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The core and Shapley function for games on
augmenting systems with a coalition structure

Fan-Yong Meng

Abstract—In this paper, we first introduce the model of games on
augmenting systems with a coalition structure, which can be seen as
an extension of games on augmenting systems. The core of games
on augmenting systems with a coalition structure is defined, and an
equivalent form is discussed. Meantime, the Shapley function for
this type of games is given, and two axiomatic systems of the given
Shapley function are researched. When the given games are quasi
convex, the relationship between the core and the Shapley function
is discussed, which does coincide as in classical case. Finally, a
numerical example is given.

Keywords—cooperative game, augmenting system, Shapley func-
tion, core

I. INTRODUCTION

IN the model of traditional cooperative games, we always
assume each coalition can be formed, which seems to be

unrealistic. There are many situations that not all coalitions can
be formed for various reasons. One of which is games with a
coalition structure. Aumann and Drze [1] first researched this
problem, and gave the Shapley function on it. Later, Owen
[2,3] further studied games with a coalition structure, where
the probability of cooperation among coalitions is considered.
Meantime, the author introduced the Owen value and the
Banzhaf-Owen value for games with a coalition structure.
More researches about games with a coalition structure can
be seen in [4-7].

Besides games with a coalition structure, there exists anoth-
er kind of games. People call it games under precedence con-
straints, where not all coalitions can be formed and the player
payoffs are relevant to their orders in the coalitions. Myerson
[8] introduced games with communication situations, and gave
the Shapley function for the given model. Later, Faige and
Kern [9] introduced a special kind of cooperative games under
precedence constraints, and discussed the axiomatic system
of the given Shapley value by using hierarchical strength.
Bilbao [10] defined games on convex geometries, and the
Shapley value for this kind of games is studied. Bilbao et al.
[11,12] gave another special kind of games under precedence
constraints which is named games on matroids, and studied
the Shapley values for two cases of games on matroids–
the static model and the dynamic model. Recently, Bilbao
[13] introduced the model of games on augmenting systems.
Furthermore, Algaba et al. [14] presented the model of games
on antimatroids, and researched the Shapley value for this class
of games.

Different to the above introduced models, we shall research
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games on augmenting systems with a coalition structure.
Namely, there is a coalition structure for the player set where
the players can participate in different unions, and the players
in one union form an augmenting system.

In section 2, some basic concepts of cooperative games with
a coalition structure and games on augmenting systems are
introduced, which will be used in the following. In section
3, we first give the model of games on augmenting systems
with a coalition structure. Meantime, we research the core and
the Shapley function for games on augmenting systems with
a coalition structure. Some properties of the given Shapley
function are discussed. In section 4, a numerical example is
given.

II. PRELIMINARIES

A. Some concepts of games with a coalition structure
Let N = {1, 2, ..., n} be a finite set, and P (N) be the set

of all subsets in N . The coalitions P (N) in are denoted by
S, T, .... For any S ∈ P (N), the cardinality of S is denoted
by the corresponding lower case s.

A coalition structure Γ = {B1, B2, . . . , Bm} on N is a
partition of N , i.e., ∪1≤h≤mBh = N and Bh ∩Bl = ∅ for all
h, l ∈M = {1, 2, . . . ,m} such that h �= l, denoted by (N,Γ).
For any S ∈ L(N,Γ), S is called a feasible coalition, where
L(N,Γ) denotes the set of all feasible coalitions in (N,Γ). A
function v : L(N,Γ) → �+ satisfying v(∅) = 0 is called a
set function. The set of all set functions in (N,Γ) is denoted
by G(N,Γ).

Aumann and Drze [1] gave the Shapley value on G(N,Γ)
as follows:

δi(N, v,Γ) =
∑

i∈S⊆Bk

(s− 1)!(bk − s)!

bk!
(v(S)− v(S\i))

∀i ∈ N, (1)

whereBk ∈ Γ.

