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Abstract—Cantilever beam is a simplified sample of a lot of 
mechanical components used in a wide range of applications, 
including many industries such as gas turbine blade. Due to the 
nature of the operating conditions, beams are subject to variety of 
damages especially crack propagates. Crack propagation may lead to 
catastrophic failure during operation. Therefore, online detection of 
crack presence and its propagation is very important and may reduce 
possible significant cost of the whole system failure. This paper aims 
to investigate the effect of cracks presence and crack propagation on 
one end fixed beam`s vibration. A finite element model will be 
developed for the blade in which the modal response of the structure 
with and without crack will be studied.  

 
Keywords—Blade, crack propagation, health monitoring, modal 

analysis. 

I. INTRODUCTION 

RACKS and crack propagation have an effect on system 
behavior, due to its dynamic characteristic changes. As a 

result, the mechanical system components that are used in 
many industries such as oil and petrochemical, aerospace, 
nuclear power plant and so on, do not work normally and the 
system works with low efficiency. It leads to waste of energy, 
time and financial resources. To prevent these, researchers 
have been studying materials properties, blade cooling 
systems, thermodynamics and aerodynamics design [1]-[7]. 
Also, if the crack propagates to another edge of a component, 
regardless of its reasons, it can break the component and it can 
break down the system. One important aspect of a component 
is the vibration can cause a crack on it. If the vibration 
frequency amplitude be more than standard amplitude, the 
system would be able to work under bad conditions. If the 
resonance occurs, then the system fails and many components 
will be severely damaged, and it costs the system irreparable 
damages.  

So far, many researchers have worked on several cracks in 
different structures [9]-[14]. High vibration of the turbine 
blades can result in a more than allowance mechanical stresses 
which may lead to high cycle fatigue. 

Cracks and crack propagation and their significant effects 
on the blades vibration, which can make condition more 
severe and increase the possibility of being in a resonance 
range, are the subjects of this paper. Therefore, the vibratory 
modes in which blade are in resonance condition, should be 
studied and this is done by modal analysis method. Since the 
turbine is working, there are numbers of complex vibratory 
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systems that can appear in the form of forced vibration in the 
presence of exciter factors. Mazoor has divided blades 
vibration to three categories: First of all, those are affected by 
free vibrations. Second, blades which are under force 
vibration, and the third category consists of blades, which are 
involved in the self-exciting phenomenon [8]. Orhan analyzed 
free and forced vibration of cracked beam [9]. J. Wauer 
investigated vibrational characteristic of cracked rotating 
blade [10]. In another work, Shukla and Harsha studied 
comparative modal analysis of steam turbine blade with 
analytical method and experimental method, so cracked and 
un-cracked mode shapes are compared with each other. They 
examined Modal-Test on the third stage blades of the 
compressor [11]. Beams also have been the subject of many 
researches. For example, W.M. Ostachowicz and M. 
Krawczuk analyzed the effect of cracks on the natural 
frequencies of a cantilever beam [12]. Francois Leonard et al. 
investigated cracks that occurred in metal beams obtained 
under controlled fatigue-crack propagation [13]. M. Behzad et 
al. studied a continuous model for flexural vibration of beams 
with an edge crack perpendicular to the neutral plane. They 
assumed that the displacement field is a superposition of the 
classical Euler-Bernoulli beam's displacement and of a 
displacement due to the crack [14]. In this paper, using the 
Finite Element method as well as modal analysis of a blade of 
a gas turbine, which is installed in the National Iranian South 
Oil Company (NISOC), the natural frequency of the blade is 
determined. At the next step, the Finite Element method is 
applied to calculate the frequency of a cracked blade. Then we 
observe the crack growth. So, we can investigate some ways 
to detect or prevent cracks and their growth in blades. In this 
regard we prefer to assume the blade as a cantilever beam.  

II. THEORY 

In the proposed model, the beam is assumed to have 
a transverse crack edge clamped at left end and it is free at 
right end and has a uniform structure with a constant 
rectangular cross-section. Moreover, the system is based on 
the Euler Bernoulli beam theory and the crack is considered to 
be an open crack. 

