
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1302

The Coverage of the Object-Oriented Framework
Application Class-Based Test Cases

Jehad Al Dallal, and Paul Sorenson

Abstract—An application framework provides a reusable

design and implementation for a family of software systems.
Frameworks are introduced to reduce the cost of a product line
(i.e., family of products that share the common features). Software
testing is a time consuming and costly ongoing activity during the
application software development process. Generating reusable test
cases for the framework applications at the framework
development stage, and providing and using the test cases to test
part of the framework application whenever the framework is used
reduces the application development time and cost considerably.

Framework Interface Classes (FICs) are classes introduced by
the framework hooks to be implemented at the application
development stage. They can have reusable test cases generated at
the framework development stage and provided with the
framework to test the implementations of the FICs at the
application development stage. In this paper, we conduct a case
study using thirteen applications developed using three
frameworks; one domain oriented and two application oriented.
The results show that, in general, the percentage of the number of
FICs in the applications developed using domain frameworks is, on
average, greater than the percentage of the number of FICs in the
applications developed using application frameworks.
Consequently, the reduction of the application unit testing time
using the reusable test cases generated for domain frameworks is,
in general, greater than the reduction of the application unit testing
time using the reusable test cases generated for application
frameworks.

Keywords—FICs, object-oriented framework, object-oriented

framework application, software testing.

I. INTRODUCTION
N application framework provides a reusable design
and implementation for a family of software systems

[1]. It contains a collection of reusable concrete and abstract
classes. The framework design provides the context in
which the classes are used. The framework itself is not
complete. Users of the framework complete or extend the
framework to build their particular applications. Places at
which users can add their own classes are called hooks [2].

Jehad Al Dallal is with Department of Information Sciences, Kuwait

University, P.O. Box 5969, Safat 13060, Kuwait (e-mail:
jehad@cfw.kuniv.edu).

Paul Sorenson is with Department of Computing Science, University of
Alberta, Edmonton, AB. T6G 2H1, Canada (e-mail:
sorenson@cs.ualberta.ca).

To build an application using a framework, application
developers create two types of classes: (1) classes that use
the framework classes and (2) classes that do not. Classes
that use the framework classes are called Framework
Interface Classes (FICs) because they act as interfaces
between the framework classes and the second type of the
classes created by application developers. Fig. 1 shows the
relation between the framework classes, the hooks, the FICs,
and the other application classes. FICs use the framework
classes in two ways: either by subclassing them or by using
them without inheritance. Hooks define how to use the
framework and, therefore, they define the FICs and their
specifications and show how to implement them.

Fig. 1 Framework application classes

Frameworks are classified according to their scope into
three types [3]: enterprise application frameworks, system
infrastructure frameworks, and middleware integration
frameworks. Enterprise application frameworks are also
known as domain frameworks and they address different
types of applications in a broad application domain such as
telecommunications, avionics, manufacturing, and financial
engineering. System infrastructure frameworks are also
known as application frameworks and they address different
types of applications in different application domains.
Moreover, they simplify the development of portable and
efficient system infrastructure including frameworks for user
interfaces, communication frameworks, and operating
systems. Finally, middleware integration frameworks are
also known as support frameworks and they are used to
integrate distributed applications and components. ORB
frameworks, message-oriented middleware, and
transactional databases are common examples for this type
of frameworks.

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1303

Software testing is a critical and important stage of the
application software development life-cycle and it affects
the overall quality of the software. In a typical programming
project, approximately half of the effort is spent on testing
activities [4]. In object-oriented testing, each class in the
system under test has to be tested individually. Class testing
is a unit testing step with respect to application testing and
the first level of integration testing. At class testing level, the
method responsibilities, intraclass interactions, and
superclass/subclass interactions are considered [5].

In [6], we have proposed a technique called all paths-state
to build effective specification-based reusable unit level test
cases for the FICs at the framework development stage.
These test cases are provided with the framework to test the
implementations of the FICs at the application development
stage. In this paper, we measure the application unit testing
cost reduction using the reusable test cases. The cost
reduction is measured in terms of the number of
implemented FICs in the applications and their total number
of lines of code (LOC) in comparison to the total number of
classes implemented at the application development stage
and their total number of LOC. We count the number of
LOC because it is a commonly used measurement for the
size of code.

