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Abstract—Real options theory suggests that managerial flexibility 

embedded within irreversible investments can account for a significant 
value in project valuation.  Although the argument has become the 
dominant focus of capital investment theory over decades, yet recent 
survey literature in capital budgeting indicates that corporate 
practitioners still do not explicitly apply real options in investment 
decisions.  In this paper, we explore how real options decision criteria 
can be transformed into equivalent capital budgeting criteria under the 
consideration of uncertainty, assuming that underlying stochastic 
process follows a geometric Brownian motion (GBM), a mixed 
diffusion-jump (MX), or a mean-reverting process (MR).  These 
equivalent valuation techniques can be readily decomposed into 
conventional investment rules and “option impacts”, the latter of 
which describe the impacts on optimal investment rules with the 
option value considered.  Based on numerical analysis and Monte 
Carlo simulation, three major findings are derived.  First, it is shown 
that real options could be successfully integrated into the mindset of 
conventional capital budgeting.  Second, the inclusion of option 
impacts tends to delay investment.  It is indicated that the delay effect 
is the most significant under a GBM process and the least significant 
under a MR process.  Third, it is optimal to adopt the new capital 
budgeting criteria in investment decision-making and adopting a 
suboptimal investment rule without considering real options could 
lead to a substantial loss in value. 
 

Keywords—real options, capital budgeting, geometric Brownian 
motion, mixed diffusion-jump, mean-reverting process  

I. INTRODUCTION 
HE literature on capital budgeting suggests two important 
facts in theory and practice: first, conventional capital 

budgeting techniques are shown to have various theoretical 
shortcomings yet still have widespread applications in practice 
; second, real options techniques are often considered as 
relatively sophisticated analysis tools, yet most firms do not 
make explicit use of real options techniques to evaluate capital 
investments. 

This paper aims to bridge the theory-practice gap by 
translating real options valuation into current capital budgeting 
practices.  The research purpose is therefore two-fold.   On one 
hand, we would like to explore how real options decision 
criteria can be transformed into equivalent capital budgeting 
criteria such as NPV, profitability index, hurdle rate, and 
(discounted) payback under the consideration of uncertainty.  
On the other hand, we would like to propose heuristic 
investment rules in terms of capital budgeting practices to 
proxy for the inclusion of real options valuation.  We then 

 
 

demonstrate how rules of thumb under incomplete information 
can approximate managerial flexibility into capital budgeting 
techniques across different types of projects and provide results 
which are close to optimal investment decisions.   

The literature on bridging the real options approach and 
capital budgeting techniques are seen in Dixit [5], Ingersoll and 
Ross[8], Boyle and Guthrie [2], McDonald [12], and Wambach 
[18].  Dixit [5] suggests the optimal investment rule with the 
option of waiting to invest can be expressed as a constant 
hurdle rate for time-homogeneous cash flows in an infinite 
horizon framework.  Ingersoll and Ross [8] argue that 
management should set corporate hurdles rates above the cost 
of capital to recognize the gains of waiting.  McDonald [12] 
investigates whether arbitrage investment criteria such as 
hurdle rates and profitability indexes can proxy for the use of 
real options techniques.  He finds that under the GBM 
assumption, a profitability index of 1.5 or alternatively a hurdle 
rate of 20% can provide a reasonable approximation to the 
optimal trigger across different characteristics of projects.  
Along the line of research, Boyle and Guthrie [2] and 
Wambach [18] propose a similar approach to equivalent 
investment rules for payback and hurdle rate under the option 
of waiting, assuming that the underlying process follows a 
GBM and that projects have time-homogenous cash flows.  
Compared to standard capital budgeting criteria, the modified 
investment rules tend to have a lower payback trigger or a 
higher hurdle rate trigger. 

The rest of the paper is organized into the following sections:  
Section 2 illustrates how real options valuation can be 
approximated by capital budgeting techniques.  Section 3 
extends the idea from Section 2 and shows that conventional 
capital budgeting techniques can explicitly integrate the value 
of deferment options into become modified investment rules 
under alternative stochastic processes.  Section 4 conducts a 
numerical analysis, which shows optimal investment rules 
under various stochastic processes.  Also, a comparison of 
modified capital budgeting criteria under various stochastic 
processes is presented.  Concluding remarks are given in 
Section 5. 