A. Governing Equation of Free Vibration 

The free bending vibrations of a Euler–Bernoulli beam of a 
constant rectangular cross-section are given by the following 
differential equation: 
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where m (kg/m) is the mass of the beam per unit length, i  is 

the natural frequency of the ith mode (rad/s), E is the modulus 
of elasticity (N/m2) and, I is the area moment of inertia (m4) 

[15], [16]. By defining 4
i =ωᵢ²m/EI, (1) is rearranged as a 

fourth-order differential equation as: 
 

4

4

dx

yd -	 4
i y	ൌ0,																																																				(2)  

 
Then the general solution for (2) is:	
 

xsinh D x cosh C xsin B xcosA iiiiy               (3) 

 

where A, B, C, D are constants and i  is a frequency 

parameter [15]. Since the bending vibration is applied, edge 
crack is modeled as a rotational spring with a lumped stiffness 
and the crack is assumed open. Based on this modeling, the 
beam is divided into two segments that are on the left and the 
right-hand sides of the crack, respectively. Once this equation 
is solved by applying beam boundary conditions and 
compatibility relations, the natural frequency of the it mode for 
free ends (4) and cantilever beam (5) are calculated as: 
 

oi
 =

4ml
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where 
oi

  is the ith mode frequency of the un-cracked beam 

and ci is a known constant depending on the mode number and 
the status of the end of the beam (for clamped-free beam, ci is 
3.516 and 22.034 for the first and second mode, respectively). 

ωᵢ is the ith mode frequency of the cracked beam. ir  is the ratio 

between the natural frequencies of the cracked and un-cracked 
beam. L is length of the beam [16], [17]. Now we can consider 
frequency response function of a damped single degree of 
freedom system (SDOF) and frequency response function of a 
damped multi degree of freedom system (MDOF). 
 

 

Fig. 1 Mass and spring as a SDOF 

 

B. Frequency Response of a Damped SDOF System 

The degrees of freedom of a system are defined by the 
minimum number of independent coordinates necessary to 
describe the positions of all parts of the system at any instant 
of time. For example, the spring–mass system shown in Fig. 1 

is a SDOF since a single coordinate )(tx  is sufficient to 

describe the position of the mass from its equilibrium position 
at any instant of time [15]. 

First of all, we need to determine the equation of motion for 
the system [17]. Free body diagram of the mass-spring system 
in dynamic balance is determined as Fig. 2: 

 

 

Fig. 2 Free body diagram of a mass-spring system  
 

Using Newton’s 2nd law, the equation of motion is 
determined as: 

 

x  mF ,                                            (6)                   

 
where F (N) is force balance, m (kg) is representing the mass, 
and ẍ (m/s2) is the second derivation of distance (m). So, by 
using free body diagram we have: 
 

xm)k(kx-Mg                                       (7) 
 
Then the equation of motion will appear as: 
 

0 kxxm  ,                                               (8) 
 

In order to determine the displacement of mass, x, we need 
to solve (8) that is 2nd order differential equation. So 
considering the 

)(tx  equation as: 

 
tiXetx )(  ,                                         (9)            

 
 and substituting (9) into (8), we reach to: 
 

02  kXXm ,                                   (10) 
 
So we have: 
 

0)( 2  Xmk  ,                                    (11) 
 
As X ≠ 0, therefore: 
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Fig. 3 Mass, spring and damper as a system 
 
In the presence of viscous damping as shown in Fig. 3, the 

equation of motion for free vibration changes as: 
 

0 kxxcxm  ,                                   (13) 
 

where the xc  is the damping force. Now considering: 
 

stXetx )( ,                                        (14) 
 
and substituting (14) into (13) leads to: 
 

02  kcsms ,                                     (15) 
 
Solution of (15) results in: 
 

2
002,1 1   is ,                             (16) 

 
where 

)2/( kmc ,                          (17) 

 
in which,   is the damping ratio and the diagonal element c 

represents the generalized damping of the various modes of 
the system. If we choose: 
 

,0                                            (18) 

 
and: 

2
0 1  d

,                                    (19) 

 

where d  is defined as the damped frequency. Therefore, 

displacement is determined as: 
 

tit deXetx )( ,                                      (20) 
 
The equation of motion for forced vibration with viscous 
damping is given as: 
 

)(tfkxxcxm   ,                              (21) 
 

Assume: 
tiXetx )( ,                                        (22) 

 
and: 

tiFetf )( ,                                      (23) 
 
By substituting (22) and (23) in (21), we have: 
 

titi FeXekcim   )( 2 ,                  (24) 
 
So, the frequency response function (FRF) is determined as: 
 

cimkF

X
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The part )( 2mk  is the real part and the part ci  is the 

imaginary part of (25). The magnitude of a SDOF system is 
given as (26) and shown in Fig. 4: 
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Then the phase angle is (27) and Fig. 5: 
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Fig. 4 FRF of the single degree of freedom 
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Fig. 5 The phase angle of the system 
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The relation between receptance and mobility is: 
 