The case study is conducted using three frameworks:
Client-Server Framework (CSF) [7], swing [8], and
SalesPoint [9]. The former two frameworks are application
frameworks while the later one is a domain framework. The
results of the case study show that the percentage of use of
the FICs in the applications constructed using the domain
framework is, on average, much higher than the percentage
of use of the FICs in the applications built using the
application frameworks. As a result, the reduction in unit
testing cost of the applications constructed using the domain
frameworks is, on average, much higher than the reduction
in unit testing cost of the applications built using the
application frameworks.

The paper is organized as follows. Section II, introduces
the used frameworks, discusses the case study settings, and
shows the case study results. Section III discusses issues
related to applications that use multiple frameworks. Finally,
Section IV provides conclusion and discussion of future
work.

II. CASE STUDY
Thirteen applications developed using three different

frameworks were considered in the case study. This section
introduces the frameworks, illustrates the case study
settings, and shows the results.

A. Used Frameworks
Applications developed using three frameworks were

considered in the case study: CSF, Swing, and SalesPoint.

CSF and Swing are application frameworks, while
SalesPoint is a domain framework. CSF is a
communications framework written in Java and developed
to support the building of relatively small applications that
require client-server or peer-to-peer communication support.
CSF also provides persistent storage capabilities and can
handle the communications over a TCP/IP connection using
a model similar to email. CSF deals with synchronous and
asynchronous messages sent between remote objects. The
framework code consists of 38 classes and about 1.4K lines
of code (without comments/blank lines). CSF hooks
describe the behavior of ten FICs and show how they can be
implemented or customized.

Swing is a Java framework developed to support GUI
applications. In Java 1.3.1, Swing consists of 460 classes.

SalesPoint is a framework written in Java and developed
to create point-of-sale simulation applications such as a
ticket vending machine application or a big supermarket
with many departments application. The framework supports
the management of the relations between the business, the
customers, and the administrative tasks like accounting.
SalesPoint framework consists of 161 classes and the hooks
describe the behavior of 78 FICs and show how they can be
implemented or customized.

B. Case Study Settings
Performing the analysis required in this case study for

relatively large number of applications requires exhaustive
effort. Therefore, the case study was conducted using
thirteen randomly selected applications out of a pool of 39
applications. Five of the applications use one framework and
eight applications use two frameworks. As shown in tables
1-4, the applications use the following frameworks: one
application uses CSF only, two applications use the Swing
framework only, two applications use the SalesPoint
framework only, four applications use CSF and the Swing
framework, and four applications use the SalesPoint and
Swing frameworks.

The CSF applications were developed by fourth-year
undergraduate students at the University of Alberta. The
SalesPoint framework applications were developed by
second-year undergraduate students at the University of the
Federal Armed Forces Munich. Finally the Swing
applications were developed by a combination of the second
and fourth-year undergraduate students, in conjunction with
their application development activities on CSF and
SalePoint.

For each application, the classes implemented at the
application development stage were counted. The number of
classes does not include the number of framework classes.
In addition, the number of LOC of the counted classes is
also counted. These two figures were counted using the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1304

LOCC tool [10]. LOCC is a Java tool that produces size data
corresponding to the number of packages, the number of
classes in each package, the number of methods in each
class, and the number of lines of code in each package,
class, and method. The LOCC tool does not count comments
and blank lines as part of the lines of code. Tables I, II, and
III show the application name, the total number of
application classes not including framework classes, and the
number of lines of code (LOC) of each application. The
FICs included in the applications were counted manually.
Since the Swing framework has no associated hooks, we
used the definition of the FIC to find the implemented FICs
and count them. Every class in the considered applications
that extends or uses a Swing class is an implemented FIC.
For each application developed using the Swing framework,
we counted the implemented Swing FICs. Finally, the total
number of LOC for the FICs is the summation of the LOC
of each of the FICs counted using LOCC tool.

C. Case Study Results
For each application, the first column of Tables I, II and

III shows the name of the application. The second column

shows the number of application classes not including the
framework classes. The third column shows the number of
LOC of the classes counted in the second column. The
fourth column shows the number of FICs implemented in
the application and the percentage of the number of FICs in
the application. The last column shows the total number of
LOC of FICs and the percentage of the number of LOC of
the FICs in the application.

