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 
Abstract—Edgeworth Approximation, Bootstrap and Monte 

Carlo Simulations have a considerable impact on the achieving 
certain results related to different problems taken into study. In our 
paper, we have treated a financial case related to the effect that have 
the components of a Cash-Flow of one of the most successful 
businesses in the world, as the financial activity, operational activity 
and investing activity to the cash and cash equivalents at the end of 
the three-months period. To have a better view of this case we have 
created a Vector Autoregression model, and after that we have 
generated the impulse responses in the terms of Asymptotic Analysis 
(Edgeworth Approximation), Monte Carlo Simulations and Residual 
Bootstrap based on the standard errors of every series created. The 
generated results consisted of the common tendencies for the three 
methods applied, that consequently verified the advantage of the 
three methods in the optimization of the model that contains many 
variants. 
 

Keywords—Autoregression, Bootstrap, Edgeworth Expansion, 
Monte Carlo Method. 

I. INTRODUCTION 

HE econometrics is related to the application of some 
statistical methods in the solution of an economical 

problem. The difference between the econometrist’s and 
statistician’s points of view has to do with the stochastic 
relation that is essentially considered by the econometrist. To 
solve the financial problem of this study related to the 
influence of Cash-Flow’s components in the Cash and Cash 
Equivalents, we have created a VAR Model (Vector 
Autoregression Model Estimate) with the series created for the 
financial activities, operational activities, investing activities 
and cash and cash equivalent for every three months’ end 
during 30 years, through the EViews10 software package. An 
abbreviated description of the treatments of the basics of VAR 
analysis and the important features of the model is given in 
[9]. Lag Tests and Lag Length Criteria compute various 
criteria to select the lag order of an unrestricted VAR and it is 
necessary to specify the maximum lag to “test” for. The results 
display various information criteria for all lags up to the 
specified maximum [8]. Lagrange Multiplier test (LM test) 
statistics for residual serial correlation till the specified order, 
in the multivariate case is used by the Autocorrelation LM 
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Test. The version of this LM test is the LR’s formula [14, 
p.22]. Edgeworth expansion correction is applied by the shape 
of this statistics [4]. The Rao F-test is another version of LM 
statistics, except the LR version that can be computed in 
EViews [4]. The simulations of Edgerton and Shukur [4] 
suggest that it performs best among the many variants they 
consider. The impulse response is related to a one-time 
influence to one of the innovations on current and future 
values of the variables taken in [15], [16]. In the impulse 
responses, one of the most important commands that gives the 
better view of the VAR model estimation is the Asymptotic 
Analysis that is related with the Edgeworth Approximation 
[1], [5], [10]. Also, Monte Carlo is one of the best methods 
that improve the view of generated results after the realized 
replications for limited observations. This method follows the 
same logic as the Bootstrap method and the both of them 
contribute to more certain results.  

In our paper, after the process of completing the condition 
of the stationary series, in order to be predictable, we tested 
the lags to reduce the serial correlation and heteroskedasticity 
problems. At the end we studied the impulse response of the 
VAR model related to the standard deviation. In this field we 
used the asymptotic analysis that means the Edgeworth 
Approximation Model, Monte Carlo and Bootstrap, whose 
results presented a common distribution of the responses of all 
series after the shocks in the standard errors of the other series.  

II. VECTOR AUTOREGRESSIONS 

The VAR is widely applied for the prognosis of the systems 
of interrelated time series and for analyzing the dynamic 
influence of random shocks on the system of variables. The 
reduced form VAR is not focused on the structural modeling 
by treating every endogenous variable of the system as a 
function of p-lagged values of all of the endogenous variables 
included in the system [15], [16]. The treatments of the basics 
of VAR analysis and the important features of the model are 
described in [9].  

We may write the stationary, k-dimensional, VAR(p) 
process as: 

 
 1 1 ...t t p t p t ty A y A y Cx              (1) 

 

where 1 2( , ,..., ) 't t t Kty y y y  is a kx1 vector of endogenous 

variables, 1 2( , ,..., ) 't t t dtx x x x  is a dxl vector of exogenous 

variables, 1 ,..., pA A  are kxk matrices of lag coefficients to be 

estimated, C is a kxd matrix of exogenous variable coefficients 
to be estimated, 1 2( , ,..., ) 't t t Kt     is a kx1 white noise 
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innovation process, with, 
 

( ) 0, ( ') , ( ') 0,t t t t sE E and E for t s         . 

 
This equation shows that the vector of innovations is 

conjointly correlated with full rank matrix, but not correlated 
with their leads and lags of the innovations and the right-hand 
side variables [15], [16]. 

 
Null Hypothesis: D(CASH&CASH EQUIVALENTS) has a unit root 
Exogenous: Constant   
Lag Length: 2 (Automatic - based on SIC, maxlag=12) 

   t-Statistic  Prob.*

Augmented Dickey-Fuller test statistic -10.27355 0.0000
Test critical values: 1% level  -3.490772 

 5% level  -2.887909 
 10% level  -2.580908  

*MacKinnon (1996) one-sided p-values. 
     
    

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(CASH&CASH EQUIVALENTS,2) 
Method: Least Squares   
Date: 02/14/21   Time: 13:43 
Sample (adjusted): 5 114  
Included observations: 110 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob.  