B. Cooperative games on augmenting systems
A set system on N is a pair (N,F), where F ⊆ 2N is a

family of subsets. The sets belong to F are called feasible.
Definition 1. [13] An augmenting system is a set system
(N,F) with the following properties:

A1: ∅ ∈ F;
A2: If S, T ∈ F with S ∩ T �= ∅, then S ∪ T ∈ F;
A3: If S, T ∈ F with S ⊆ T , then there exists i ∈ T\S

such that S ∪ i ∈ F.
An augmenting system (N,F) is said to be normal, if we

have N = ∪S∈FS. A compatible ordering of an augmenting
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system (N,F) is given by i1 < i2 < · · · < in with
{i1, i2, . . . , ij} ∈ F for all j = 1, 2, ..., n. A compatible
ordering corresponds to a maximal chain, the set of all
maximal chains in F is denoted by Ch(F). The cardinality
of Ch(F) is denoted by c(N). For any S ∈ F, c(S) denotes
the number of maximal chains from ∅ to S, and c(S ∪ i, N)
is the number of maximal chains from S ∪ i to N , where
S∪ i ∈ F. For any S ∈ F, let S∗ = {i ∈ N\S : S∪ i ∈ F}. A
game on an augmenting system is a set function v : F → �+,
such that v(∅) = 0.

Bilbao and Ordonez [15] defined the Shapley function for
games on augmenting systems as follows:

φi(N, v,F) =
∑

{S∈F:i∈S∗}

c(S)c(S ∪ i, N)

c(N)
(v(S ∪ i)

− v(S) ∀i ∈ N. (2)

Two axiomatic systems of the given Shapley function are
studied by using hierarchical strength and chain axiom.

III. GAMES ON AUGMENTING SYSTEMS WITH A
COALITION STRUCTURE

In this section we shall research games on augmenting
systems with a coalition structure. Different to the coalition
structure given by Aumann and Drze [1] and Owen [2, 3],
the coalition structure given in this paper does not require the
intersection of different unions is empty set. Similar to above
analysis, we give the following discussion.

A coalition structure Γ′ = {B1, B2, . . . , Bm} on player set
N is a set of unions on N , where ∪1≤h≤mBh = N . Let
P(Γ′) be the set of all probability distributions in Γ′. For
any P ∈ P(Γ′) and any Bk ∈ Γ′, we have P (Bk) ≥ 0 and∑
Bk∈Γ′

P (Bk) = 1.

Let Bk ∈ Γ′, an augmenting system on Bk is a set system
(Bk,FBk

) as given in Definition 1, where the following
conditions hold:

A1: ∅ ∈ FBk
;

A2: If S, T ∈ FBk
with S ∩ T �= ∅, then S ∪ T ∈ FBk

;
A3: If S, T ∈ FBk

with S ⊆ T , then there exists i ∈ T\S
such that S ∪ i ∈ FBk

.
By LM (Bk,FBk

), we denote the set of all feasible coali-
tions in with respect to FBk

, where k ∈ M = {1, 2, ...,m}.
A function v : LM (Bk,FBk

) → �+, such that v(∅) = 0,
is called a set function. The set of all set functions in
LM (Bk,FBk

) is denoted by GM (Bk,FBk
).

Remark 1. In this paper, without special explanation, we
always have Bk ∈ FBk

for each k ∈M .

A. The core of games on augmenting systems with a coalition
structure
Definition 2. Let v ∈ GM (Bk,FBk

), and P ∈ P(Γ′) be a
probability distribution in Γ′. The core CM (Bk, v,FBk

) of v
in LM (Bk,FBk

) is given as:

CM (Bk, v,FBk
) = {x ∈ �n+|

∑
i∈N

xi =
∑
k∈M

P (Bk)v(Bk),

∑
i∈S

xi ≥
∑
k∈M

P (Bk)v(S ∩Bk), ∀S ∈ LM (Bk,FBk
)}.

When there is only one union in Γ′, then Definition 2
degenerates to be the core of games on augmenting systems.
Definition 3. Let v ∈ GM (Bk,FBk

), v is said to be quasi
convex if we have

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T )

for anyS, T ∈ LM (Bk,FBk
).

