provide the user with any direct control over the iFDAQ.

There is no practical limit to how many instances of this

mode can run at a time.

• MessageLogger – A process that receives informative

and error messages and stores them into the MySQL

database. It is directly connected to the Master and to

the slave processes via the DIALOG library.

• MessageBrowser – A GUI application that provides an

intuitive access to messages from system (stored in the

database) with an addition of online mode (displaying

new messages in realtime). Equipped with filtering and

sorting capabilities, it is able to run independently from

the whole system in case of emergency.

In the original DAQ, the DATE (Data Acquisition and Test

Environment) package [5] was responsible for all related data

acquisitions tasks such as configuration, run control, load

balancing, readout, event building, etc. Now, part of it is

implemented directly in the firmware of FPGA cards. Since

tools for data quality monitoring or for data analysis are based

on DATE format, the system must support the same data

format as defined by DATE. Transformation of read out data

to DATE format is needed in order to ensure full compatibility

of the iFDAQ with older COMPASS tools.

C. The Motivation for the DAQ Debugger Implementation

The iFDAQ faced several crashes of Master process and

Slave-readout process per day in the runs 2014 and 2015.

Processes crashed without any obvious reason or additional

information.

The possibility of conventional debugging during the real

data-taking is quite limited.

• It would waste the beam time during crash investigation.

• The performance of debugged processes would be lower.

• The conventional debugging process would increase load

on readout engine computers.

• The iFDAQ expert would have to be present 24x7 on site.

In sum, the conventional debugging is possible only during

so called machine development, i.e., time without beam.

Unfortunately, the errors do not occur without the real

data-taking and all processes are running smoothly. Under the

above mentioned circumstances, it gets caught in a vicious

circle. Conventional debugging is not usable and effective for

the error detection.

The iFDAQ group made a decision to implement their own

DAQ Debugger. It should help to detect remaining software

issues and improved significantly the stability of the system.

III. CONVENTIONAL DEBUGGING

In computer programming and engineering, debugging

[6]-[8] is a multistep process that involves attempt to reproduce

the problem and isolating the source of the problem. Then the

second phase of fixing the problem follows. It can be either

fully corrected or determined a way to work around it. The

final step of debugging is a verification that the fix works and

nothing else is broken.

Once an error has been identified, it is essential to detect the

error in the source code. Integrated development environment

(IDE) is usually very useful in error detection. The

state-of-the-art IDEs provide developers with a stand-alone

debugger tool or the debugging component helping developers

to find the error in the source code.

The standard debugging tool provides the programmer with

the capability to examine program states (values of variables,

call stack, etc.) and track down the origin of the problem.

The control of program execution is assured by setting up a

“breakpoint” and run the program until that breakpoint. Once

the program meets any breakpoint, the program execution

stops and waits. The control of program execution also offers

to execute just the next line of code, step into the body of

function/method or even change the value of variables.

In software development, debugging is part of the software

testing process and is an essential part of the entire software

development life cycle. The debugging process starts as soon

as a release candidate is implemented and continues step by

step to form a final version of software.

IV. DAQ DEBUGGER

The DAQ Debugger is a library helping with the iFDAQ

error detection. The DAQ Debugger was fully incorporated to

all processes in the iFDAQ during the run 2016 and 2017.

In general, the integration is very simple to any process. The

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:12, 2017

501

main goal is to produce a report concerning the process crash.

The report must contain as much information as possible.

Afterwards, the reports are investigated by iFDAQ experts

trying to detect the source of problem. After understanding of

a problem, the fix is released and tested. The DAQ Debugger

is designed in order to meet the following requirements:

• The integration to running system requires interface for

an easy use.

• It does not affect the process performance.

• It does not increase load on readout engine computers.

• It provides with reports in /tmp folder containing stack

trace of all threads and memory dump.

A. Description

The DAQ Debugger is a library easily integrated to a process

and standing in the background of a running process. If the

process is running without any crashes, basically, the DAQ

Debugger is only part of the process without any action taken

and behaves during the whole process life cycle in this way.

At the operating system level, the fault is caught and a signal

is passed on to the offending process, activating the process’s

handler for that signal. Different operating systems have

different signal names to indicate that a fault has occurred. For

instance, in case of a segmentation violation, a signal called

SIGSEGV (abbreviated from segmentation violation) is sent

to the offending process on Unix-based operating systems.

The main idea of action taken in the right instant is based

on catching of system signals (SIGSEGV, SIGABRT, etc.). In

case of a process crash, the following procedure is started:

• The system signal is caught and forwarded to a signal

handler in the DAQ Debugger.