D(CASH&CASH EQUIVALENTS(-1)) -2.482254 0.241616 -10.27355 0.0000
D(CASH&CASH EQUIVALENTS(-

1),2) 0.751484 0.180939 4.153233 0.0001
D(CASH&CASH EQUIVALENTS(-

2),2) 0.294790 0.095085 3.100280 0.0025
C 194.9927 244.3143 0.798122 0.4266

R-squared 0.787872    Mean dependent var -43.17273
Adjusted R-squared 0.781868    S.D. dependent var 5461.514
S.E. of regression 2550.779    Akaike info criterion 18.56187
Sum squared resid 6.90E+08    Schwarz criterion 18.66007
Log likelihood -1016.903    Hannan-Quinn criter. 18.60170
F-statistic 131.2324    Durbin-Watson stat 2.056134
Prob(F-statistic) 0.000000    

 

Fig. 1 Stationary of the series taken into study 
 

Let the (pk+d)x1 vector, 1( ',..., ', ') 't t t p tZ y y x  , show all 

the t period regressors in the VAR model. Also, for 
observations, this model can be written as: Y BZ E   where 

1 2( , ,..., )TY y y y  and 1 2( , ,..., )TE     are kxT matrices of 

endogenous variables and innovations, and, 
 

1 2

1 2

( , ,..., , )

( , ,..., )

p

T

B A A A C

Z Z Z Z




 

 
are the k(pk+d) matrix of system coefficients and the 
(pk+d)xT matrix of regressor data, respectively. In stacked 
form, we have ( ' ) )Ky Z I       where 

( ), ( ),y vec Y vec B   and  

 

( ), ( ') ( )Kvec E where E I       . 

 
As long as the lagged values of the endogenous variables 

and the innovations are supposed not to be correlated with 
lagged innovations and the exogenous variables, the standard 
conditions are supported and the OLS curve gives a stable 
evaluation.  

The efficiency of the OLS model that basically is equal to 
GLS, is supported by the fact that the all of the equations in 
the system have identical regressors. 

In Eviews, the simple Ordinary Least Square Estimation is 
applied to each equation, for generating the assessment of the 
standard VAR model [15], [16]. Implementing OLS 
estimation to the shelf yields the LS estimator 

1ˆ (( ') )KZZ Z I y     which has covariance matrix 
1ˆ( ) ( ')V ZZ    . 

To get a covariance matrix of evaluation we need an 
assessment, which is usually obtained by using d.f. corrected 
estimator of the remaining (residual) moment: 

 

ˆ ˆ 'ˆ
( )

EE

T pk d 
 

 

 

where ˆˆ ˆ ˆ( )E Y BZ for vec B   . 

EViews 10 

EViews is a statistical and econometric software package. 
The most current professional version is EViews 10, because 
it helps in creating the aiming model and studying it through a 
various commands and scripts. We have done the study of our 
model with the help of this software. 

III. LAG TESTS 

Lag Exclusion Tests 

The Lag Exclusion Tests perform the default exception tests 
for every lag of the VAR model. The (Wald) statistic gives a 
separated and common report of each equation related to the 
joint importance of all endogenous variables at every one of 
the lags included in the model. 

Lag Length Criteria 

The Lag Length Criteria generate different criteria of the 
lag order selection for an unrestricted VAR. It is necessary to 
specify the maximum order of lags for realizing the test. The 
generated results show different information criteria for all 
lags for the determined maximum. (The lag starts at 1 if the 
VAR model is free of exogenous variables and it starts at 0 for 
the inverse alternative) The criteria are explained in more 
details in [8]. The LR test begins with the maximum lag and 
uses the statistics to test the hypothesis that states for the 
commonly zero value of the coefficients on lag l: 

 
2 2

, 1 ,( ){log | | log | |} ( )l lLR T m k         

 
where the number of parameters is represented by m. The 
Sims’ [3] sample modification which uses (T-m) instead of T 
can be considered too. The modified LR statistics result 
should be compared to the 5% critical value that starts from 
the maximum lag, and decreases the lag one at a time until 
getting the first rejection. If the tests do not identify rejects, 
the minimum lag will be noted with an asterisk. An important 
conclusion is that even though the individual tests have size 
0.05, the whole size of the test is impossible to be 5%; see the 
discussion in [8, p.125-126], [15], [16]. 
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Vector Autoregression Estimates
   
Sample (adjusted): 8 114 
Included observations: 107 after adjustments 
Standard errors in ( ) & t-statistics in [ ] 

 
D(CASH&CASH 
EQUIVALENTS) 

D(FINANCIAL 
ACTIVITIES) 

D(INVESTING 
ACTIVITIES)

D(OPERATIONA
ACTIVITIES) 

D(CASH&CASH 
EQUIVALENTS(-1)) -0.668866 -0.091659 -0.053719 -0.332616 

  (0.13349)  (0.07610)  (0.04381)  (0.09126) 
 [-5.01057] [-1.20448] [-1.22632] [-3.64485]
  

D(CASH&CASH 
EQUIVALENTS(-2)) -0.525977 -0.084526 -0.062972 -0.240144 

  (0.15436)  (0.08799)  (0.05065) (0.10552)
 [-3.40756] [-0.96060] [-1.24323] [-2.27581]
  

D(CASH&CASH 
EQUIVALENTS(-3)) -0.356864 -0.040438  0.054818 -0.097919 

  (0.15492)  (0.08831)  (0.05084) (0.10590)
 [-2.30357] [-0.45789] [ 1.07832] [-0.92460]
     

D(CASH&CASH 
EQUIVALENTS(-4)) -0.382452 -0.179911 -0.123457 -0.185442 

  (0.14903)  (0.08496)  (0.04890) (0.10188)
 [-2.56632] [-2.11770] [-2.52449] [-1.82024] 
  

D(CASH&CASH 
EQUIVALENTS(-5)) -0.189886  0.052661  0.019503 -0.159995 

  (0.15430)  (0.08796)  (0.05063)  (0.10548) 
 [-1.23064] [ 0.59869] [ 0.38518] [-1.51682] 
  

D(CASH&CASH 
EQUIVALENTS(-6)) -0.167242 -0.010659  0.032401  0.131453 

  (0.13840)  (0.07890)  (0.04542)  (0.09461) 
 [-1.20838] [-0.13510] [ 0.71340] [ 1.38936] 
  

D(FINANCIAL 
ACTIVITIES(-1)) -0.160960 -0.406667 -0.053313  0.232119 

  (0.20676)  (0.11787)  (0.06785) (0.14134)
 [-0.77850] [-3.45027] [-0.78578] [ 1.64225]
  