Theorem 1. Let v ∈ GM (Bk,FBk
) be quasi convex,

and P ∈ P(Γ′) be a probability distribution in Γ′. Then
CM (Bk, v,FBk

) �= ∅, and can be expressed by

CM (Bk, v,FBk
) = {z ∈ �n+|

∑
i∈N

zi =
∑
k∈M

P (Bk)x
Bk ,

∀xBk ∈ C(Bk, v,FBk
), ∀k ∈M},

where C(Bk, v,FBk
) denotes the core of v in FBk

.
Proof: From the quasi convexity of v, we have
C(Bk, v,FBk

) �= ∅ for any k ∈M . Let

zi =
∑
k∈M

P (Bk)x
Bk
i ∀i ∈ N, (3)

where (xBk
i )i∈Bk

∈ C(Bk, v,FBk
).

We first show z = (zi)i∈N ∈ CM (Bk, v,FBk
). Since∑

i∈N
zi =

∑
i∈N

∑
k∈M

P (Bk)x
Bk
i

=
∑
k∈M

P (Bk)
∑
i∈N

xBk
i

=
∑
k∈M

P (Bk)
∑
i∈Bk

xBk
i

=
∑
k∈M

P (Bk)v(Bk)

and ∑
i∈S

zi =
∑
i∈S

∑
k∈M

P (Bk)x
Bk
i

=
∑
k∈M

P (Bk)
∑
i∈S

xBk
i

=
∑
k∈M

P (Bk)
∑

i∈S∩Bk

xBk
i

≥
∑
k∈M

P (Bk)v(S ∩Bk)

for any S ∈ LM (Bk,FBk
).

From Definition 2, we get z = (zi)i∈N ∈
CM (Bk, v,FBk

) �= ∅.
In the following, we shall show z can be expressed by Eq.(3)

for any z ∈ CM (Bk, v,FBk
).

For any k ∈ M and any xBk = (xBk
i )i∈Bk

∈
C(Bk, v,FBk

), let

x
−
Bk
p = min

{
xBk
p

∣∣xBk ∈ C(Bk, v,FBk
), p ∈ Bk

}

and
−
x
Bk

r = max
{
xBk
r

∣∣xBk ∈ C(Bk, v, FBk
), r ∈ Bk

}
.

It is apparent that x−
Bk
p =

{
v(p) p ∈ FBk

0 otherwise
.
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If there exists z ∈ CM (Bk, v,FBk
), which can not be

expressed by Eq.(3), then there only exist two cases:
(i) zp <

∑
k∈M

P (Bk) x−
Bk
p ;

(ii) zr >
∑
k∈M

P (Bk)
−
x
Bk

r .

For case (i): When p ∈ FBk
for some k ∈M , we have

zp <
∑
k∈M

P (Bk) x−
Bk
p

=
∑

k∈M,p∈Bk

P (Bk)v(p);

otherwise, zp < 0, which contradict with the quasi convexity
of v.
For case (ii): Let R =

{
r

∣∣∣∣zr > ∑
k∈M

P (Bk)
−
x
Bk

r , r ∈ N

}
,

we have∑
i∈N

zi =
∑
i∈R

zi+
∑

i∈N\R
zi

>
∑
i∈R

∑
k∈M

P (Bk)
−
x
Bk

r +
∑

i∈N\R

∑
k∈M

P (Bk)x
Bk
p

≥
∑
i∈N

∑
k∈M

P (Bk)x
Bk
p

=
∑
k∈M

P (Bk)
∑
i∈N

xBk
p

=
∑
k∈M

P (Bk)v(Bk),

which contradicts with z ∈ CM (Bk, v,FBk
). Hence, R = ∅,

and the proof is completed. �

B. The Shapley function for games on augmenting systems with
a coalition structure

Let v ∈ GM (Bk,FBk
) and any given P ∈ P(Γ′), following

the work of Bilbao and Ordonez [15], we define the Shapley
function on GM (Bk,FBk

) as follows:

ϕMi (Bk, v,FBk
) =

∑
k∈M

∑
S∈FBk

,

i∈S∗

P (Bk)c(S)c(S ∪ i, Bk)
c(Bk)

(v(S ∪ i)− v(S)) ∀i ∈ N, (4)

which can be equivalently expressed by

ϕMi (Bk, v,FBk
) =

∑
k∈M

P (Bk)ϕi(Bk, v,FBk
) i ∈ N, (5)

where ϕi(Bk, v,FBk
) =

∑
{S∈FBk

,i∈S∗}
c(S)c(S∪i,Bk)

c(Bk)
(v(S ∪ i)

−v(S). c(Bk) is the cardinality of Ch(FBk
).