• The memory dump is produced and stored.

• The whole stack trace for each thread is generated with

file names and code line numbers.

• The report containing the caught signal and stack trace

for each thread is created in /tmp folder.

• The process is exiting with the caught signal.

B. Integration

The DAQ Debugger is designed bearing in mind that it has

to be integrated in a running system, so it has to be made as

easy to use as possible. To incorporate it to any process, the

static initialization method is called in a single line, as you

can see in the following example showing the integration of

the DAQ Debugger into a Qt-CoreApplication.

#include <QCoreApplication>
#include "daqdebugger.h"

int main(int argc, char **argv)
{

QCoreApplication* app = new QApplication(argc, argv);
DAQDebugger::init(argv[0]);
return app->exec();

}

The first argument of DAQDebugger::init(argv[0])
is the name of a process. Then the name of a process is

included in the report file name.

Since the DAQ Debugger is a library, it must be located on

the system path. Generally, LD_LIBRARY_PATH is used to

specify directories of libraries. It is also necessary to add the

following lines to the Qt-project file (*.pro) in order to create

the makefile correctly.

INCLUDEPATH += PATH_TO_DAQ_DEBUGGER/
DEPENDPATH += PATH_TO_DAQ_DEBUGGER/
LIBS += -L PATH_TO_DAQ_DEBUGGER -lDAQDebugger

QMAKE_CXXFLAGS += -rdynamic -g
QMAKE_LFLAGS += -rdynamic -g

QMAKE_CXXFLAGS +=
-include PATH_TO_DAQ_DEBUGGER/qthreaddaqdebugger.h
QMAKE_CXXFLAGS +=
-include PATH_TO_DAQ_DEBUGGER/qthreaddaqdebugger_macro.h

GCC flags -rdynamic and -g enable use of extra

debugging information. The -rdynamic option instructs

the linker to add symbols to the symbol tables that are

not normally needed at run time. The -g option produce

debugging information in the operating system’s native format.

The -include option processes file as if #include
"file" appeared as the first line of the primary source file. If

multiple -include options are given, the files are included

in the order they appear on the command line. Demand on

-include statements is discussed in the implementation

subsection in a deeper way.

The process should be compiled without any optimizations,

e.g, -O, -O1, -O2, -O3 or -Os, if possible. The default value

usually is -O0 that means do not optimize. It is important for

addr2line command that is used for detection of an exact

file name and a line number crash.

Using optimizations, the compiled source code could be

inline and detection of an exact file name and a line

number crash is then much harder. Hence using addr2line
command on processes compiled with optimizations could

lead to shifted or mistaken line numbers.

On the other hand, optimizations are very useful for

compilation of libraries due to libraries’ shared and linking

purpose.

To sum up, turning on optimization flags makes the compiler

attempt to improve the performance and/or code size at the

expense of compilation time and possibly the ability to debug

the program.

C. Implementation

The system signals to catch are specified in the

DAQDebugger::init(argv[0]) static method. By

default, signals SIGABRT, SIGSEGV, SIGILL and SIGFPE

are registered. The signals to catch can be added or removed

there.

Whenever the registered signal is caught, it is caught in

the thread causing the crash and the stack trace of thread

can be easily produced. It could be enough in single-threaded

processes. Unfortunately, the solution must be more general

and considered even multi-threaded processes. The solution

must provide the following crash procedure:

• The system signal is caught in the crashed thread.

• All remaining threads are immediately suspended.

• Store memory dump.

• Get stack trace of the crashed thread.

• Get stack traces of suspended threads.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:12, 2017

502

Fig. 2 Class diagram of the DAQ Debugger

• The crashed thread (whole process) is exiting with the

caught signal.

To register a system signal, the following statement is

executed.

// to register a system signal
signal(signal, signalHandler);

POSIX [20] defines a standard threading library API in

order to control and send suspend/resume signals to threads.

All important statements are given in the following source

code with the explanations in comments.

// to send a signal to thread ID
pthread_kill((pthread_t)threadID, signal)

// to catch the sent signal in a thread
struct sigaction sigActionThreadControlSignal;
sigfillset(&sigActionThreadControlSignal.sa_mask);
sigdelset(&sigActionThreadControlSignal.sa_mask, signal);

sigActionThreadControlSignal.sa_flags = 0;
sigActionThreadControlSignal.sa_handler = signalHandler;
sigaction(signal, &sigActionThreadControlSignal, NULL);

// to suspend a thread
sigset_t sigActionThreadControlSignalMask;
sigfillset(&sigActionThreadControlSignalMask);
sigdelset(&sigActionThreadControlSignalMask, signal2);

sigsuspend(&sigActionThreadControlSignalMask);

The signalHandler is registered in sigaction and

it is triggered if the signal is sent to the thread. Moreover,

the thread is suspended by sigsuspend with given signal

mask and it resumes if the signal2 is sent to the thread.