II. REAL OPTIONS AND CAPITAL BUDGETING CRITERIA 
The standard investment theory under uncertainty is to 

explore the optimal timing to pay an investment cost,  , in return 
for an irreversible project whose value,  , is a major source of 
uncertainty.  Since the investment opportunity is normally 
assumed to exist infinitely in order to derive closed-form 
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solutions, the investment timing problem turns out to be the 
optimal stopping problem in searching for the optimal 
investment trigger,  .  In the presence of options of waiting,   is 
found to be greater than  .   In this section, we first derive 
modified capital budgeting criteria, e.g. NPV, profitability 
index, hurdle rate, and payback, in the explicit expressions of   
without specifying any particular stochastic process.  We then 
assume a specific stochastic process such as GBM, mixed 
diffusion-jump, and mean reversion, to examine how the forms 
of modified capital budgeting criteria are influenced by the 
stochastic process. 

In conventional capital budgeting, the NPV rule states that 
the investment should be undertaken when the NPV is greater 
than zero.  However, this criterion only works in the absence of 
real options.  Under uncertainty, when the project is allowed to 
delay, the modified NPV rule should justify the loss of option 
of waiting when launching the investment opportunity.  This 
means that the actual costs of initiating the project are not only 
the investment cost but also the opportunity cost due to the loss 
of options.  We use the superscript * to denote the modified 
investment rules.  Therefore, the new NPV rule under the 
consideration of options of waiting should be modified as 
shown below: 

  ( )NPV V I F V∗ ∗ ∗= − −               (1) 
where ( )F V ∗  denotes the option value when project value 
equals V ∗ . 

It is important to note that the modified NPV rule should be 
less than the conventional NPV rule for the reasons that ( )F V ∗  
should be greater than zero when V V∗ > .   

Profitability Index, denoted by Π , is defined as the 
benefit/cost ratio or Tobin’s “q” ratio associated with the 
project.  In the absence of managerial flexibility, the project is 
undertaken when PI is greater than 1.  Since the project is taken 
at the point of V ∗  under the consideration of real options, the 
new PI rule should be changed as follows: 

  V
I

∗
∗Π =                   (2) 

∗Π , by definition, can be interpreted as a unit optimal trigger 
and is greater than 1 due to V I∗ > . 
 Now we suppose the project can generate infinite cash flows 
once the project is undertaken.  Expressed by instantaneous 
time-homogeneous cash flows1, π , the project value thus takes 
the form of the classic Gordon model:  

  ( )( )

0

s
sV E e dsα μ ππ

μ α
∞ −= =

−∫             (3) 

 
1 Time-homogenous cash flows can be seen as an equivalent transformation 

of non-time-homogenous cash flows, given other parameters held the same.  
Suppose there are project A and B under consideration.  Both projects have two 
years of time horizon.  These two projects are similar in every way except that 
the former has cash flows of $10 in both year 1 and 2 while the latter has $11 in 
year 1 and $8.9 in year 2.  At the discount rate of 10%, they have exactly the 
same project value.  Therefore, time-homogenous cash flows can represent 
non-time-homogenous cash flows with the advantage of easy mathematical 
treatment due to the linearity between project value and cash flows.  With this 
viewpoint accepted, the feature of mean reversion or jump which is normally 
modeled with project value can also be modeled with time-homogenous cash 
flows. 

where α  and μ  denote growth rate and discount rate, 
respectively, and μ α> .  

The convenience of the assumption of time-homogeneous 
cash flows provides a linear relationship between V and π, 
which ensures that V and π follow the same stochastic process 
with the same drift and volatility.  Consequently, π  is still 
allowed to fluctuate at the next instant as new information 
arrives.  Equation (3) thus can be rearranged as follows: 

  ( )Vπ μ α= −                  (4) 
 In capital budgeting, the hurdle rate rule states that the 
project should be undertaken when the internal rate of return 
exceeds the arbitrary hurdle rate.  With the time-homogeneous 
cash flows assumption, the hurdle rate rule can be transformed 
into the equivalent cash flow rule.  Let γ  denote hurdle rate.  
By definition, the hurdle rate rule must satisfy the following 
relationship: 