From Eq.(4), we know when there is only one union in Γ′,
then Eq.(4) degenerates to be Eq.(2). When each union has
the same cardinality and all subsets of each union are feasible,
then Eq.(4) degenerates to be the Shapley value for games on
matroids (see [11]).

Given i ∈ Bk(k ∈M) and a compatible ordering C ∈ FBk
.

Let C(i) = {i is the last element in C}. Similar to Bilbao and

Ordonez [15], we define hBk

S (i) for i in S ∈ FBk
as follows:

hBk

S (i) =
|{C ∈ FBk

: S ⊆ C(i)}|
c(Bk)

.

Definition 4. Let v ∈ GM (Bk,FBk
), T ∈ LM (Bk,FBk

) is
said to be a carrier in LM (Bk,FBk

) of v if v(S ∩ T ) = v(S)
for any S ∈ LM (Bk,FBk

).
Let f : GM (Bk,FBk

) → �n+ be a solution on
GM (Bk,FBk

). Similar to Faige and Kern [9], Bilbao et al,
[11] and Bilbao and Ordonez [15], we give the following
properties.
Linearity: Let v, w ∈ GM (Bk,FBk

) and all α, β ∈ �. P ∈
P(Γ′) is a probability distribution in Γ′. Then we have

fM (Bk, αv + βw,FBk
)

= αfM (Bk, v,FBk
) + βfM (Bk, w,FBk

)

Probabilistic efficiency on unions: Let v ∈ GM (Bk,FBk
),

and P ∈ P(Γ′) be a probability distribution in Γ′. If T ∈
LM (Bk,FBk

) is a carrier of v, then
∑
i∈T

fMi (Bk, v,FBk
) =

∑
k∈M

P (Bk)v(T ∩Bk)

Hierarchical strength in unions: Let v ∈ GM (Bk,FBk
) and

any k ∈M , we have

hBk

S (j)fi(Bk, uS ,FBk
) = hBk

S (i)fj(Bk, uS ,FBk
)

for any S ∈ FBk
with i, j ∈ S, where uS is the unanimity

game on S ∈ FBk
such that uS(T ) =

{
1 S ⊆ T
0 otherwise

,

and f(Bk, uS ,FBk
) is the restriction of f in FBk

.
Theorem 2. Let v ∈ GM (Bk,FBk

), and P ∈ P(Γ′) be a prob-
ability distribution in Γ′. The function f : GM (Bk,FBk

) →
�n+ satisfies Linearity, Probabilistic efficiency on unions and
Hierarchical strength in unions if and only if f = ϕ.
Proof: From Eq.(4), we know Linearity holds;
Probabilistic efficiency on unions: From Eq.(4) and Definition
4, we get

∑
i∈T

ϕMi (Bk, v,FBk
)

=
∑
i∈N

ϕMi (Bk, v,FBk
)

=
∑
i∈N

∑
k∈M

∑
{S∈FBk

:i∈S∗}

P (Bk)c(S)c(S ∪ i, Bk)
c(Bk)

× (v(S ∪ i)− v(S))

=
∑
k∈M

∑
i∈Bk

∑
{S∈FBk

:i∈S∗}

P (Bk)c(S)c(S ∪ i, Bk)
c(Bk)

× (v(S ∪ i)− v(S))

=
∑
k∈M

P (Bk)v(Bk)

=
∑
k∈M

P (Bk)v(T ∩Bk).
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Hierarchical strength in unions: From Eq.(5), we have

ϕi(Bk, uS ,FBk
)

=
∑

{T∈FBk
:i∈T∗}

c(T )c(T ∪ i, Bk)
c(Bk)

(uS(T ∪ i)− uS(T ))

=
∑

{S⊆T∈FBk
:i∈T∗}

c(T )c(T ∪ i, Bk)
c(Bk)

(uS(T ∪ i)− uS(T ))

=
∑

{S⊆T∈FBk
:i∈T∗}

c(T )c(T ∪ i, Bk)
c(Bk)

=
1

c(Bk)
|{C ∈ FBk

: S ⊆ C(i)}|
= hBk

S (i).