At this point, the control of threads is prepared, the

DAQ Debugger can obtain the stack trace with file names

and line numbers for each thread. Using backtrace
and backtrace_symbols, the stack trace is generated.

The backtrace command returns the series of currently

active function calls for the process. Moreover using

backtrace_symbols, the symbolic description of function

calls is translated from information obtained by backtrace
to function names and hexadecimal addresses. Unfortunately,

it returns each line of stack trace in a hexadecimal address

format and thus it is not easily readable for a human being.

However, to overcome this drawback, the DAQ Debugger

is using addr2line. It is capable to convert hexadecimal

addresses into file names and line numbers. In the following

code, you can see a short example.

// storage array for stack trace address data
unsigned int max_frames = 63;
void* addrlist[max_frames + 1];

// retrieve current stack addresses
unsigned int addrlen = backtrace(addrlist, sizeof
(addrlist)/sizeof(void*));

// resolve addresses into strings containing
"filename(function + address)"
char** symbollist = backtrace_symbols(addrlist, addrlen);

for (unsigned int i = 1; i < addrlen; i++)
std::cout << readSystemCommand
("addr2line -e " + processName + " " + getHexAddress
(symbollist[i])) << std::endl;

The stack trace is one thing, on the other hand, it is

still not sufficient for the error detection. To satisfy the

comprehensive understanding of crash, the memory dump is

absolutely essential. The DAQ Debugger is using gcore
command for memory dump storage.

Another challenge in the design of the DAQ Debugger is

the registration of all threads without violating the concept of

easy integration. In order to be able to send signals and to

control threads in case of a crash, it is necessary to obtain all

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:12, 2017

503

thread IDs at the beginning of a process.

Unfortunately, it is not an easy task to obtain IDs

of all threads in a process. Moreover, it is even more

complex if the integration of DAQ Debugger should be

as simple as possible. The only way how to get thread

ID is executing the part of code in this thread asking

for thread ID. So, it must be ensured the execution

of DAQDebugger::addThreadSlot(thread) static

method in each thread. Each thread must register itself in

the DAQ Debugger immediately when it starts its execution.

It uses started() signal in QThread object being

emitted when the thread starts executing. The functionality

of QThread object must be extended in order to cover

the registration in the DAQ Debugger and its integration

would be still simple to any process. This extension is

hidden and added by -include statements to Qt-project

file (*.pro). File qthreaddaqdebugger.h contains the

definition of thread satisfying the required functionality

and inheriting from QThread object. Moreover, file

qthreaddaqdebugger_macro.h replace all QThread
objects for QThreadDAQDebugger objects by preprocessor

definition in the whole process as follows.

#define QThread QThreadDAQDebugger

In Fig. 2, you can see the DAQ Debugger class diagram

being obtained by the described integration process.

Fig. 3 Flow diagram of the thread life cycle in the DAQ Debugger

The way how to introduce the DAQ Debugger to each

thread has been described. It remains to discuss all most

common scenarios, including the thread registration procedure,

in the DAQ Debugger in a deeper way. It is given in a next

subsection.

D. Scenarios

Basic scenarios are emphasized in this subsection dealing

with how one or more components interact inside the DAQ

Debugger or with the DAQ Debugger itself.

The description of thread life cycle gives a comprehensive

insight from a global point of view. The diagram is shown in

Fig. 3. The QThreadDAQDebugger object inheriting from

QThread object is created and the thread is started. The

signal started() is emitted and it is connected to the slot

addThreadSlot() of qThreadDAQDebuggerHelper
object. This object has been already moved to the

thread of QThreadDAQDebugger object in the

QThreadDAQDebugger object constructor since it must

live in this thread. This is the way how to force the execution

of DAQDebugger::addThreadSlot(thread) static

method in this thread and thus the DAQ Debugger gets

thread ID. Finally, the slot addThreadSlot() of

qThreadDAQDebuggerHelper object is emitting the

signal addThreadSignal(thread) being connected

to the DAQDebugger::addThreadSlot(thread)
static method. This concept ensures the execution of

DAQDebugger::addThreadSlot(thread) in our

thread.

