
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

300

Abstract—Interactive CAD systems have to allocate and

deallocate memory frequently. Frequent memory allocation and
deallocation can play a significant role in degrading application
performance. An application may use memory in a very specific way
and pay a performance penalty for functionality it does not need. We
could counter that by developing specialized memory managers.

Keywords—Interactive CAD systems, Specialized Memory
Manager.

I. INTRODUCTION
NTERACTIVE CAD systems (Fig. 1) have to deal with lots
of graphic objects. Every graphic object is made up of basic

graphic element (Fig. 2), and every graphic element is
determined by different points (Fig. 3). The class diagram of
UML is shown as Fig.4. Therefore, interactive CAD systems
have to allocate and deallocate memory frequently [1]–[3].

Frequent memory allocation and deallocation can play a
significant role in degrading application performance. The
performance degradation stems from the fact that the default
memory manager is, by nature, general purpose. An application
may use memory in a very specific way and pay a performance
penalty for functionality it does not need. We could counter that
by developing specialized memory managers.

The default memory manager is, by design, a
general-purpose one. This is what we get when we call the
global new() and delete(). The implementation of these two
functions cannot make any simplifying assumptions. They
manage memory in the process context, and since a process
may spawn multiple threads, new() and delete() must be able to
operate in a multithreaded environment. In addition, the size of
memory requests may vary from one request to the next. This
flexibility trades off with speed. The more you have to
compute, the more cycles it is going to consume [4].

Manuscript received September 10, 2006. This work described in this paper

was supported by the Nature Science Foundation of Tianjin under grant
033602611.
 Wei Song is with School of Computer Technology and Automation of
Tianjin Polytechnic University, Tianjin, China (corresponding author, e-mail:
songvxvei@gmail.com).
 Lian-he Yang is with School of Computer Technology and Automation of
Tianjin Polytechnic University, Tianjin, China (e-mail: yanglh@tjpu.edu.cn).

Fig. 1 Interactive CAD system

Fig. 2 Composition of graph

Fig. 3 Composition of element

Fig. 4 Class diagram of UML

It is often the case that client code does not need the full

power of the global new() and delete(). It may be that client
code only (or mostly) needs memory chunks of specific size. It
may be that client code operates in a single-threaded
environment where the concurrency protection provided by the

The Application of Specialized Memory
Manager in Interactive CAD Systems

Wei Song, and Lian-he Yang

I

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

301

default new() and delete() is not really necessary. If this is the
case, utilizing the full power of those functions is a waste of
CPU cycles. We can gain significant efficiency by tailoring a
memory allocation scheme to better match our specific
requirements.

II. PRINCIPLE OF THE DEFAULT MEMORY MANAGER
When we create a new-expression, two things occur: First,

storage is allocated using the operator new(), and then the
constructor is called. In a delete-expression, the destructor is
called, and then storage is deallocated using the operator delete()
[5].

When we write code like this,
string *ps = new string("Memory Management");

The new we are using is the new operator. This operator is built
into the language and, like sizeof, we can't change its meaning:
it always does the same thing. What it does is twofold. First, it
allocates enough memory to hold an object of the type
requested. In the example above, it allocates enough memory to
hold a string object. Second, it calls a constructor to initialize an
object in the memory that was allocated. The new operator
always does those two things; we can't change its behavior in
any way.

The new operator calls a function to perform the requisite
memory allocation, and we can rewrite or overload that
function to change its behavior. The name of the function the
new operator calls to allocate memory is operator new.

The operator new function is usually declared like this:
void * operator new(size_t size);
The return type is void *, because this function returns a

pointer to raw, uninitialized memory. The size_t parameter
specifies how much memory to allocate.

Only responsibility of operator new is to allocate memory. It
knows nothing about constructors. All operators new
understand is memory allocation. It is the job of the new
operator to take the raw memory that operator new returns and
transform it into an object. When our compilers see a statement
like:

string *ps = new string("Memory Management");
Our compilers do three things. First, they call operator new

to get raw memory for a string object. Second, they call a
constructor to initialize the object in the memory. Third, they
make ps point to the new object.

III. PRINCIPLE OF SPECIALIZED MEMORY MANAGER
As for new operator, we can't change its behavior---calling a

constructor in any way, but we can change how the memory for
an object is allocated by rewriting or overloading operator new
to change its behavior [6].

When we overload operator new and operator delete, it’s
important to remember that we’re changing only the way raw
storage is allocated. The compiler will simply call our new
instead of the default version to allocate storage, and then call
the constructor for that storage. So, although the compiler
allocates storage and calls the constructor when it sees new, all

we can change when we overload new is the storage allocation
portion. (delete has a similar limitation.)

Overloading new and delete is like overloading any other
operator. However, we have a choice of overloading the global
allocator or using a different allocator for a particular class.

This is the drastic approach, when the global versions of new
and delete are unsatisfactory for the whole system. If we
overload the global versions, we make the defaults completely
inaccessible---we can’t even call them from inside our
redefinitions.

Although you don’t have to explicitly say static, when you
overload new and delete for a class, you’re creating static
member functions. As before, the syntax is the same as
overloading any other operator. When the compiler sees you
use new to create an object of your class, it chooses the member
operator new over the global version. However, the global
versions of new and delete are used for all other types of objects
(unless they have their own new and delete).

The local operator new has the same syntax as the global one.
All it does is search through the allocation map looking for a
false value, then sets that location to true to indicate it’s been
allocated and returns the address of the corresponding memory
block.