D(FINANCIAL 
ACTIVITIES(-2))  0.031356 -0.541706  0.027651  0.260827 

  (0.22243)  (0.12680)  (0.07299)  (0.15205) 
 [ 0.14097] [-4.27222] [ 0.37884] [ 1.71537]
     

D(FINANCIAL 
ACTIVITIES(-3)) -0.319897 -0.423035 -0.122929 -0.098035 

(0.25503) (0.14538)  (0.08369)  (0.17434) 
 [-1.25437] [-2.90981] [-1.46891] [-0.56232] 
     

D(FINANCIAL 
ACTIVITIES(-4)) -0.541117  0.007726 -0.044188 -0.191411 

  (0.26642)  (0.15188)  (0.08743)  (0.18213) 
 [-2.03104] [ 0.05087] [-0.50543] [-1.05095] 
     

D(FINANCIAL 
ACTIVITIES(-5)) -0.324150 -0.276057 -0.036015 -0.350070 

  (0.23857)  (0.13600)  (0.07829)  (0.16309) 
 [-1.35870] [-2.02979] [-0.46003] [-2.14644] 

  
D(FINANCIAL 

ACTIVITIES(-6)) -0.327675  0.033372 -0.075560 -0.299464 
  (0.23020)  (0.13123)  (0.07554)  (0.15737) 
 [-1.42342] [ 0.25430] [-1.00025] [-1.90293] 
     

D(OPERATIONAL 
ACTIVITIES(-1))  0.186690  0.314605 -0.471118 -0.301135 

  (0.38321)  (0.21846)  (0.12575)  (0.26197) 
 [ 0.48717] [ 1.44014] [-3.74645] [-1.14951] 
     

D(OPERATIONAL 
ACTIVITIES(-2)) -0.032288  0.328493 -0.512308  0.220912 

  (0.42176)  (0.24043)  (0.13840)  (0.28832) 
 [-0.07656] [ 1.36625] [-3.70158] [ 0.76619] 
     

D(OPERATIONAL 
ACTIVITIES(-3))  0.649021  0.258118 -0.625787 -0.207844 

  (0.46551)  (0.26537)  (0.15276)  (0.31823) 
 [ 1.39422] [ 0.97267] [-4.09661] [-0.65313] 

  
D(OPERATIONAL 
ACTIVITIES(-4))  0.384515  0.474269  0.293443  0.376037 

  (0.48351)  (0.27563)  (0.15866)  (0.33054) 
 [ 0.79526] [ 1.72065] [ 1.84945] [ 1.13766] 
     

D(OPERATIONAL 
ACTIVITIES(-5))  0.530273  0.176837 -0.179361 -0.008315 

  (0.47324)  (0.26978)  (0.15529)  (0.32351) 
[ 1.12053] [ 0.65550] [-1.15499] [-0.02570] 

     
D(OPERATIONAL 
ACTIVITIES(-6))  0.226339  0.022701 -0.290575 -0.289459 

  (0.42818)  (0.24409)  (0.14051)  (0.29271) 
 [ 0.52861] [ 0.09300] [-2.06804] [-0.98889] 
     

D(INVESTING 
ACTIVITIES(-1)) -0.299757 -0.077593 -0.000185 -0.051807 

(0.18942) (0.10798)  (0.06216)  (0.12949) 
 [-1.58250] [-0.71857] [-0.00298] [-0.40009] 
     

D(INVESTING 
ACTIVITIES(-2)) -0.108244 -0.099940  0.091103 -0.332775 

  (0.19415)  (0.11068)  (0.06371)  (0.13273) 
 [-0.55751] [-0.90295] [ 1.42991] [-2.50720] 
     

D(INVESTING 
ACTIVITIES(-3)) -0.312472 -0.103640  0.010922 -0.202393 

  (0.19793)  (0.11283)  (0.06495)  (0.13531) 
[-1.57871] [-0.91853] [ 0.16816] [-1.49581]  

 (a)                  (b)  
 

D(INVESTING 
ACTIVITIES(-4))  0.046118 -0.015811  0.072284 -0.306442 

  (0.20178)  (0.11503)  (0.06621) (0.13794)
 [ 0.22856] [-0.13746] [ 1.09168] [-2.22158] 
     

D(INVESTING 
ACTIVITIES(-5)) -0.328145 -0.100942 -0.010035  0.069585 

  (0.20484)  (0.11677)  (0.06722)  (0.14003) 
 [-1.60196] [-0.86443] [-0.14928] [ 0.49692]
     

D(INVESTING 
ACTIVITIES(-6))  0.042531  0.047708  0.071153 -0.291272 

  (0.20354)  (0.11603)  (0.06679) (0.13915)
 [ 0.20895] [ 0.41115] [ 1.06528] [-2.09329] 
     

C  285.8963  136.8409  105.6496 121.9427
  (243.890)  (139.034)  (80.0329)  (166.727) 
 [ 1.17223] [ 0.98423] [ 1.32008] [ 0.73139] 

R-squared  0.568153  0.757586  0.966879 0.611606
Adj. R-squared  0.441759  0.686636  0.957185 0.497930
Sum sq. resids  4.70E+08  1.53E+08  50642496 2.20E+08
S.E. equation  2394.841  1365.220  785.8698 1637.152
F-statistic  4.495095  10.67769  99.73923  5.380245 
Log likelihood -970.1643 -910.0301 -850.9362 -929.4659 
Akaike AIC  18.60120  17.47720  16.37264 17.84048
Schwarz SC  19.22569  18.10169  16.99713  18.46498 
Mean dependent  54.54206  74.30841  88.79439  11.32710 
S.D. dependent  3205.280  2438.810  3797.960  2310.504 

Determinant resid covariance (dof adj.)  8.79E+24   
Determinant resid covariance  3.03E+24   
Log likelihood -3623.183  
Akaike information criterion  69.59221   
Schwarz criterion  72.09018   
Number of coefficients  100    

(c)                   (d)  

Fig. 2 Vector autoregression model 
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Sample: 1 114       
Included observations: 107       
       
Null hypothesis: No serial correlation at lag h      
       
Lag LRE* stat df Prob. Rao F-stat df                 Prob. 
       