Moreover, Fig. 3 covers the concept when a thread is

finishing its execution. The thread must unregister in the

DAQ Debugger. When the QThreadDAQDebugger object

finishes its execution the signal finished() is emitted

and it is connected to the slot removeThreadSlot()
of QThreadDAQDebugger object. There the signal

removeThreadSignal(thread) is emitted and it goes

directly to the removeThreadSlot(thread) of DAQ

Debugger. In comparison with the registration procedure,

the unregistration procedure is much simpler since the

DAQ Debugger already knows the finished thread. Since,

the QThreadDAQDebugger object lives in the main

thread no one has to worry about handling of emitted

QThreadDAQDebugger signals after the thread has finished

its execution. These emitted signals are handled by the main

thread.

To finish the discussion concerning the thread registration

procedure properly, the description of registration of n ∈ N
threads when a process starts is given. In Fig. 4, the diagram

begins with the main thread. First of all, the main thread starts

its execution. It registers system signals and registers the main

thread in the DAQ Debugger. Whole mentioned functionality

is encapsulated in the DAQDebugger::init(argv[0])
static method. Then the main thread continues its execution

and processes events. All remaining of n ∈ N threads are

registered in the DAQ Debugger afterwards. The detail of

registration procedure for each thread was already mentioned

and it triggered with the emitting of signal started(). Of

course, whenever some of n ∈ N threads finish their execution,

they are unregistred from the DAQ Debugger. For simplicity

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:12, 2017

504

Fig. 4 Flow diagram of the thread registration procedure in the DAQ Debugger

reasons, the unregistration procedure is not depicted in the

diagram.

Probably the most important scenario is the crash of a

process. This situation is described in Fig. 5. From a process

start, the DAQ Debugger is a part of a process and standing in

the background of a running process. If the process is running

smoothly without any single crash, the DAQ Debugger does

not take any action. For this reason, the DAQ Debugger does

not affect the process performance and does not increase load

on readout engine computers at all.

The system signals are registered, the process continues

its execution. Once the crash of process occurs, the DAQ

Debugger handles it. The system signal is emitted and it is

caught by the signal handler of crashed thread in the DAQ

Debugger. At this point, it is important to realize the crashed

thread where crash has occurred is responsible for the control

of all remaining threads, memory dump storage and creation

of crash report.

Firstly, the crashed thread sends the suspend signal to all

remaining threads. It is necessary to suspend them otherwise

they would continue their execution and thus the exact point of

crash would be lost. Then the memory dump is produced and

stored. The memory dump can be easily loaded to Qt Creator

(Debug → Start Debugging → Load Core File) and memory

can be investigated as much as by conventional debugging.

Secondly, the report file is created and open for writing. The

crashed thread writes its stack trace to the file.

Afterwards, the control of all suspended threads is started.

The crashed thread sends the resume signal to first suspended

thread and the crashed thread itself is suspended. The resumed

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:12, 2017

505

Fig. 5 Flow diagram of the thread crash caught and handled by the DAQ Debugger

thread writes its stack trace to the file, then sends the resume

signal to the crashed thread and is suspended again. The

resumed crashed thread sends the resume signal to second

thread and it is again suspended. The second resumed thread

writes its stack trace to the file, then sends the resume signal

to the crashed thread and is suspended again. It continues in

this way to the last suspended thread. The resumed crashed

thread (resumed by the resume signal sent from (n − 1)-th
thread) sends the resume signal to n-th thread and it is again

suspended. The n-th resumed thread writes its stack trace to the

file, then sends the resume signal to the crashed thread and

is suspended again. This suspend/resume procedure ensures

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:12, 2017

506

the serial writing to file and proper thread control. Finally,

the report file is closed and process is exiting with the caught

signal in the crashed thread. The whole control of threads,

memory dump storage, opening and closing of report file is

controlled by the crashed thread.

V. CONCLUSION

The DAQ Debugger has been incorporated to all processes

of the iFDAQ in August 2016 and since then it helps with the

error detection. It does not affect the process performance and

does not increase load on readout engine computers.

Before the DAQ Debugger integration, the iFDAQ was

facing four crashes of Mater process per day at average

and several crashes of Slave-readout as well without any

explanation. For this reason, to detect and resolve system

crashes, the DAQ Debugger has been implemented.

Firstly, it focused on the understanding of Master process

crashes. The DAQ Debugger helped significantly to detect

all remaining software issues in Master process so it became

stable since the end of September 2016. Since then no crash

of Master process has been observed.

It improved the stability of Slave-readout as well. At the end

of run 2016, the iFDAQ reached the crash rate of Slave-readout

at level of one crash per four days. In July 2017, all remaining

software issues in Slave-readout have been fixed. Since then

the iFDAQ is stable and without any single crash.

The DAQ Debugger fulfilled initial demands and purpose

and the process crash investigations based on provided crash

reports continue.

