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The convergence results between backward USSOR
and Jacobi iterative matrices
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Abstract—In this paper, the backward USSOR iterative matrix is
proposed. The relationship of convergence between the backward
USSOR iterative matrix and Jacobi iterative matrix is obtained, which
makes the results in the corresponding references be improved and re-
fined. Moreover, numerical examples also illustrate the effectiveness
of these conclusions.
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I. INTRODUCTION

T O solve the equations
Az =, (1)

where A = [a;;] is a given n X n complex matrix and
nonsingular, iterative methods are always employed.

Let A= D — CL — Cy where D = diag(A) is a diagonal
matrix obtained from A and nonsingular, —C, and —Cy; are
strictly lower and upper triangular matrices obtained from A,
respectively. We also let L = D~'Cr, U = D~ 'Cy. The
equation (1) becomes the equivalent one

(I-L—-U)x=D"'Az=D""b. (2)
The Jacobi iterative matrix is
B=L+U=I-D71A

The USSOR and some other iterative methods are studied in
[3-5]. Here, we give the backward USSOR iterative matrix as
follows:

o = ([—w2l) (1 —w2)l +w2)UJ(I —wiU)™"
[(1 = wi)l +wi)L],

or equivalently,

Pwy,wy = (I - WZL)il(I — W1U)71[(1 — wz)I =+ wz)U]
(1 —wi)I +wi)L], )

with special values of w;, wo, we have

(1) When w; = ws = w, we obtain the backward SSOR
iterative method;

(2) When w; = w, ws = 0, we obtain the backward SOR
iterative method;

(3) When w; = 1, wy = 0, we obtain the backward G-S
iterative method;
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The convergence relationship between the Gauss-Seidel
iterative matrix and the Jacobi iterative matrix is studied
in [1], and the generalized results are studied in [6]. Some
eigenvalue relationships between other iterative matrices and
Jacobi iterative matrix are studied with the p-cyclic case in
[7-14]. In the following we consider the convergence results
between the backward USSOR iterative matrix and the Jacobi
iterative matrix, and obtain convergence relationships between
some other backward iterative matrices and Jacobi matrix.

II. PRELIMINARY

Definition 2.1([2]) The splitting A = M — N with A and
M nonsingular is called a regular splitting if M~ > 0 and
N > 0. It is called a weak regular splitting if M~' > 0 and
M~—IN>0.

It is obvious that a regular splitting is a weak regular
splitting.

Lemma 2.1([2]) The nonnegative matrix T € R™ " is
convergent, that is, p(T) < 1 if and only if (I —T)™! exists
and (I —=T)" ' =32, Tk > 0.

Lemma 2.2([2]) Let A = M — N be a weak regular
splitting of A, H = M~'N. Then the following statements
are equivalent:

(1) A=Y > 0; that is, A is inverse-positive.

(2)AIN > 0.

_ _p(ATIN)

(3) p(H) = Trp(A=TAy SO that p(H) < 1.

Lemma 2.3([1]) Let A > 0 be an irreducible n x n matrix.
Then

(1) A has a positive real eigenvalue equal to its spectral
radius.

(2) To p(A), there corresponds an eigenvector x > 0.

(3) p(A) increases when any entry of A increases.

(4) p(A) is a simple eigenvalue os A.

Lemma 2.4([1]) Let A = (a;;) > 0 be an irreducible n x n
matrix. Then for any x > 0, either

n n
2aijxj Zlaija:j
min = < p(A) < max Y—
1<i<n Z; 1<i<n ZT;
or
n
i,
Jj=1 .
——=p(4), Vi
T

III. MAIN RESULTS

Theorem 3.1 Let the coefficient matrix A of (1) be irre-
ducible with a;; # 0,Vi, B = U+ L > 0 be the Jacobi matrix
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and ¢y, o, be the backward USSOR iterative matrix. Then,
for 0 <wp <1,k =1,2 we have:

D) p(B) > 0, p(Puy.ws) > (1 —wi1)(1 —ws).

(2) one and only one of the following mutually exclusive
relations is valid:

) 0<p(B) <l+= (1-w)(l —ws) < plPuyw,) < 1.

(i) p(B) =1 <= p(‘Pwhwz) =1

(i) p(B) > 1 <= p(@wl,wg) > 1

Thus, the Jacobi iterative method and the backward USSOR
iterative method are either both convergent, or both divergent.