1  19.71434  16  0.2334  1.246910 (16, 229.8)  0.2337 
2  17.07720  16  0.3806  1.074038 (16, 229.8)  0.3810 
3  22.78647  16  0.1196  1.450740 (16, 229.8)  0.1198 
4  32.42915  16  0.0088  2.107965 (16, 229.8)  0.0888 
5  21.64000  16  0.1552  1.374364 (16, 229.8)  0.1555 
6  19.52886  16  0.2422  1.234688 (16, 229.8)  0.2426 
7  13.28754  16  0.6516  0.828962 (16, 229.8)  0.6519 
       
       
Null hypothesis: No serial correlation at lags 1 to h     
       
Lag LRE* stat df Prob. Rao F-stat df                  Prob. 
       
1  19.71434  16  0.2334  1.246910 (16, 229.8)  0.2337 
2  38.33890  32  0.2040  1.215297 (32, 263.4)  0.2054 
3  52.56696  48  0.3016  1.105646 (48, 260.1)  0.3060 
4  75.42465  64  0.1554  1.202771 (64, 248.9)  0.1622 
5  100.0980  80  0.0637  1.295347 (80, 235.2)  0.0707 
6  109.2063  96  0.1685  1.158040 (96, 220.4)  0.1901 
7  112.1851  112  0.4773  0.987564 (112, 205.1)  0.5235 
       
*Edgeworth expansion corrected likelihood ratio statistic.   

Fig. 3 VAR residual serial correlation LM tests 
 

VAR Residual Heteroskedasticity Tests (Levels and Squares) 
Date: 02/14/21   Time: 13:54   
Sample: 1 114   
Included observations: 107  

      
   Joint test:    

Chi-sq Df Prob.   

 573.0495 480  0.2022    

      
  Individual components:  

Dependent R-squared F(48,58) Prob. Chi-sq(48) Prob.

res1*res1  0.226286  0.353398  0.9998  24.21260  0.9984 
res2*res2  0.374411  0.723181  0.8753  40.06201  0.7854 
res3*res3  0.317155  0.561224  0.9794  33.93559  0.9377 
res4*res4  0.342811  0.630305  0.9492  36.68075  0.8833 
res2*res1  0.285315  0.482389  0.9948  30.52874  0.9768 
res3*res1  0.219804  0.340423  0.9999  23.51903  0.9989 
res3*res2  0.354825  0.664543  0.9266  37.96625  0.8500 
res4*res1  0.226309  0.353445  0.9998  24.21508  0.9983 
res4*res2  0.365132  0.694950  0.9020  39.06913  0.8175 
res4*res3  0.252436  0.408028  0.9991  27.01067  0.9938 

 

Fig. 4 VAR residual heteroscedasticity tests 
 

 

Fig. 5 VAR residuals 
 

IV. RESIDUAL TESTS 

Autocorrelation LM Test 

LM test statistics for residual serial correlation till the 
specified order in the multivariate case is used by the 
Autocorrelation LM Test. The statistical test of Breusch-
Godfrey, which is used in identifying the autocorrelation at lag 
order h, can be computed by executing an adjuvant regression 
of the residuals tu  on the original right-hand regressors and 

the lagged residual t hu   and the first h values of t hu   that are 

missed are stuffed with zeros. 
The version of this LM test is the LR’s formula [14, p.22]. 

Edgeworth expansion correction is applied by the shape of this 
statistics [4]. The LM statistic is asymptotically distributed 2  

with 2k  freedom’s degree, in the case of no serial correlation 
of order h, as a null hypothesis. 

The Rao F-test is another version of LM statistics, except 

the LR version that can be computed in EViews [4]. The 
simulations of Edgerton and Shukur [4] suggest that it 
performs best than the many other variants they consider. 

White Heteroskedasticity Test 

The test regression is gained through testing the joint 
significance of the regression after regressing every cross 
generation of the residuals on the cross products of the 
regressors. The No Cross Terms alternative is based only on 
the levels and squares of the original regressors, whereas the 
With Cross Terms option involves all non-redundant cross-
generations of the original regressors in the test equation. A 
constant term can be included as a regressor in a regression 
test. 

The first results show the common importance of the 
regressors with the exception of the constant term. These tests 
verify the stability of every separated element in the residual 
covariance matrix. The null hypothesis shows the assumption 
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that the regressors that are not constant have not a common 
significance. 

 

 

 Response of D(CASH&CASH EQUIVALENTS):  
Period D(CASH&CASH  D(FINANCIAL  D(INVESTING D(OPERATIONAL 
 EQUIVALENTS) ACTIVITIES)        ACTIVITIES)        ACTIVITIES) 
 1  2394.841  0.000000  0.000000  0.000000 
  (163.708)  (0.00000)  (0.00000)  (0.00000) 
 2 -1826.573 -157.7709 -10.38674 -411.8117 
  (289.309)  (265.879)  (256.358)  (261.747) 
 3  134.3653  153.8764 -87.20782  165.1840 
  (328.880)  (326.177)  (327.976)  (315.895) 
 4 -29.87395 -466.9623  330.6794 -179.7698 
  (329.661)  (321.799)  (305.294)  (322.856) 
 5 -233.3102 -314.7734 -76.14772  399.0172 
  (335.568)  (303.122)  (184.436)  (331.251) 
 6  297.3177  554.6333 -183.4638 -191.1481 
  (339.679)  (307.600)  (197.308)  (337.646) 
 7  49.41530  74.94726 -28.38113  161.8234 
  (338.443)  (309.923)  (195.673)  (346.212) 
 8  135.6295  82.87116  144.2722  141.3084 
  (336.174)  (296.047)  (181.838)  (275.995) 
 9 -284.6496 -78.07673 -41.52852 -349.2871 
  (237.246)  (215.872)  (146.351)  (245.257) 
 10 -62.83569 -166.1535  60.96567  197.3186 
  (183.436)  (227.294)  (145.817)  (221.519) 
     