  ( )Iπ γ α= −                  (5) 
By equating Equation (4) and (5), we obtain the expression 

of γ  as follows: 
  ( )γ μ α α= Π − +                (6) 

If the project is taken at the point of 1Π = , then the hurdle rate 
is equal to the discount rate.  However, if the project is taken at 
any point of 1Π > , the hurdle rate is greater than the discount 
rate.2 

To derive the modified investment rules for hurdle rate and 
cash flows, we first substitute Equation (3) into Equation (2)  
and rearrange the terms for π ∗ .  The modified cash flow rule, 
π ∗  can be expressed in terms of V ∗  or ∗Π  as follows: 

  ( ) ( )V Iπ μ α μ α∗ ∗ ∗= − = Π −             (7) 
With ∗Π  taking the place of Π  in Equation (6), the modified 
hurdle rate rule can be derived as follows:  

  ( )γ μ α α∗ ∗= Π − +                (8) 
Note that the modified investment rules of π ∗  and γ ∗ should 

be greater than the conventional investment rules of π  and γ  
in the existence of positive option values.   

The payback period rule has been one of the commonly used 
capital budgeting criteria.3  Payback period is referred to as the 
time horizon in which the sum of expected cash flows returns 
the investment cost.  In general, the payback rule favors the 
projects with shorter payback periods although the potential 
benefit of this concept is heavily disputed in the literature.  One 
argument in support of the use of the payback rule is that to 
those firms which are short of capital, the payback rule may 
help recover the initial investment cost earlier.  If we express 
payback period by time-homogeneous cash flows π , the 
payback rule must satisfy the following condition: 

0

P sI e dsαπ= ∫                   (9) 

 
2 Proof:  Suppose the project is taken at 1 1zΠ = + > , where z  denotes a 

number representing some arbitrary decision rule such that 0z > .  By 
substituting 1 zΠ = + into ( )γ μ α α= Π − + , we obtain ( )zγ μ μ α= + − .  

Since 0z >  and μ α>  by design, we know γ μ> . 
3 See Klammer [10], Klammer and Walker [11], Jog and Srivastava [9], 

Gilbert and Reichert [7], Bubsy and Pitts [3], and Arnold and Hatzopoulos [1]. 
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where P denotes the payback period.4   
Solving Equation (9) for P, we have the payback trigger as 

shown below: 

( )
ln 1

,  0   
1                       ,  =0

P

α
μ α

α
α

α
μ

⎧ ⎡ ⎤
+⎪ ⎢ ⎥Π −⎢ ⎥⎪ ⎣ ⎦⎪ ≠= ⎨

⎪
⎪
⎪ Π⎩

            (10) 

To derive the modified payback rule under the consideration 
of options of waiting, we replace the profitability index Π  in 
Equation (10) with the modified profitability index trigger ∗Π .  
The new payback rule now becomes: 

ln 1
( )

,  0

1                       ,  0

P

α
μ α

α
α

α
μ

∗

∗

∗

⎧ ⎛ ⎞
+⎪ ⎜ ⎟Π −⎝ ⎠⎪⎪ ≠= ⎨

⎪
⎪ =

Π⎪⎩

            (11) 

Since ∗Π  is greater than Π , it is easy to see that the modified 
payback period is shorter than the conventional payback 
period.  This means that under uncertainty and flexibility, one 
should defer investment until the market turns out to be 
favorable such that the project has a payback period not only 
shorter than the conventional payback period, P, but also the 
modified payback period, P∗ . 
 One of the major critiques regarding the payback criterion is 
that the use of payback often ignores the time value of cash 
flows.  The justification for this drawback is to introduce 
discount rate to become discounted payback, which is defined 
as the time horizon over which the present value of total 
expected cash flows equals the investment cost.  Thus, the 
discounted payback criterion must satisfy the following 
condition: 

( )

0

DP sI e dsα μπ −= ∫                  (12) 

where DP  denotes the discounted payback period.   
Equation (12) is solved as follows: 

 
1ln 1

1   DP
μ α

⎡ ⎤+⎢ ⎥Π −⎣ ⎦=
−

               