Proof. Combining p(wsL) = p(w1U) = 0 with lemma 2.1,
we have I —wy L)1 > 0,(I —w;U)~1 >0, and

(I — w2L)71(I — wlU)il[(l — (.()2)[ + w2)U]
(1 —wi)I +w1)L],
= (I+wl+wil?+ )T +wiU+wiU?+--)
[(1 — UJ1)(1 — (.UQ)I =+ wz(l — w1)U —+ (.U1(1 — UJQ)L
+w1w2UL]
> (1—wi)(l—w)l +wr(l—w)U+wi(l— wg()%
4
Since ay; # 0 and A is irreducible, I — L — U = D! A and
B = L+ U are irreducible. By 0 < wr < 1,k = 1,2, we
have (1 —wi)(1 — w2)l 4+ wa(l — w1)U +wi(l —wy)U >0
and irreducible. Thus, by (4), ¢u, w, > 0 and irreducible. By
lemma 2.3, there exists A = p(¢u,.w,) > 0 and corresponding
vector ¢ = (1,2, -, &y)" > 0, such that v, .,z = Az,
namely,

Pwi,wz

(1 —w2) +wUl[(1 —wi1)] +wiLlz = A —w1U)(I —w2l)z

Let n = wa(l —wi) + Awi, € = wi(l — wa) + Aws, and
7=(1—w1)(1 —ws), by calculation,

nUx + ELx + (1 — NwiwaULx = (A — 1)z, (5)
that is,
nUz 4+ Lz = (A — Dwiwo ULz + (A — 7). (6)

(1) Since B > 0 is irreducible, by lemma 2.3, p(B) > 0.
If p(Yuwyws) > 1, by 0 < wp < 1,k = 1,2, we know that
lwe — 1| < 1,k=1,2,and 7 = [(1 — w1)(1 — wa)| = w1 —
I we = 1] < 1, thus p(@uw,) = 1> 1—=7.If p(Puy ws) < 1,
then A > 7 because the left side of (5) is nonnegative. By (5),

nUx +&Lx < (A —T1)z. (7)
If A =1, by (7), we have nUx + {Lx < 0, that is,

n i—1
n Z bijl’j +£Zb”l‘] SO,VZ

j=i+1 j=1
Since n > 0,£ > 0,B = (b;;) > 0 and = > 0, we obtain
that B = 0. Thus, p(B) = 0. This contradicts p(B) > 0. So,

p((pwhu&) >1-7
(2) For mutually exclusive relations:

@)If 0 < p(B) < 1, let
M= (I —-wU)I —wyl),
N =[] +ws(1 —w)U +w1(1 —we)L + wiwoUL],

then
St wy=MTN.

Since M~! = (I —wy L)™' (I —w U)"! >0 and N >0,
T = M — N is a regular splitting.
T=M-N=(1-7)I—-B)=(w; +wz —wiwq)({ — B).
By B > 0,0 < p(B) < 1, and wy + ws — wiws < 0, we know
that T-' = (I -B)™' = L (I-B)~'>0.By

w1 twr—wiws

lemma 2.2, p(Pu,.w,) = p(M~LIN) < 1. Combine this with
the result in (1), we have 7 < p(@u, w,) < 1.
If 7 < A= p(Pu,ws) < 1, by (5), we have

nUz + &L < (A — 7). (8)
Since n > 0,£ > 0, b;; = 0, Vi,
n n i—1
min{n, £} Z bijz; <n Z bijxj + EZ bija; < (N —7)xi, Vi,
j=1 j=i+1 j=1
that is,
bii
];1 7 A—T
< — R
T ~ min{n, &}
By A <1land 1 —w, > 0(k =1,2), there is

Vi (9)

/\(l—wk) <1l—wk, A—1<—wi+ Iy,
0 < A—7 = A\—14wiHwr—wiws < Wi Fws—wiwo—wi+Awg

Thus, N 5
0<;T<17and0<%<1. (10)
7

Combining (9) with (10), we have
bij
= cLvi
X
By lemma 2.4, we obtain that 0 < p(B) < 1.
AIf A = p(@uy ws) = 1, by (5), we have
1-71U+Lz=(1-r1)z,

namely, Bx = x. Since x > 0, we have

n
Z b’ijxj
= v

Ti
By lemma 2.4, we obtain that p(B) = 1.
(i) If A = p(Puw, w,) > 1, by (6), we have
nUz + &Lz > (A — 7). (11)
Since n > 0,& > 0, b;; = 0, Vi,
n n i—1
max{m{} Z bijxj >n Z bijmj —+ f Z bijI]‘ > ()\ — T)xi,vi,
j=1 j=i+1 j=1
that is,
biix;
]21 T S A—T
z;  max{n,&}’
By A>1and 1 —w, > 0(k = 1,2), there is

Vi (12)

A(lfwk)>17wk, A—1>—wi + Awg,

A—T = A—14w;+ws —wijws > w1 +ws —wiws — Wi + Awg,
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Thus,

A—T

A—T
— >1l,and —— > 1. 13
; ¢ (13)

Combining (12) with (13), we have
bij
S 7

T
By lemma 2.4, we obtain that p(B) > 1.