 Response of D(FINANCIAL ACTIVITIES):    
 Period D(CASH&CASH  D(FINANCIAL  D(INVESTING D(OPERATIONAL 
 EQUIVALENTS) ACTIVITIES)        ACTIVITIES)        ACTIVITIES) 
 1  452.1291  1288.179  0.000000  0.000000 
  (128.311)  (88.0581)  (0.00000)  (0.00000) 
 2 -351.0695 -537.1552  183.6154 -106.5981 
  (158.861)  (155.530)  (145.278)  (148.527) 
 3 -130.6953 -507.9599  23.61292 -50.76067 
  (170.712)  (165.972)  (164.415)  (160.764) 
 4  92.96241 -79.66856 -118.5471  37.34091 
  (172.659)  (169.289)  (152.975)  (185.526) 
 5 -4.760887  511.8143  74.25473  153.5016 
  (181.465)  (172.489)  (96.4010)  (185.797) 
 6  217.8045 -195.4912  4.729393 -54.24950 
  (183.054)  (174.402)  (111.332)  (207.385) 
 7 -62.22006  51.91789 -37.03803  32.10449 
  (182.373)  (178.470)  (109.356)  (209.134) 
 8 -97.76470  41.81660 -182.4105  38.38268 
  (179.007)  (177.297)  (89.1186)  (163.269) 
 9 -102.6911  37.31912  282.0539 -121.5019 
  (113.010)  (157.644)  (87.5493)  (159.113) 
 10  74.33718 -339.0421  17.39194 -1.790863 
  (108.801)  (160.595)  (88.5959) (121.752)

Response of D(OPERATIONAL ACTIVITIES):    
Period D(CASH&CASH  D(FINANCIAL  D(INVESTING D(OPERATIONAL 
 EQUIVALENTS) ACTIVITIES)        ACTIVITIES)        ACTIVITIES)  
 1  344.1629 -98.12310  699.6536  0.000000 
  (72.2384)  (67.9698)  (47.8273)  (0.00000) 
 2 -315.0287 -22.40695 -329.7068 -0.254375 
  (92.8589)  (91.9093)  (86.1053)  (85.3943) 
 3  16.49977  112.8611 -169.4401  153.0970 
  (100.606)  (99.6693)  (99.7639)  (95.8599) 
 4  51.02785 -96.27422 -196.2446 -46.59434 
  (102.746)  (100.761)  (92.3634)  (104.871) 
 5 -75.44071 -5.808033  608.0812 -2.434657 
  (119.201)  (113.973)  (75.4234)  (107.397) 
 6  87.91146  61.75002 -370.4441 -65.27948 
  (127.496)  (122.946)  (94.3426)  (132.626) 
 7 -48.70167 -6.001829 -102.4900  117.3536 
  (129.149)  (126.140)  (97.9135)  (136.154) 
 8  32.71189 -96.41442 -177.7790 -35.30156 
  (128.583)  (125.259)  (75.3909)  (116.996) 
 9 -49.14106  114.8115  637.3146 -146.5617 
  (112.800)  (130.570)  (82.4227)  (112.711) 
 10  61.76571 -57.35303 -323.5077  41.83503 
  (114.588)  (138.660)  (101.816)  (132.626) 
     
 Response of D(INVESTING_ACTIVITIES):    
 Period D(CASH&CASH  D(FINANCIAL  D(INVESTING D(OPERATIONAL 
 EQUIVALENTS) ACTIVITIES)        ACTIVITIES)        ACTIVITIES) 
 1  721.3286 -226.4929  470.3973  1373.819 
  (150.392)  (141.233)  (136.649)  (93.9123) 
 2 -832.6242  340.2930 -235.0604 -71.17374 
  (189.381)  (182.608)  (174.004)  (177.963) 
 3  42.87032  306.5980  155.5651 -341.1764 
  (206.734)  (205.562)  (205.748)  (202.845) 
 4 -24.01338 -499.4195 -107.3987 -278.4853 
  (212.788)  (209.133)  (192.826)  (217.033) 
 5 -234.5903 -265.0160  83.12071 -164.3941 
  (218.630)  (211.758)  (145.528)  (226.157) 
 6  198.1058 -22.04405 -311.1000  287.5668 
  (221.606)  (211.201)  (148.224)  (234.811) 
 7  241.8573  186.2475 -139.6171 -26.57571 
  (221.090)  (209.659)  (138.017)  (243.331) 
 8  236.7618  291.3367  8.846908 -120.1115 
  (220.739)  (208.306)  (139.841)  (207.571) 
 9 -220.7173  43.25884  312.2315 -2.796193 
  (159.639)  (179.017)  (118.895)  (203.625) 
 10 -210.8424 -225.1515 -54.15937 -33.54819 
  (145.215)  (175.564)  (119.570)  (184.544) 
     
 Cholesky Ordering: D(CASH&CASH EQUIVALENTS)    
        D(FINANCIAL ACTIVITIES) D(OPERATIONAL ACTIVITIES)   
        D(INVESTING ACTIVITIES)      

 (a)                     (b)  

Fig. 6 Asymptotic analysis (Edgeworth Approximation) for the identification of the particular series response 
 

V. IMPULSE RESPONSES 

The impulse responses explain the effect of an immediate 
change to the i-th variable, that influences the other variables 
and this effect is transmitted to all other endogenous variables 
included in the VAR model. The impulse response is related to 
a one-time influence to one of the innovations on current and 
future values of the variables taken in [15], [16]. 

The result of the impulse response is clear, if the 
innovations are conjointly not correlated. The i-th innovation 
is just an immediate change to the i-th endogenous variable. 
Innovations are usually correlated, and cannot be associated 
with a specific variable [15], [16]. For a right interpretation of 
the impulses, it is necessary to implement a transformation to 
the innovations for making them uncorrelated: 

(0, )t tu P D   where D is a diagonal covariance matrix. 