 (13) 
With ∗Π  in Equation (2) in the place of Π  in Equation (13), the 
modified discounted payback trigger is given below: 

1ln 1
1DP

μ α

∗
∗

⎛ ⎞+⎜ ⎟Π −⎝ ⎠=
−

               (14) 

We have demonstrated how real option approach can be 
integrated into conventional capital budgeting rules.  Equation 
(1), (2), (7), (8), (11), and (14) are the modified investment 
rules where the options of waiting are in place.  To rationalize 
the benefits of options of waiting, management should defer 
investment until the project has a larger NPV than NPV ∗ , a 
higher profitability index than ∗Π , a higher rate of returns than 
γ ∗ , higher expected cash flows than π ∗ , or alternatively a lower 

 
4 If π  is non-time-homogeneous, the payback rule satisfies the following 

condition: 

0

P s
sI e dsαπ= ∫  

payback period than P∗  or DP ∗ .  Since V ∗  is greater than V , 
we can easily make a comparison between modified investment 
rules and conventional investment rules as shown in Table 1:  

 
TABLE I  THE COMPARISONS BETWEEN MODIFIED INVESTMENT RULES AND 

CONVENTIONAL INVESTMENT RULES 
Modified 

Investment 
Rules 

 
NPV ∗

 

 
∗Π  

 
π ∗  

 
γ ∗  

 
P∗  

 
DP ∗  

 
Comparisons 

 

 
∧  

 
∨  

 
∨  

 
∨  

 
∧  

 
∧  

Conventiona
l Investment 

Rules 

 
NPV  

 
Π  

 
π  

 
γ  

 
P  

 
DP  

Note: ∧  =  less than; ∨  = greater than 

III. APPLYING REAL OPTIONS TO CAPITAL BUDGETING 
In the section, the application of real options to capital 

budgeting under a specific stochastic process is discussed.  The 
stochastic process of interest is geometric Brownian motion, 
mixed diffusion-jump, and mean-reverting process, as 
discussed below: 

A. Modified Capital Budgeting Criteria under a GBM  
Modern investment theory centers on searching for optimal 
investment trigger, V ∗ , such that the value of the investment 
opportunity, ( )F V , is maximized.  We assume that the project 
value, V, follows a GBM as follows:  

dV Vdt Vdzα σ= +                 (15) 
where σ  and dz denote volatility and an increment of a 
standard Wiener process, respectively. 

For a project whose value follows a GBM, the literature has 
shown that the solution of ( )F V  is as follows:5 

1( ; ) bF V V AV∗ =                  (16) 
where  ( ) 1bA V I V −∗ ∗= −                (17) 

2

1 2 2 2
1 ( ) ( ) 1 2
2 2

r r rb μ α μ α
σ σ σ

− − − −⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (18) 

At the maximum of option values, the optimal investment 
trigger equals the sum of investment cost and the value of 
investment opportunity, which is also called the 
value-matching condition.  By substituting Equation (16) into 
the value-matching condition, V ∗  is solved as follows: 

1

1 1GBM
bV I

b
∗ ⎛ ⎞

= ⎜ ⎟−⎝ ⎠
                 (19) 

where GBMV ∗  denotes the optimal GBM trigger. 
 Substituting GBMV ∗  in Equation (19) into the modified capital 
budgeting criteria in Equation (1), (2), (7), (8), (11), and (14), 
we can obtain explicit expressions in terms of 1b  as follows: 

 
1

11
1GBM b

∗Π = +
−

                 (20) 

 
5 See McDonald and Siegel [13], Dixit [4], and Pindyck [14]. 
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 ( ) ( )
1

1
1GBM I I

b
π μ α μ α∗ = − + −

−
           

 (21) 
 ( )

1

1
1GBM b

γ μ μ α∗ = + −
−

              (22) 

 

1

1

1

ln 1
( 1)( )

,  0

1 1                         ,  0

GBM

b
b

P

b

α
μ α

α
α

α
μ μ

∗

⎧ ⎛ ⎞
+⎪ ⎜ ⎟− −⎝ ⎠⎪⎪ ≠= ⎨

⎪
⎪ − =
⎪⎩

          (23) 