Similarly, we obtain ϕj(Bk, uS ,FBk
) = hBk

S (j). Thus, we get
Hierarchical strength in unions.
Uniqueness. For any v ∈ GM (Bk,FBk

), we first show v can
be expressed by

v =
∑
k∈M

∑
∅
=S∈FBk

cSuS , (6)

where cS =
∑

T⊆S,T∈FBk

(−1)
s−t

v(T ).

For any W ∈ LM (Bk,FBk
)\∅, without loss of generality,

suppose W ∈ FBk
, we have

⎛
⎝∑
k∈M

∑
∅
=S∈FBk

cSuS

⎞
⎠ (W )

=
∑
k∈M

∑
∅
=S∈FBk

cSuS(W )

=
∑

{S⊆W, S∈FBk
}
cSuS(W )

=
∑

{S⊆W, S∈FBk
}
cS

=
∑

{S⊆W, S∈FBk
}

∑
{T⊆S,T∈FBk

}
(−1)

s−t
v(T )

=
∑

{T⊆W,T∈FBk
}

∑
{S⊆W, S∈FBk

}
(−1)

s−t
v(T ).

The Möbius inversion formula for the lattice FBk
implies

⎛
⎝∑
k∈M

∑
∅
=S∈FBk

cSuS

⎞
⎠ (W ) = v(W ).

From Linearity, we only need to show f = ϕ on unanimity
games. For any S ∈ LM (Bk,FBk

)\∅, without loss of gener-
ality, suppose S ∈ FBk

, define the unanimity game uS on S
as given above.
From Hierarchical strength in unions, we get

fj(Bk, uS ,FBk
) =

hBk

S (j)

hBk

S (i)
fi(Bk, uS ,FBk

).

Fix i ∈ S, we obtain
∑
j∈S

fj(Bk, uS ,FBk
)

=
∑
j∈S\i

hBk

S (j)

hBk

S (i)
fi(Bk, uS ,FBk

) + fi(Bk, uS ,FBk
)

=
∑
j∈S

hBk

S (j)

hBk

S (i)
fi(Bk, uS ,FBk

)

=
fi(Bk, uS ,FBk

)

hBk

S (i)

From Probabilistic efficiency on unions, we get
∑
j∈S

fMj (Bk, uS ,FBk
) = P (Bk).

Thus, we have

fMi (Bk, uS ,FBk
) = fi(Bk, uS ,FBk

) = P (Bk)h
Bk

S (i).

On the other hand, from Eq.(4), we get

ϕMi (Bk, uS ,FBk
) =

{
P (Bk)h

Bk

S (i) i ∈ S
0 otherwise

.

Namely, f = ϕ on unanimity games. �
Similar to the property of strong monotonicity for the

Shapley function on traditional case (see [16]), we give
strong monotonicity for the Shapley value on GM (Bk,FBk

)as
follows:
Strong monotonicity on unions: Let v, w ∈ GM (Bk,FBk

),
and P ∈ P(Γ′) be a probability distribution in Γ′. If we have
v(S∪ i)−v(S) ≥ w(S∪ i)−w(S) for any S ∈ LM (Bk,FBk

)
with i ∈ S∗, then

fMi (Bk, v,FBk
) ≥ fMi (Bk, w,FBk

).

Theorem 3. There is a unique solution f : GM (Bk,FBk
) →

�n+ that satisfies Probabilistic efficiency on unions, Hierarchi-
cal strength in unions and Strong monotonicity on unions.
Proof: From Eq.(4) and Theorem 2, we know existence holds.
Next, we shall show uniqueness. Define the index I of v to be
the minimum number of non-zero terms in some expression
for v of form (6).
When I = 0, from Strong monotonicity, we have

v(S ∪ i)− v(S) = w(S ∪ i)− w(S) = 0

for any S ∈ LM (Bk,FBk
) with i ∈ S∗.