EViews provides several options for the choice of P which 
produce a diagonal matrix. 

In the impulse responses, one of the most important 
commands that give the better view of the VAR model 
estimation is the Asymptotic Analysis that is related with the 
Edgeworth Approximation.  

Edgeworth Expansion 

Let 1 2, ,..., nX X X  be independent and identically 

distributed random variables with mean   and variance 2 . 

By the Central Limit Theorem,  
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is asymptotically normally distributed with zero mean and unit 
variance. We are interested in the asymptotic behavior of the 
difference between the normal distribution ( )x  and the 

distribution function ( )nF x  of the nS . By logarithmic 

expansion, characteristics functions, using the expansion 
series of the exponential function and doing the necessary 
transformations [2], [6], [11], [13], we can get: 
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called the Edgeworth expansion of the distribution of 
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( )nP S x . Here   denotes the standard normal distribution 

function,   denotes the standard normal density. The 

polynomial jp  has degree of order 3j-1 and is odd for even j. 

Hence, 
 

2
1 3

1
( ) ( 1)

6
p x k x    

 
and,  

 2 2 4 2
2 4 3

1 1
( ) ( 3) ( 10 15)

24 72
p x x k x k x x      . 

 

The third cumulant 3k  refers to skewness, so the term of 
1/ 2n  order improves the basic normal approximation of the 

cumulative distribution function of nS  by performing 

skewness correction. 4k  refers to kurtosis for the term of order 
1n  which improves the normal approximation further by 

adjusting for kurtosis.  
 
 

Usually (2) exists as an asymptotic series, which means that 
if the series stop at a specific order the remainder is of smaller 
order than the last omitted term in the series. It means:  
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The restrictions on (2) are: 
 

2
( )

j
E X

    and lim sup ( ) 1t
t

 


 . 

 
One can find the proof of this fact in [10]. 
The techniques used to derive Edgeworth expansions for the 

distribution of one-dimensional statistics can be generalized to 
the multivariate case. However, in the multivariate case the 
notation becomes more complex. A basic result on 
multivariate Edgeworth expansions is that of [12]. 

Now, let see the order of Edgeworth expansions for a 
stationary autoregressive series. 
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Fig. 7 The graphical view of the asymptotic analysis of the response of the particular series 
 

Let tY  be a stationary autoregressive process satisfying,  

 

1

p

t i t i t
i

Y Y 
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  , 

 
where we assume that: 
 (A.1) ( )t  are i.i.d. 2 2( 1)

0 , 0, 1, s
t t tF E E E        

for some 3s  . 

 (A.2) 2
1 1( , )   satisfies Cramer’s condition, i.e., for every 

0d  , there exists 0   such that 
2

1 1sup | exp( '( , )) | exp( )t d E it      . 

 (A.3) Roots of 
0

0
p p j

jj
z 


  lie within the unit circle. 

Here 0 1  . 

The arguments [1], [5] show that if conditions (A.1) and 
(A.3) hold and 1  satisfies Cramer’s condition, then the 

distribution of 1/ 2 ( )n nn S     admits an Edgeworth 

expansion of order ( 2)/ 2( )so n  . 

Monte Carlo Method 

Monte Carlo is one of the best methods that improves the 
view of generated results after the realized replications. 

Monte Carlo and Bootstrap versions have common results 
in the practical data, where they can be applied. The data used 
in practical studies are limited and this condition is one of the 
most important ones, because the repeating samples for the 
particular limited observations gives certain results. 

Impulse Response Standard Errors and Confidence 
Intervals 

The asymptotic approximation gives a better view of the 
confidence intervals for a VAR model and this kind of 
distribution has an optimal performance in limited samples 
[7].  

The impulse response standard errors through generating 
the Confidence Intervals are related to the application of the 
Monte Carlo and Bootstrap methods because of the limited 
observations used. This application gives optimal solution for 
a case taken in study. 
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 Response of 
D(CASH&CASH 
EQUIVALENTS): 

   

Period D(CASH&CASH 
EQUIVALENTS)  

              D)(FINANCIAL 
                    ACTIVITIES)        

D(INVESTING 
    ACTIVITIES) 

D(OPERATIONAL 
    ACTIVITIES) 

 1  2394.841  0.000000  0.000000  0.000000 
  (170.596)  (0.00000)  (0.00000)  (0.00000) 

 2  568.2679 -157.7709 -10.38674 -411.8117 
  (299.914)  (275.133)  (275.943)  (271.467) 

 3  702.6332 -3.894493 -97.59456 -246.6277 
  (300.923)  (304.405)  (285.315)  (300.308) 

 4  672.7592 -470.8568  233.0849 -426.3975 
  (310.196)  (322.099)  (302.059)  (307.083) 

 5  439.4490 -785.6302  156.9372 -27.38035 
  (329.784)  (349.972)  (272.865)  (332.738) 

 6  736.7667 -230.9969 -26.52665 -218.5284 
  (350.220)  (354.627)  (271.063)  (335.095) 

 7  786.1820 -156.0496 -54.90778 -56.70502 
  (334.468)  (368.168)  (241.888)  (364.191) 

 8  921.8115 -73.17848  89.36438  84.60340 
  (285.626)  (296.676)  (226.182)  (296.107) 

 9  637.1619 -151.2552  47.83586 -264.6837 
  (291.697)  (323.543)  (231.283)  (268.044) 

 10  574.3262 -317.4087  108.8015 -67.36506 
  (273.179)  (332.872)  (229.498)  (277.699) 

 Response of 
D(Financial 
Activities)): 

   

Period D(CASH&CASH 
EQUIVALENTS)  

              D)(FINANCIAL 
                    ACTIVITIES)        

D(INVESTING 
    ACTIVITIES) 

D(OPERATIONAL 
    ACTIVITIES) 

 1  452.1291  1288.179  0.000000  0.000000 
  (134.964)  (87.7315)  (0.00000)  (0.00000) 