 ( )1lnD
GBM

b
P

μ α
∗ =

−
                  (24) 

 Note that these modified investment rules in Equation (20)
-(24) have an important implication regarding how the options 
of waiting impact on conventional investment rules.  For a 
stochastic process like a GBM, we can easily decompose the 
modified investment rules into two terms, one of which 
represents the conventional investment rules and the other term 
stands for the “option impact”, which accounts for the impact 
on these investment rules in the presence of options of waiting.  
For the modified investment rules GBM

∗Π , GBMπ ∗ , and GBMγ ∗ , the 
option impacts are ( )11 1b − , ( ) ( )1 1I bμ α− − , and ( ) ( )1 1bμ α− − , 
respectively.  Note that Equation (20) stands for unit optimal 
investment trigger, which makes ( )11 1b −  become unit option 
value at the point of GBMV ∗ .  As the option value gets larger, these 
option impacts have a more significant, positive influence on 
the modified investment rules.  For the modified payback rules, 
the option impacts are not readily observed.  However, in the 
case of zero growth, i.e., 0α = , the option impact of GBMP∗  is 
derived to be 11 b μ− , which indicates a lower optimal payback 
when there is a higher option value.  The parameter 1b  has a 
number of important properties.  First, 1b  must be greater than 
1 when there is a positive option value.6  Second, since 1b  is in 
the denominator of GBMV ∗ , 1b  is inversely correlated with GBMV ∗ .  
Consequently, 1b  is inversely correlated with GBM

∗Π , GBMπ ∗ ,  and 

GBMγ ∗ , and is positively correlated with GBMP∗  and D
GBMP ∗ .   

B. Modified Capital Budgeting Criteria under a Mixed 
Diffusion-Jump 

In this subsection, we extend the preceding analysis to 
the case in which project value (or cash flows) follows a mixed 
diffusion-jump process.  This process is often specifically used 
to describe the situation in that the value of an investment 
opportunity can become worthless as potential competitors 
enter the market as first-movers. 7   In other words, the 
preemptive competitive effect may lead to the project value 
appropriated by the competitors, which thus can be 
 

6  Since 
1

11
1

V I
b

∗ ⎛ ⎞
= +⎜ ⎟−⎝ ⎠

, 
1

( )
1

IF V
b

∗ =
−

.  
1

( ) 1 0
1

F V
I b

∗

= >
−

Q , 

1 1b∴ > . 
7 Trigeorgis [17] deals with the preemptive competitive effect by treating the 

competitors’ actions as dividends which are the proportions of the project value 
appropriated by the competitors.  His analysis is limited by the assumption that 
the erosion effect can be completely anticipated and quantified by the firm, 
which appears to be less realistic. 

characterized by a mixed diffusion-jump process.8  A mixed 
diffusion-jump process is formalized as follows: 

dV Vdt Vdz Vdqα σ= + −               (25) 
where dq  is the increment of a Poisson process with a mean 

arrival rate of λ  and is expressed by 
    with a probability of 

0 with a probability of 1-
dt

dq
dt

φ λ
λ

⎧
= ⎨

⎩
           (26) 

where (0 1)φ φ≤ ≤  stands for the constant percentage of loss in V 
should the jump event, i.e. competitive arrivals, occur. 
Meanwhile, dq  is assumed to be independent of dz , i.e., 

( ) 0E dqdz = . 
With the same boundary conditions as in the GBM model, 

McDonald and Siegel [13] and Dixit and Pindyck [6] have 
verified that if 1φ = , the solutions of ( )F V  and MXV ∗  are exactly 
the same as Equation (16) and (19), respectively, except that 1b  
is replaced with 2b .9  

2

2 2 2 2

1 ( ) ( ) 1 2( )
2 2

r r rb μ α μ α λ
σ σ σ

− − − − +⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     (27) 

The parameter b is similar to the parameter 1b  in the 
functional form except that the jump intensity λ  gets added 
into the interest rate in the constant term.  It is easy to see that b 
is equal to 1b  if 0λ =  and greater than 1b  if 0λ > .  Since both 

1b  and 2b  are inversely correlated with optimal investment 
trigger, for the same set of parameter values the relationship of 

2 1b b≥  leads to the result of MX GBMV V∗ ∗≤ , where the subscript MX 
denotes a mixed diffusion-jump process.   