For applications developed using application frameworks,
Table I shows that an average of 41.4% of the classes of the
CSF applications are FICs. In terms of LOC, an average of
28.3% of the LOC of the CSF applications are for FICs.
Table II shows that an average of 14.9% of the classes of the
Swing framework applications are FICs. In terms of LOC,
an average of 13.9% of the LOC of the Swing framework
applications are for FICs. For applications developed using
domain frameworks, much higher percentage averages were
found. Table III shows that an average of 68.5% of the
classes of the SalesPoint framework applications are FICs.
In terms of LOC, an average of 75.5% of the LOC of the
SalesPoint framework applications are for FICs.

TABLE I

APPLICATIONS DEVELOPED USING CSF
Application Name Number of

classes
Number of

LOC
Number of

FICs
Number of

LOC in FICs

Student management system 47 3887 31 (66%) 1568 (40.3%)

Chatting system 55 7464 3 (5.5%) 179 (2.4%)

Course management system 44 3191 17 (38.6%) 667 (20.9%)

StoneClash Strategy Game 106 5324 56 (52.8%) 2050 (38.5%)

Army Game 149 8792 66 (44.3%) 3449 (39.2%)

Average 80.2 5731.6 41.4% 28.3%

TABLE II

APPLICATIONS DEVELOPED USING SWING FRAMEWORK
Application Name Number of

classes
Number of

LOC
Number of

FICs
Number of

LOC in FICs

Hook Master 112 10520 9 (8%) 611 (5.8%)

Java Master 66 3846 4 (6.1%) 251 (6.5%)

Chatting system 55 7464 21 (38.2%) 2639 (35.4%)

Course management system 44 3191 7 (15.9%) 425 (13.3%)

StoneClash Strategy Game 106 5324 23 (21.7%) 2117 (39.8%)

Army Game 149 8792 15 (10.1%) 1797 (20.4%)

Tiler shop system 39 3114 4 (10.3%) 159 (5.1%)

Photo-service system 76 8831 10 (13.2%) 493 (5.6%)

Casino system 41 8859 2 (4.9%) 69 (0.8%)

Pizza shop system 59 4516 12 (20.3%) 182 (4%)

Average 74.7 6445.7 14.9% 13.7%

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1305

TABLE III
APPLICATIONS DEVELOPED USING SALESPOINT FRAMEWORK

Application Name Number of
classes

Number of
LOC

Number of
FICs

Number of
LOC in FICs

Fast food shop system 18 1161 13 (72.2%) 890 (76.7%)

Tiler shop system 39 3114 28 (71.8%) 2174 (69.8%)

Photo-service system 76 8831 41 (53.9%) 6659 (75.4%)

Casino system 41 8859 25 (60.1%) 5042 (56.9%)

Golf club system 50 5041 45 (90%) 4821 (95.6%)

Pizza shop system 59 4516 37 (62.7%) 3534 (78.3%)

Average 47.2 5253.7 68.5% 75.5%

III. USING MULTIPLE FRAMEWORKS
When multiple frameworks are used to build an

application, the number of FICs is equal to the summation of
the number of FICs created using the hooks of each of the
frameworks. In our case study, eight applications use two
frameworks. Table IV shows the application names, used
frameworks, the total number of FICs, and their total LOC.
The last row of the table calculates the average of the total
number of FICs by summing the percentages of the
corresponding columns in Tables I, II, and III and dividing
the result by the total number of summed percentages. The
same calculation method is applied for the total number of

LOC of the FICs in the last row of the table.
Table IV shows, not surprisingly, that the average of the

total number of FICs counted by considering all the
frameworks used in the applications is much higher than the
average obtained by considering only one of the used
frameworks for each application. A similar result is found
for the total number of LOC in the FICs. This means that if
an application uses multiple frameworks, considering the
reusable test cases of all of the used frameworks in an
application can reduce the class testing time more, on
average, than considering the reusable test cases of one
framework only.