,)( tiXetx                                           (28)                           
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The relation between receptance and accelerance is: 
 

 ,)( tiXetx                                          (33) 
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 ,) ()( 2  HA                                       (36) 
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C. Frequency Response of a Damped MDOF System 

Consider the general equation of motion for a MDOF with a 
viscous damping [10]: 
 

}{}]{[}]{[}]{[ fxKxCxM   ,                   (38) 
 

2
00 1,      d

                           (39) 

 

mk /2
0  , )2/( kmc                        (40) 

 
Stiffness and mass matrix are:   

         

][][][ MKC                                    (41) 
 
and then: 

][][]][[][ rr
T mkC   ,                       (42) 

 
Let’s define: 

 

}]{[}{ px  ,                                     (43) 
 

Subsisting in (43) in (38) and considering (f =0), we have: 
 

}0{}]{[}]{[}]{[  pkpcpm rrr  ,              (44) 
 
So for the damped system: 

, 1 2
rrd   rrr  /5.05.0  ,           (45) 

 
The reacceptance matrix can be defined as (46): 
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For MDOF, the relation between reacceptance and mobility 

is (30) and the relation between receptance and interance is 
(35) too. 

III. FINITE ELEMENT MODELING 

The ANSYS 15.0 finite element software [18] is used to 
develop the model and extract free vibration of the un-cracked 
and cracked cantilever beam. For this purpose, in this study, 
free vibration of a one end fixed (cantilever) beam with a V-
shaped edge crack is studied. First, the key points are created 
and then line segments are formed and combined to create an 
area. Finally, this area is extruded one crack configurations as 
shown in Figs. 6-8 are prepared to find out how the crack 
affects dynamic behavior of the beam keeping. Crack location 
from cantilever end constant, crack depth is increased 
gradually from 20% to 80% of the width to observe the effect 
of crack depth on natural frequencies and forced response of 
the beam. Additionally, depth of the crack on the top surface is 
chosen constant as “4.5 mm” and crack positions were varied 
as 300 mm from cantilever beam end (middle position of the 
beam). Then the authors choose the depth of the cracks to be 
“18 mm” as 80%, while the length and cross-sectional area of 
the beam are ‘‘600 mm,’’ and ‘‘22.5×2.57 mm2,’’ 
respectively. As for the material properties the modulus of 
elasticity “E” is “70×109 N/m2”, the density is ‘‘2700 kg/m3’’ 
and the Poisson’s ratio is ‘‘Z (0.3).’’ A 20-nodes three-
dimensional structural solid element under “SOLID186” is 
selected to model the beam. Figs. 9-11 show the finite element 
model of the beam. 

IV. RESULTS 

Free vibration analysis of a cracked beam is done for 
various crack conditions to obtain natural frequencies and 
dynamic responses of the beam. These results are used to 
identify the depth and location of the cracks. In this regard, 
after codes are written in Matlab2015a [19], we calculate the 
receptance of all modes and then plot them. H11 plot is shown 
in Figs. 12, 13. However, it is suggested that these theoretical 
data to be compared to experimental Results (see Table I). 

V. CONCLUSION 

 We conclude that as the crack depth increases: 
(1) Natural frequency of the beam will experience a sharper 

decrease in comparison to its normal condition. 
(2) The numbers that are determined from codes in Matlab, 

the results from the exact solution and what are 
determined from the finite element model, are almost 
equal, with negligible errors. 
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TABLE I 
 COMPARISON OF EXACT SOLUTION, FEM, ERROR 

Mode num. 
Exact solution Frequency (Hertz) obtained in FEM Frequency (Hertz) obtained in FEM % Error 

(20% cracked) 
% Error 

(80% cracked)Normal cantilever beam Normal beam 20% Cracked beam Normal  beam 80% Cracked beam 

1 36.8901 38.0585 37.3806 38.0585 37.5803 1.78  1.26 

2 231.2029 248.6633 236.7190 248.6633 244.3782 4.80  1.72 

 
 

 

Fig. 6 A Cantilever beam without crack 
 

 

Fig. 7 Single cracked in 20% of width 
 

 

Fig. 8 Single cracked in 80% of width 
 

 

Fig. 9 Finite element modeling of the normal beam 
 

 

Fig. 10 Finite element modeling of the 20% cracked beam 
 
 
 

 
 

 

Fig. 11 A part of finite element modeling of the 80% cracked beam 
 

 

Fig. 12 The measured receptance for 20% cracked beam 
 

 

Fig. 13 The measured reacceptance for 80%cracked beam 
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