Since the optimal trigger under an MX process takes the 
same form as the one under a GBM with 1b  substituted by 2b , 
all the modified optimal investment rules are thus akin to those 
in the GBM model with 2b  in the place of 1b .  The option 
impacts under an MX process are also similar to those under a 
GBM with 1b  replaced by 2b .  Note that 2b  also bears the same 
properties as 1b .  With other parameters held constant, the jump 
intensity is inversely correlated with MXV ∗ .  This means that a 
higher λ  leads to a lower MXV ∗  and, in turn, a lower MX

∗Π , MXπ ∗ ,  
and MXγ ∗ , and also a larger optimal payback of MXP∗  and D

MXP ∗ . 

C. Modified Capital Budgeting Criteria under a 
Mean-Reverting Process 
 Dixit and Pindyck [6] introduce a specific mean-reverting 
process for the ease of deriving an analytical solution.  The 
mean-reverting process can be expressed as the following form: 

( )dV V V Vdt Vdzη σ= − +               (28) 
where V  and η  denotes the long-run mean and the speed of 
mean reversion, respectively.   

The solution of an investment opportunity under a 
mean-reverting process is given as follows: 

 
8 See [13]. 
9 If 1φ ≠ , the value of the investment opportunity is still the form of 

( ) bF V AV= .  However, the solution needs to be found numerically together 
with the boundary conditions. 
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( )( ; ) ; ,MRF V V BV G x gθ θ∗ =               (29) 
where the subscript MR denotes a mean-reverting process, 

( ) 2

2 2 2

1 ( ) 1 2
2 2

r V r V rμ η ρ ηθ
σ σ σ

− − ⎡ − + ⎤
= + + − +⎢ ⎥

⎣ ⎦
,  

2
2x Vη
σ

= ,  

( )
2

2
2

r V
g

μ η
θ

σ
− +

= + , and 

( )
2 3( 1) ( 1)( 2); , 1

( 1) 2! ( 1)( 2) 3!
x xG x g x

g g g g g g
θ θ θ θ θ θθ + + +

= + + + +
+ + +

L .  

Since ( ); ,G x gθ  is an infinite confluent hypergeometric 
function, there is no closed-form solution for MRV ∗ .  The 

coefficient, B, and MRV ∗  must be solved numerically together 
with the same boundary conditions as in the GBM model.   

To obtain the modified investment rules under a MR process 
in the expression of Equation (29), we first equate both of the 
unit optimal triggers under an MR process and under a GBM 
process as follows: 

 
1

( ) 1
1

MRB V G
I b

θ∗ ∗ ∗

=
−

                (30) 

where B∗  denotes the coefficient B  at the point of MRV ∗  and 
( ); ,G G x gθ∗ ∗= . 

1
( )

( )
MR

MR

I B V Gb
B V G

θ

θ

∗ ∗ ∗

∗ ∗ ∗

+
=                 (31) 

We then substitute Equation (31) into the modified GBM 
investment rules in Equation (20)-(24) for the modified MR 
investment rules as follows: 

( )1MR
B V G

I

θ∗ ∗
∗Π = +                 (32) 

( ) ( )( )MR MRI B V Gθπ μ α μ α∗ ∗ ∗ ∗⎡ ⎤= − + −⎣ ⎦          (33) 

( )( )MR
MR

B V G
I

θ

γ μ μ α
∗ ∗ ∗

∗ = + −             (34) 

( )

( )
( )

ln 1
( )

,  0

1                ,  0

MR

I

I B V G

P

B V G

I B V G

θ

θ

θ

α

μ α
α

α

α
μ μ

∗ ∗

∗

∗ ∗

∗ ∗

⎧ ⎛ ⎞
⎪ ⎜ ⎟

+⎪ ⎜ ⎟⎡ ⎤+ −⎪ ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎪ ≠⎪= ⎨
⎪ ⎡ ⎤⎪ ⎢ ⎥⎣ ⎦⎪ − =

⎡ ⎤⎪ +⎢ ⎥⎪ ⎣ ⎦⎩

       (35) 

( )ln
( )