REFERENCES

[1] P. Abbon, et al.(the COMPASS collaboration): The COMPASS
experiment at CERN. In: Nucl. Instrum. Methods Phys. Res., A 577,
3 (2007) pp. 455518.

[2] V. Y. Alexakhin, et al. (the COMPASS Collaboration): COMPASS-II
Proposal. CERN-SPSC-2010-014, SPSC-P-340. May 2010.

[3] B. Grube: A Trigger Control System for COMPASS and a Measurement
of the Transverse Polarization of Lambda and Xi Hyperons from
Quasi-Real Photo-Production.. Munich. Technical University Munich.
2006. Doctoral thesis.

[4] Y. Bai, et al.: The Communication Library DIALOG for iFDAQ of the
COMPASS experiment. 19th International Conference on High Energy
Physics – ICHEP 2017, Paris, France, September 2017. International
Journal of Mathematical, Computational, Physical, Electrical and
Computer Engineering, vol. 11, issue 9, pp. 353-362, World Academy
of Science, Engineering and Technology.

[5] T. Anticic, et al. (ALICE DAQ Project): ALICE DAQ and ECS User’s
Guide CERN, EDMS 616039, January 2006.

[6] Debugging definition. (online). Available at: http://searchsoftwarequality.
techtarget.com/definition/debugging. (Accessed: 2017-09-01).

[7] T. Grötker, et al.: The Developer’s Guide to Debugging. Second Edition,
Createspace, 2012. ISBN 1-4701-8552-0.

[8] G. J. Myers: The Art of Software Testing. John Wiley & Sons inc, 2004.
ISBN 0-471-04328-1.

[9] M. Bodlak, et al.: Developing Control and Monitoring Software for the
Data Acquisition System of the COMPASS Experiment at CERN. Acta
polytechnica: Scientific Journal of the Czech Technical University in
Prague. Prague, CTU, 2013, issue 4. Available at: http://ctn.cvut.cz/ap/.

[10] M. Bodlak, et al.: Development of new data acquisition system for
COMPASS experiment. Nuclear and Particle Physics Proceedings, 37th
International Conference on High Energy Physics (ICHEP). AprilJune
2016, vol. 273275, pp. 976981. Available at: http://dx.doi.org/10.1016/
j.nuclphysbps.2015.09.153.

[11] M. Bodlak, et al.: FPGA based data acquisition system for COMPASS
experiment. Journal of Physics: Conference Series. 2014-06-11, vol.
513, issue 1, s. 012029-. DOI: 10.1088/1742-6596/513/1/012029.
Available at: http://stacks.iop.org/1742-6596/513/i=1/a=012029?key=
crossref.78788d23de2b4a6a34d127c361123b8c.

[12] M. Bodlak, et al.: New data acquisition system for the COMPASS
experiment. Journal of Instrumentation. 2013-02-01, vol. 8, issue 02,
C02009-C02009. DOI: 10.1088/1748-0221/8/02/C02009. Available
at: http://stacks.iop.org/1748-0221/8/i=02/a=C02009?key=crossref.
a76044facdf29d0fb21f9eefe3305aa5.

[13] C. Ghabrous Larrea, et al.: IPbus: a flexible Ethernet-based
control system for xTCA hardware, 2015 JINST 10 C02019.
doi:10.1088/1748-0221/10/02/C02019.

[14] CASTOR – CERN Advanced Storage manager. Available at: http:
//castor.web.cern.ch. [Accessed: 2017-05-01]

[15] Electronic developments for COMPASS at Freiburg. Available at: http:
//hpfr02.physik.uni-freiburg.de/projects/compass/electronics/catch.html.
(Accessed: 2017-05-01).

[16] The GANDALF Module. (online). Available at: http://hpfr03.physik.
uni-freiburg.de/gandalf/pages/information/about-gandalf.php?lang=EN.
(Accessed: 2017-05-01).

[17] iMUX/HGESICA module. (online). Available at: https://twiki.cern.ch/
twiki/pub/Compass/Detectors/FrontEndElectronics/imux\ manual.pdf.
(Accessed: 2017-05-01).

[18] Linux at CERN. (online). Available at: http://linux.web.cern.ch/linux/
scientific6/. (Accessed: 2017-05-01).

[19] S-Link – High Speed Interconnect. (online). Available at: http://hsi.web.
cern.ch/HSI/s-link/. (Accessed: 2017-05-01).

[20] POSIX – Standards. IEEE. (online). Available at: http://standards.ieee.
org/develop/wg/POSIX.html. (Accessed: 2017-09-20).