TABLE IV
FRAMEWORK APPLICATIONS THAT USE MULTIPLE FRAMEWORKS

Application Used frameworks Total number
of FICs

Total number of
LOC in FICs

Chatting system Swing & CSF 24 (43.6%) 2818 (37.8%)

Course management system Swing & CSF 24 (54.5%) 1092 (34.2%)

StoneClash Strategy Game Swing & CSF 79 (74.5%) 4167 (78.3%)

Army Game Swing & CSF 81 (54.4%) 5246 (59.7%)

Tiler shop system Swing and SalesPoint 32 (82.1%) 2333 (74.9%)

Photo-service system Swing and SalesPoint 51 (67.7%) 7152 (81%)

Casino system Swing and SalesPoint 27 (65.9%) 5111 (57.7%)

Pizza shop system Swing and SalesPoint 49 (83.1%) 3716 (82.3%)

Average 64.6% 63.2%

Average using one framework 32.8% 31.7%

IV. CONCLUSION AND FUTURE WORK
In this paper, we conducted a case study to examine the

reusability of the FICs in several framework applications.
The case study shows that a high percentage of the classes
of applications developed using domain frameworks are
FICs, while the percentage of the FICs in applications

developed using application frameworks varies largely
according to the specification domains of the framework and
the applications. The results support the hypothesis that the
reusability of the FICs in the applications developed using
domain frameworks is likely to be greater than the
reusability of the FICs in the applications developed using

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1306

application frameworks. At the framework development
stage, reusable test cases can be generated for the FICs to be
used at the application development stage. As the percentage
of the FICs increases in the application, the part of the
application tested using the reusable test cases increases and
the amount of testing work required at the application
development stage reduces.

Typically, building reusable test cases is a costly task. The
case study results indicate that it is worthwhile to build
reusable test cases for applications developed using domain
frameworks as the original investment will be recouped after
producing a few number of framework applications.
However, it might not be worthwhile to build reusable test
cases for some application frameworks because of the
relatively low percentage of the FICs in the applications
developed using the frameworks. Finally, in cases involving
multiple frameworks, the case study results show that
considering the reusable test cases provided with all the
frameworks used in an application can save more testing
time than using the reusable test cases provided with one
framework.

Application developers can add new specifications to the
FICs at the application development stage. These
specifications are not covered by the reusable test cases built
at the framework development stage. This means that the
reusable test cases can cover part of the implemented FICs
but not all. In our future work, we plan to study the
percentage of the specifications of the implemented FICs

covered by the reusable test cases. Our preliminary results
show that, on average, a high percentage of the
specifications (measured in terms of transitions in the state-
transition models of the FICs) of the implemented FICs are
covered using the reusable test cases.

REFERENCES
[1] K. Beck and R, Johnson. Patterns generated architectures, Proc. of

ECOOP 94, 1994, 139-149.
[2] G. Froehlich, H.J. Hoover, L. Liu, and P.G. Sorenson. Hooking into

Object-Oriented Application Frameworks, Proc. 19th Int'l Conf. on
Software Engineering, Boston, May 1997, 491-501.

[3] E. M. Fayad and D. C. Schmidt. Object-oriented application
frameworks, Communications of the ACM, October 1997, Vol. 40,
No. 10.

[4] K. Saleh, A. Boujarwah and J. Al-Dallal, "Anomaly detection in
concurrent Java programs using dynamic data flow analysis", Journal
of Information and Software Technology, Jan 2002, Vol 44, no 1, pp.
53-61.

[5] R. Binder. Testing object-oriented systems, Addison Wesley, 1999.
[6] J. Al Dallal and P. Sorenson, Generating Class-Based Test Cases for

Interface Classes of Object-Oriented Black Box Frameworks,
submitted for publication in Transactions on Engineering, Computing
and Technology, 2006.

[7] G. Froehlich, Hooks: an aid to the reuse of object-oriented
frameworks, Ph.D. Thesis, University of Alberta, Department of
Computing Science, 2002.

[8] Java 1.3.1, http://java.sun.com/, July 2006.
[9] The SalesPoint framework v2.0 homepage, http://www-st.inf.tu-

dresden.de/SalesPoint/v3.0/, July 2006.
[10] LOCC (software information), http://csdl.ics.hawaii.edu/

Tools/LOCC/, July 2006.