MR

D MR
MR

I B V G
B V G

P

θ

θ

μ α

∗ ∗ ∗

∗ ∗ ∗
∗

⎡ ⎤+
⎢ ⎥
⎣ ⎦=

−
             (36) 

 The modified investment rules under an MR process can 
also be decomposed into the conventional investment rules and 
the “options impacts”.  The option impacts for MR

∗Π , MRπ ∗ , and 

MRγ ∗  are ( )B V G Iθ∗ ∗⎡ ⎤⎣ ⎦ , ( )( )MRB V Gθ μ α∗ ∗ ∗⎡ ⎤ −⎣ ⎦ , and 

( )( )MRB V G Iθ μ α∗ ∗ ∗⎡ ⎤ −⎣ ⎦ , respectively.  The option impact for MRP∗  

when 0α =  is ( ) ( )B V G I B V G
θ θ

μ∗ ∗ ∗ ∗⎡ ⎤ ⎡ ⎤− +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
.  As the options of 

waiting becomes larger, the option impacts are more positively 
significant for MR

∗Π , MRπ ∗ , and MRγ ∗ , and more negatively 
significant for MRP∗ .   

IV. NUMERICAL ANALYSIS 
In the preceding subsections, the formulae for modified 

capital budgeting triggers under alternative processes are 
explicitly given.  In this section, attention is directed to further 
investigate the relationships between modified investment rules 
and conventional investment rules under various stochastic 
processes by conducting a numerical comparative analysis 
based on a set of reasonable parametrical values.  These 
stochastic processes of interest include GBM, mixed 
diffusion-jump, and mean-reverting processes.  Since the 
solution of optimal investment trigger under a mean-reverting 
process is not closed-form, numerical analysis is necessary for 
comparing various investment triggers under alternative 
processes.  Specifically, we focus on the effects on optimal 
investment rules of jumps and mean reversion. 

As illustrated earlier, when jump size, φ , equals 1, the mixed 
diffusion-jump model has a similar formula for option value 
and investment trigger to the GBM model, with jump intensity, 
λ , added into the parameter, 2b .  Since λ  is in the numerator 
of 2b , it is easy to find out 1 2b b≤  for the same parameters values 
and, in turn, GBM MXV V∗ ∗≥ .  Given 100,  - 5%,  r 5%I μ α δ= = = = , 
Figure 1 displays the effects of various jump intensities on 
optimal investment triggers across increasing instantaneous 
volatilities.  An important finding evident from the diagram is 
that the inclusion of jumps into consideration lowers the 
optimal investment trigger, MXV ∗ .  This negative effect on trigger 
price is even significant with λ  increased.  This negative 
effect can be described in terms of modified investment rules: 
the modified rules such as MX

∗Π , MXγ ∗ , and MXπ ∗  are less than the 

GBM counterparts, GBM
∗Π , GBMγ ∗ , and GBMπ ∗ ; and the optimal 

paybacks, MXP∗  and D
MXP ∗ , are greater than the GBM paybacks, 

GBMP∗  and D
GBMP ∗ .  The implication to management is that when 

the market is highly competitive or the first-mover advantage is 
significant, optimal investment decisions should be initiated 
sooner than those under a GBM process.  Note that the GBM 
line actually represents the mixed-jump case in that 0λ = .  The 
more significant the competitive preemptive effect is, the 
higher λ  becomes and thus the sooner the investment should 
be launched. 
 Next, we compare GBMV ∗  and MRV ∗ , where the subscript MR 
denotes a mean-reverting process.  Schwartz [16] and other real 
options studies on mean reversion argue that when mean 
reversion is ignored in project evaluation, investment tends to 
be excessively delayed due to a overpriced investment trigger.  
This argument can be confirmed in our numerical analysis as 
shown in Figure 2, which exhibits the sensitivity of trigger 
price by varying mean-reverting speed and instantaneous 
volatility, given 100,I V= =  - 5%,μ α δ= =  and r 5%.= 10   It is 