 2  101.0596  751.0235  183.6154 -106.5981 
  (175.728)  (170.563)  (153.147)  (153.740) 

 3 -29.63566  243.0635  207.2283 -157.3587 
  (184.872)  (194.814)  (181.139)  (197.890) 

 4  63.32674  163.3950  88.68121 -120.0178 
  (189.137)  (195.861)  (187.774)  (198.129) 

 5  58.56586  675.2093  162.9359  33.48376 
  (205.685)  (218.795)  (180.737)  (200.104) 

 6  276.3703  479.7182  167.6653 -20.76574 
  (203.677)  (239.033)  (166.719)  (213.051) 

 7  214.1503  531.6361  130.6273  11.33875 
  (198.085)  (227.604)  (141.865)  (235.374) 

 8  116.3856  573.4527 -51.78321  49.72144 
  (166.907)  (211.207)  (151.198)  (206.345) 

 9  13.69447  610.7718  230.2707 -71.78050 
  (178.023)  (223.638)  (153.458)  (173.802) 

 10  88.03166  271.7297  247.6626 -73.57136 
  (181.130)  (240.313)  (170.350)  (180.248) 

Response of 
D(Operational 
Activities): 
Period D(CASH&CASH

EQUIVALENTS) 
              D)(FINANCIAL 
                    ACTIVITIES)       

D(INVESTING 
    ACTIVITIES) 

D(OPERATIONAL 
    ACTIVITIES) 

1 344.1629 -98.12310  699.6536  0.000000
  (71.5141)  (69.0335)  (47.3397)  (0.00000) 

 2  29.13426 -120.5300  369.9468 -0.254375 
  (98.5558)  (96.7324)  (89.5173)  (89.0068) 

 3  45.63403 -7.668934  200.5067  152.8427 
  (97.1030)  (103.718)  (101.969)  (105.068) 

 4  96.66188 -103.9431  4.262022  106.2483 
  (102.578)  (113.316)  (109.148)  (110.518) 

 5  21.22117 -109.7512  612.3433  103.8137 
  (125.202)  (135.273)  (116.433)  (108.598) 

 6  109.1326 -48.00116  241.8991  38.53418 
  (133.020)  (141.208)  (114.388)  (130.332) 

 7  60.43096 -54.00299  139.4091  155.8878 
  (116.985)  (133.104)  (101.312)  (145.947) 

 8  93.14285 -150.4174 -38.36987  120.5862 
  (98.3919)  (122.388)  (100.969)  (121.972) 

 9  44.00179 -35.60591  598.9447 -25.97544 
  (114.155)  (136.234)  (104.093)  (107.473) 

 10  105.7675 -92.95895  275.4370  15.85959 
  (120.855)  (143.787)  (109.605)  (120.295) 

 Response of 
D(Investing 
Activities): 

  

Period D(CASH&CASH
EQUIVALENTS) 

             D)(FINANCIAL 
                    ACTIVITIES)       

D(INVESTING 
    ACTIVITIES) 

D(OPERATIONAL 
    ACTIVITIES) 

 1  721.3286 -226.4929  470.3973  1373.819 
  (147.927)  (148.659)  (141.400)  (96.2577) 

 2 -111.2956  113.8001  235.3369  1302.645 
  (224.226)  (235.185)  (225.861)  (205.996) 

 3 -68.42523  420.3981  390.9020  961.4687 
  (254.162)  (264.313)  (260.061)  (264.973) 

 4 -92.43861 -79.02140  283.5033  682.9834 
  (273.604)  (284.494)  (290.718)  (286.524) 

 5 -327.0289 -344.0374  366.6240  518.5893 
  (290.705)  (324.814)  (301.664)  (302.668) 

 6 -128.9231 -366.0815  55.52404  806.1561 
  (298.297)  (337.033)  (305.522)  (316.404) 

 7  112.9342 -179.8340 -84.09303  779.5804 
  (284.857)  (355.210)  (276.658)  (348.108) 

 8  349.6960  111.5027 -75.24612  659.4689 
  (224.383)  (307.111)  (244.770)  (331.971) 

 9  128.9787  154.7615  236.9854  656.6727 
(221.602) (293.891)  (246.248)  (291.401)

10 -81.86372 -70.38999  182.8260  623.1245
  (237.247)  (299.921)  (239.909)  (264.664) 

Cholesky Ordering: D(CASH CASH EQUIVALENTS)  

 (a)                        (b)  

Fig. 8 Monte Carlo results, for 1000 replications for the identification of the particular series response 
 

VI. THE VAR BOOTSTRAP 

If a system of time series can be modified as a VAR model 
of order p, the process of data generation for this system can 
be expressed as: 

 

     
1

p

t j t j t
j

y v A y u


            (4) 

 

where the K-element vectors as ty  and v, 1 ,..., pA A  can be 
presented as KxK matrices form; and KxK covariance matrix 

as u  is taken from (0, )t uu N  . 

The next assumption has to do with the functionality of the 
aimed object like: estimator, statistical tests etc.,  

 

    1 1( ,..., , , , ..., )T T pq q y y v A A         (5) 
 

The distribution ,q TF  of Tq  may be approximated by 
simulating a considered number, for example B, of different 

results ( * 1,...,b
Tq for b B ), where the “*” is used to 

show the derivate of the object after the simulations. Also, the 

B outputs *b
Tq  are taken by the simulations from the process 

of data generations in (4) to give B independent results *b
ty  

of ty  and for each output, find the corresponding *b
Tq  using 

(5) but with the generated data. The distribution of the Tq  is 
similar as the empirical distribution of the simulated 

outputs 1{ * }b B
t by  . 

VII. SIMULATIONS OF EDGEWORTH, BOOTSTRAP AND MONTE 

CARLO METHODS IN FINANCIAL DATA 

In this paper, we are going to discuss the relation between 
the cash & cash equivalents at the end of every three-months 
during the 30 years, and the financial, operational and 
investing activities. This information is taken from the 
financial reported information of the one of the most 
successful businesses in the world: Coca-Cola. At first, we 
have tested the stationarity of the series taken into study, as it 
can be easily identified in Fig. 1. If the condition of 
stationarity is fulfilled, we are able to study correctly the series 
of the model. 