IV. AN EXAMPLE OF SPECIALIZED MEMORY MANAGER
We define Point class. To avoid frequent hits to the default

manager, the Point class will maintain a static linked list of
preallocated Point objects, which will serve as the free list of
available objects (Fig. 5). When we need a new Point object,
we will get one from the free list. When we are done with an
object, we will return it to the free list for future allocations [4].

Fig. 5 A free list of point object

The free list is declared as a static member of the Point class.

The static free list is manipulated by the Point new() and
delete() operators. These operators overload the global ones.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

302

class Point
{
public:

Point(int a = 0, int b = 1, Point * c = 0):m(a), n(b),
next(c){ }

 inline void * operator new(size_t size);
 inline void operator delete(void * doomed, size_t size);
 static void newMemList(){ expandMemoryList();}
 static void deleteMemList();
private:
 static Point * memoryList;
 static void expandMemoryList();

enum{ EXPANSION_SIZE = 50 };
 Point * next;
 int m;
 int n;
};

Operator new() allocates a new Point object from the free

list. If the free list is empty, it will get expanded. We pick off
the head of the free list and return it after adjusting the free list
pointer.

inline void * Point::operator new(size_t size)
{

if(memoryList == 0)
 expandMemoryList();
 Point * head = memoryList;
 memoryList = head->next;
 return head;
}
Operator delete() returns a Point object to the free list by

simply adding it to the front of the free list.
inline void Point::operator delete(void * doomed, size_t size)
{

Point * head = static_cast<Point *>(doomed);
 head->next = memoryList;
 memoryList = head;
}
When the free list is exhausted, we must allocate more Point

objects from the heap.
void Point::expandMemoryList()
{

size_t size = sizeof(Point);
 Point * runner = (Point *)(new char[size]);
 memoryList = runner;
 for(int i = 0; i < EXPANSION_SIZE; i++)
 {
 runner->next = (Point *)(new char[size]);
 runner = runner->next;
 }
 runner->next = 0;
}

Our implementation is such that the free list never shrinks; it

will grow to a steady-state size and stay there. The free list is

deallocated at the end of the program.

void Point::deleteMemList()
{

Point * nextPtr;
for(nextPtr=memoryList;nextPtr!=0;nextPtr=
memoryList)
{
 memoryList = memoryList->next;
 delete[] nextPtr;
}

}

To measure the performance of the specialized Point

memory manager and the default Point memory manager we
executed the following test:

int main()
{ ······

Point * array [1000];
Point::newMemList();
for(int j = 0; j < 500; j++)
 {
 for(int i = 0; i < 1000; i++)
 {
 array[i] = new Point();
 }
 for(i = 0; i < 1000; i++)
 {
 delete array[i];
 }
 }
Point::deleteMemList();
·····

}

V. EXPERIMENT ENVIRONMENT AND TEST RESULT

A. Experiment Environment
In order to contrast the specialized Point memory manager

and the default Point memory manager, we have built two
experiment environments.

Experiment environment one:
CPU: Celeron (850MHz); Basic frequency: 100MHZ;
Memory: 256MB; Operating system: Windows XP.

Experiment environment two:
CPU: Pentium 4 (2.8GHz); Basic frequency: 800MHZ;
Memory: 256MB; Operating system: Windows XP.

B. Test Result
Test result as shown in Table I:

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

303

TABLE I
EXECUTION TIME AND RADIO

 environment one environment two

default 931ms 375ms
specialized 160ms 63ms

ratio 5.8 6.0

VI. CONCLUSION
The memory allocation system used by new and delete is

designed for general-purpose use. In special situations,
however, it doesn’t serve our needs. The most common reason
to change the allocator is efficiency: We might be creating and
destroying so many objects of a particular class that it has
become a speed bottleneck. C++ allows us to overload new and
delete to implement our own storage allocation scheme, so we
can handle problems like this.

Since we are in a single-threaded environment, our Point
memory management routines do not bother with concurrency
issues. We do not protect memory manipulation because we
don't have any critical sections to worry about. We also take
advantage of the fact that all allocations are fixed size---the size
of a Point object. Fixed-size allocations are much simpler; there
are a lot less computations to perform (like finding the next
available memory chunk big enough to satisfy the request).

Therefore, the application of specialized Point memory
manager can gain significant efficiency in interactive CAD
systems. In my experiment environment, using specialized
Point memory managers is much better than changing a new
computer.

REFERENCES
[1] Guo-ming Huang. Develop interactive CAD systems by using Visual

C++.net. Beijing: Publishing house of electronics industry, 2003, pp.
236-278.

[2] Lian-he Yang. Computer simulation of elastic properties on any structure
3-D woven composite. Acta materiae compositae sinica, 2000.2.

[3] Lian-he Yang. CAD on elastic properties of 3D woven composites.
Journal of Tianjin Polytechnic University, 2005,4.

[4] Dov Bulka, David Mayhew. Efficient C++ Performance Programming
Techniques. Beijing: Tsinghua University Press, 2003. pp. 55-65.

[5] Scott Meyers. More Effective C++. Beijing: China Power Press, 2003. pp.
38-39.

[6] Bruce Eckel. Thinking in C++: Volume one: introduction to Standard
C++. Beijing: China Machine Press, 2002. pp. 305-324.

Wei Song was born in Hebei Province, P.R. China, in 1980. Currently, he is
studying towards master’s degree in Computer application technology in
Tianjin Polytechnic University in China. His interest is in the fields of CAD and
database. Now he is making his graduation topic of interactive CAD system of
three-dimensional woven composites.

Lian-he Yang is a professor of School of Computer Technology and

Automation of Tianjin Polytechnic University. His research direction is
computer simulation and database.