If p(B) = 1 and p(¢u, w,) # 1, by (1), we obtain that
T <A = p(Purw,) < 1or p(puw,) > 1. Thus, by (i)
and (iii), we know that 0 < p(B) < 1 or p(B) > 1. This
contradicts p(B) = 1. So, p(Puw; ws) = 1.

If p(B) > 1 and p(¢u, w,) < 1, by (i) and (ii), we have
p(B) < 1. This contradicts p(B) > 1. So, p(Qu,w,) > 1.
Thus, the proof is completed. B

With special values of w;, ws, we have the following
corollaries:

Corollary 3.1 Let the coefficient matrix A of (1) be irre-
ducible, B = U + L > 0 be the Jacobi matrix and ¢, ., be
the backward SSOR iterative matrix. Then, for 0 < w < 1, we
have:

() p(B) >0, p(puw) > (1 —w)?.

(2)one and only one of the following mutually exclusive
relations is valid:

) 0<pB)<1le= (1-w)?<plppw) <1

(i) p(B) =1 <= p(‘pw,w) =1

(i) p(B) > 1 == p(puw) > 1.

Thus, The Jacobi iterative method and the backward SSOR
iterative method are either both convergent, or both divergent.

Corollary 3.2 Let the coefficient matrix A of (1) be irre-
ducible, B = U + L > 0 be the Jacobi matrix and ¢, o be
the backward SOR iterative matrix. Then, for 0 < w < 1, we
have:

(1) p(B) >0, p(puwo >1-w.

(2)one and only one of the following mutually exclusive
relations is valid:

0 <pB)<l<=1-w<p(pwo) <Ll

(i) p(B) = 1 <= p(¢w,0) = 1.

(i) p(B) > 1 <= p(pw,0) > 1.

Thus, The Jacobi iterative method and the backward SSOR
iterative method are either both convergent, or both divergent.

Corollary 3.3 Let the coefficient matrix A of (1) be irre-
ducible, B = U + L > 0 be the Jacobi matrix and @1 be
the backward Gauss-Seidel iterative matrix. Then, we have:

(1) p(B) >0, p(e1,0) > 0.

(2) one and only one of the following mutually exclusive
relations is valid:

10 < p(B) <1<=0<p(p1,0) < 1L

(i) p(B) = 1 <= p(p1,0) = 1.

(i) p(B) > 1 <= p(p1,0) > 1.

Thus, The Jacobi iterative method and the backward Gauss-
Seidel iterative method are either both convergent, or both
divergent.

IV. NUMERICAL EXAMPLE
Example 4.1 Let the coefficient matrix A of (1) be

4 -1 -1
A= 0 3 -1 ].
3 3 -3
The Jacobi iterative matrix is
0 % %
B=10 0 3
1 1 0
By caculation, we obtain p(B) = 1332 < 1.

(1) Let wy = 1, wy = 0. We obtain the backward Gauss-
seidel iterative matrix :

11
G1=p10= % % 0
1 1 0
and the Gauss-seidel iterative matrix
11
0 7 i
GQZ 0 0 ?
1
0 7 13
2 1138 1105
G)=2 < == = (@G —— =p(B 1
p(Gr) = 3 < 1557 = P(G2) < 536 = P(B) < L,

that is the backward Gauss-Seidel, Gauss-Seidel and Jacobi
iterations converge and the backward Gauss-Seidel iteration is
the best one.

(2) Letw; = w = 1, wy = 0. We obtain the backward SOR
iterative matrix :

55 13 T
96 96
Gi1 = o550 = i % ? ;
2 2 2
and the SOR iterative matrix
1 1 1
2of ok
G = 0 35 =
? 1 8 A
4 16 48
1 1 143 2408
1— )= <plGr) = o < =" = p(Ga) < 1
(1=5)" =7 < (&) =367 < 5599 — P(C2) <L,

that is, the backward SOR, SOR and Jacobi iterations converge
and the backward SOR iteration is better than SOR iteration.

V. CONCLUSION

The convergence results between the backward USSOR
and Jacobi iterative matrix is proposed, and The convergence
results between some special cases of backward USSOR (such
as backward SSOR, backward SOR, and backward Gauss-
Seidel)and Jacobi iterative matrix are obtained. These results
involve some special iterative methods which are proposed
in the references. Numerical example also shows that the
backward SOR and the backward Gauss-Seidel iterative meth-
ods are better than the corresponding methods under some
circumstances.
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