After the application of the Unit Root Test, it can be easily 
identified that the differenced form of the Cash & Cash 
Equivalents series that we have considered in this study is 
stationary, because the probability of the Augmented Dickey-
Fuller test statistics is 0.0000 that is lower than the criteria of 
0.05. So, in the VAR model we are going to use the 
differenced data. 

In the graphical view of Figs. 2 (a)-(d) are shown the results 
of every series’ importance in the other’s series, where these 
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influences are explained by three rows: the first one expresses 
the coefficient of the two series, the second one is related to 
the standard error of the relation between the two series and 
the third one is the t-statistics that is gained through dividing 
the coefficient with the particular standard errors. For 
example, the differenced form of Cash & Cash Equivalents for 
1 lag has limited importance in the D(Financial Activities), 
D(Operational Activities) and D(Investing Activities). Even 
though when the D(Cash&Cash Equivalents)(-1) increases by 
1%, the D(Financial Activities), D(Investing Activities) and 
D(Operational Activities) will decrease particularly by 9.2%, 
5.4%, 33.3%. The same logic can be used to explain other 
relations. The four series that are considered in this study have 
a considered percentage in the explanation of the VAR 

estimated model. So, the D(Cash&Cash Equivalents) can 
explain the model at 56.8%, the D(Financial Activities) at 
75.75%, D(Investing Activities) at 96.69% and D(Operational 
Activities) at 61.16%. 

To further study the model, it is necessary to identify 
whether the model is free of heteroskedasticity and 
autocorrelation. So, in Fig. 3 is presented the VAR Residual 
Correlation through the LM Test that verifies that the model is 
free of serial correlation at lag h, because all the probabilities 
at the lags from 1 to 7 that we took in the study are greater 
than 0.05. In this way, the Null Hypothesis will not be 
accepted. Even in the simulations of Edgeworth that perform 
better among the many alternatives they consider, the result is 
the same: The estimated VAR Model is free of Correlation. 
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 (b)  

Fig. 9 The graphical view of the results treated in Figs. 8 (a) and (b) 
 

In Fig. 4, it is easy to identify that the probabilities of every 
residuals’ dependence study are greater than 0.05, and this 
shows that the null hypothesis expressing the existence of 
heteroskedasticity cannot be accepted. Thus, the proposed 
model has homoscedasticity. 

To make the estimated VAR model easier to be understood, 
we have presented the Impulse Responses, where an important 
issue was the asymptotic analysis that means the Edgeworth 
Approximation Model, Monte Carlo Approximation for 1000 
replications and Bootstrap Version for 1000 Replications and 
for 95% Confidence. 

In Figs. 6 (a) and (b) are presented the asymptotic analyses 
(Edgeworth Approximation) for the identification of the 
particular series response, after an increase in standard error of 
the other influencing series. For each period chosen (10 
periods) are presented particular standard error for particular 
series under the particular series’ response. 

Figs. 7 (a) and (b) show the graphical views of the 
asymptotic analysis of the response of the particular series 
based on the increases of one Standard Error (Deviation) in 

other particular, influencing series. So, an increase in 
Financial Activities by one standard error will trigger a rise in 
Cash & Cash Equivalents during the fourth quarter. On the 
other side, an increase in Operational Activities by one 
standard error will cause a decrease in the Cash & Cash 
Equivalent series. The same logic can be followed to interpret 
all the other cases. 

In Figs. 8 (a) and (b) are presented the Monte Carlo results, 
for 1000 replications for the identification of the particular 
series response, after an increase in standard error of the other 
influencing series. For each period chosen (10 periods) are 
presented standard errors for particular series under the 
particular series’ response. It is identified that the results have 
not a considerable difference compared with the asymptotic 
analysis (Edgeworth Approximation), however, the small 
difference is because of the improved results that are given 
from Monte Carlo simulations that use big number of 
replications to generate the results. 

Figs. 9 (a) and (b) present the graphical view of the results 
treated in Figs. 8 (a) and (b). The tendencies of the responses 
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are the same as the tendencies of the Asymptotic Analysis, but 
there are some differences, because of the improved results in 

Monte Carlo simulations due to the 1000 replications used. 

 

 

Fig. 10 The summary view of the treated cases for the Edgeworth Approximation model and Monte Carlo for the response of the series 
 

In Fig. 10 is presented the summary view of the treated 
cases for the Edgeworth Approximation model and Monte 
Carlo for the response of the series after the increase of one 
Standard error of the other influencing series. 

 

 

Fig. 11 Bootstrap in VAR model 
 

In Fig. 11 are presented the results after the application of 
the Bootstrap Version that is related to the Baseline model that 
is used for the Stochastic relations, that aims the consideration 
of the errors done during the estimation of the VAR Model. 
For the Bootstrap Model are used 1000 replications, 95% 
confidence interval, 5% allowed failure. 

 

 

Fig. 12 The graphic where are overlapped the responses of all series 
 

Fig. 12 presents the graphical view of the overlapped results 
of the responses for the four series of this study, after the 
particular shocks in the standard errors of the other influencing 
series. This visualized form could be even in the cases of 
Edgeworth Approximation and Monte Carlo Simulations that 
in fact, were presented in multiple graphics for the study’s 
effect. So, we can conclude that The Edgeworth 
Approximation, Bootstrap Version and the Monte Carlo 
Simulations are the best methods that optimize the models that 
contain many variants. In concrete terms, our VAR model that 
is created based on the series created for the Cash & Cash 
Equivalents, Financial Activities, Operational Activities and 
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Investing Activities from the Financial Reported Information 
in the official site of Coca Cola, has optimized results based 
on the application of the three methods: Edgeworth, Bootstrap, 
Monte Carlo, that essentially have almost the same 
distribution. 
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