From Probabilistic efficiency on unions and Hierarchical
strength in unions, we have

fMi (Bk, w,FBk
) = 0 ∀i ∈ N.

On the other hand, from Eq.(5), we have

ϕMi (Bk, w,FBk
) = 0 ∀i ∈ N.

When I = 1. Without loss of generality, suppose v = cSuS ,
where S ∈ FBk

\∅.
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From Probabilistic efficiency on unions and Hierarchical
strength in unions, we have

fMi (Bk, w,FBk
) = fMi (Bk, v,FBk

)

=

{
P (Bk)cSh

Bk

S (i) i ∈ S
0 otherwise

.

From Eq.(5), we get f = ϕ.
Therefore f = ϕ, whenever the index of v is 0 or 1.
Assume now that f = ϕ, whenever the index of v is at most
I, and let v have index I + 1 with expression

v =

I+1∑
r=1

cSr
uSr

,

where S ∈ LM (Bk,FBk
)\∅ for all r = 1, 2, . . . , I + 1.

Let T = ∩I+1
r=1Sr, for any i ∈ N\T, construct the game

w =
∑
r:i∈Sr

cSr
uSr

.

The index of w is at most I, since v(S∪i)−v(S) = w(S∪i)−
w(S) for any S ∈ LM (Bk,FBk

) with i ∈ S∗. By induction
and Hierarchical strength in unions, we have

fMi (Bk, v,FBk
) = fMi (Bk, w,FBk

)

=
∑

k∈M :i∈Sr⊆FBk
,

P (Bk)cSr
hBk

Sr
(i).

From Eq.(5), we get f = ϕ.
When i ∈ T. From Probabilistic efficiency on unions and
Hierarchical strength in unions, we have

fMi (Bk, v,FBk
) = fMi (Bk, w,FBk

)

=
∑

k∈M :Sr⊆FBk
,

r=1,2,..,I+1

P (Bk)cSr
hBk

Sr
(i) .

From Eq.(5), we have f = ϕ, and the result is obtained. �

C. Some properties
Property 1. Let v ∈ GM (Bk,FBk

) be quasi convex, and
P ∈ P(Γ′) be a probability distribution in Γ′, then we have(
ϕMi (Bk, v,FBk

)
)
i∈N ∈ CM (Bk, v,FBk

).
Proof: From Theorem 2, we only need to show

∑
i∈S

xi ≥∑
k∈M

P (Bk)v(S ∩Bk) for any S ∈ LM (Bk,FBk
).

From the quasi convexity of v, we have

v(S ∪ i)− v(S) ≥ v(T ∪ i)− v(T )

for any S, T ∈ LM (Bk,FBk
) with T ⊆ S and i ∈ S∗, i ∈ T ∗.

From Eq.(4), we have
∑
i∈S

ϕMi (Bk, v,FBk
)

=
∑
i∈S

∑
k∈M

P (Bk)ϕi(Bk, v,FBk
)

=
∑
k∈M

P (Bk)
∑
i∈S

ϕi(Bk, v,FBk
)

=
∑
k∈M

P (Bk)
∑

i∈S∩Bk

ϕi(Bk, v,FBk
)

≥
∑
k∈M

P (Bk)
∑

i∈S∩Bk

ϕi(S ∩Bk, v,FBk
)

=
∑
k∈M

P (Bk)v(S ∩Bk).

�
Definition 5. Let v ∈ GM (Bk,FBk

), and P ∈ P(Γ′) be a
probability distribution in Γ′, the vector y = (yi)i∈N is said
to be a population monotonic allocation scheme (PMAS) for
v in LM (Bk,FBk

), if
(1)

∑
i∈S

yi(S) =
∑
k∈M

P (Bk)v(S ∩Bk) ∀S ∈ LM (Bk,FBk
);

(2) yi(S) ≤ yi(T ) ∀i ∈ S, ∀S, T ∈ LM (Bk,FBk
) s.t. S ⊆ T.

Property 2. Let v ∈ GM (Bk,FBk
) be quasi convex, and P ∈

P(Γ′) be a probability distribution in Γ′, then is a PMAS for
v in LM (Bk,FBk

).
Proof: From Eq.(5), we have

∑
i∈S

ϕMi (S, v,FBk
)

=
∑
i∈S

∑
k∈M

P (Bk)ϕi(S, v,FBk
)

=
∑
k∈M

P (Bk)
∑
i∈S

ϕi(S, v,FBk
)

=
∑
k∈M

P (Bk)
∑
i∈S

ϕi(S ∩Bk, v,FBk
)

=
∑
k∈M

P (Bk)v(S ∩Bk);

From Property 1, we get the second condition given in
Definition 5. �
Property 3. Let v ∈ GM (Bk,FBk

) be quasi convex,
and P ∈ P(Γ′) be a probability distribution in Γ′, then
we have ϕMi (Bk, v,FBk

) ≥ ∑
k∈M

P (Bk)v(i) for any i ∈
LM (Bk,FBk

).
Proof: From the quasi convexity of v, we have

v(S ∪ i)− v(S) ≥ v(i)

for any S ∈ LM (Bk,FBk
) with i ∈ S∗. From Eq.(4), we get

ϕMi (Bk, v,FBk
)

=
∑
k∈M

∑
{S∈FBk

:i∈S∗}

P (Bk)c(S)c(S ∪ i, Bk)
c(Bk)

(v(S ∪ i)

−v(S))
≥
∑
k∈M

∑
{S∈FBk

:i∈S∗}

P (Bk)c(S)c(S ∪ i, Bk)
c(Bk)

v(i)

=
∑
k∈M

P (Bk)v(i)
∑

{S∈FBk
:i∈S∗}

c(S)c(S ∪ i, Bk)
c(Bk)

=
∑
k∈M

P (Bk)v(i).

�
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TABLE 1: THE COALITION VALUES
S v(S) S v(S) S v(S)
{1} 2 {1,2} 5 {4,5} 7
{2} 1 {1,3} 6 {1,2,3} 15
{3} 2 {2,3} 8 {1,3,4} 10
{5} 1 {2,4} 5 {2,4,5} 13

IV. A NUMERICAL EXAMPLE

Let the player set N = {1, 2, 3, 4, 5}. The coalition
structure is given by Γ′ = {B1, B2, B3}, where B1 =
{1, 2, 3}, B2 = {1, 3, 4} and B3 = {2, 4, 5}. The aug-
menting systems on B1, B2 and B3 are given as: FB1

=
{∅, {1}, {3}, {1, 2}, {2, 3}, B1}, FB2 = {∅, {1}, {1, 3}, B2}
and FB3 = {∅, {2}, {5}, {2, 4}, {4, 5}, B3}. The correspond-
ing coalition values are given by table 1. If we use the values
of the unions as the probability distribution in Γ′, from table
1, we get the probability distribution is
P (B1) = 15/38, P (B2) = 10/38 and P (B3) = 13/38.

From Eq.(4), we obtain the player Shapley values are

ϕM1 (Bk, v,FBk
) = 2.3,

ϕM2 (Bk, v,FBk
) = 3,

ϕM3 (Bk, v,FBk
) = 3.4,

ϕM4 (Bk, v,FBk
) = 2.8,

ϕM5 (Bk, v,FBk
) = 1.5.

From table 1, we know this is a quasi convex game, and the
Shapley value given above is an element in its core.

V. CONCLUSION

We have researched a special kind of games under prece-
dence constraints with a coalition structure, which is named
games on augmenting systems with a coalition structure.
The core and the Shapley function for the given model is
researched. An equivalent form of the core is studied, and
two axiomtizations of the given Shapley are discussed. Some
properties are also researched, which are the same as classical
case.

However, we only study the core and Shapley function for
games on augmenting systems with a coalition structure, and
it will be interesting to research other payoff indices.
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