 
10 Note that the long-run mean, V , is set to be equal to 100 for two reasons.  

First, we are only interested in near at-the-money projects, i.e., 0NPV ≈ , since 
real options are less influential in investment decision-making when involved 
with deep in-the-money or deep out-of-the-money projects.  Second, as α  may 
be substantially positive or negative in a disequilibrium setting, i.e., V V≠ , to 
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apparent that the GBM trigger, GBMV ∗ , is considerably greater 
than the mean reversion triggers, MRV ∗ , even for a very slow 
mean-reverting speed.  However, compared to GBMV ∗ , MRV ∗  is 
relatively insensitive to project volatility.  This is possibly 
because mean reversion reduces the long-run volatility.  Thus, 
even though instantaneous volatility is exactly equal in the 
models of both GBM and mean reversion, the long-run 
volatility under a mean reversion gets smaller as the 
mean-reverting speed becomes faster. [15]  
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Fig. 1  Optimal Triggers under GBM and Mixed Diffusion-Jump as a 
Function of Volatility 
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Fig. 2  Optimal Triggers under a GBM and a Mean-Reverting Process 
as a Function of Volatility 

 
Figure 2 also indicates that when investment projects are 

characterized by a mean-reverting process, investments should 
be induced sooner than those under a GBM.  Given the fact that 

MRV ∗  is less than GBMV ∗  for a reasonable set of parameters, it is 
obvious that the modified investment rules of mean reversion 
such as MR

∗Π , MRγ ∗ , and MRπ ∗ , are less than the GBM counterparts 

keep δ  unchanged we need to adjust μ , which may produce a very unrealistic 
discount rate complicating the analysis. 

while the optimal paybacks of mean reversion, MRP∗  and D
MRP ∗ , 

are greater than the GBM counterparts.  
 To compare the effects of jumps and mean reversion, Figure 
1 and 2 are combined within the same frame into Figure 3, 
which displays the sensitivity of optimal trigger price to the 
changes in volatility among three alternative models.  Figure 3 
suggests that for a set of reasonable parameter values, both 
mean reversion and jumps have a significant influence on 
bringing down trigger price closer to the conventional triggers, 
indicating that investment under both cases should be launched 
sooner than that under a GBM.  Furthermore, mean reversion 
may have a stronger power to induce investment than the 
competitive preemptive effect, given such a set of reasonable 
parameter values.   
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Fig. 3  A Comparison of Optimal Trigger Price under Alternative 
Processes 

 

TABLE II  THE COMPARISONS AMONG THE MODIFIED INVESTMENT RULES 
UNDER ALTERNATIVE PROCESSES 

GBM Rules GBM
∗Π  GBMπ ∗  GBMγ ∗  GBMP∗  D

GBMP ∗  

 
Comparisons 

 

 
∨  

 
∨  

 
∨  

 
∧  

 
∧  

MX Rules MX
∗Π  MXπ ∗  MXγ ∗  MXP∗  D

MXP ∗  
 

Comparisons 
 

 
∨  

 
∨  

 
∨  

 
∧  

 
∧  

MR Rules MR
∗Π  MRπ ∗  MRγ ∗  MRP∗  D

MRP ∗  
 

Comparisons 
 

 
∨  

 
∨  

 
∨  

 
∧  

 
∧  

Conventiona
l Rules 

Π  π  γ  P  DP  

Note: ∧  =  less than; ∨  = greater than 
  

To summarize the finding of this subsection, a comparison 
among the modified investment rules under alternative 
processes is presented in Table 2.  Since the option impact 
under a GBM process is the most significant among three 
stochastic processes of interest, the GBM rules such as GBM

∗Π , 
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GBMπ ∗ , and GBMγ ∗  are thus larger than any of the MX and MR 
counterparts, and the GBM paybacks such GBMP∗  and D

GBMP ∗  are 
lower than the MX or MR payback rules, given a set of 
reasonable parameter values.  

V. CONCLUSIONS 
Real options theory suggests that managerial flexibility 

embedded within irreversible investments can account for a 
significant value in project valuation.  Although the argument 
has become the dominant focus of capital investment theory 
over decades, yet recent survey literature in capital budgeting 
indicates that corporate practitioners still do not explicitly 
apply real options in investment decisions.  In this paper, we 
explore how real options decision criteria can be transformed 
into equivalent capital budgeting criteria under the 
consideration of uncertainty, assuming that underlying 
stochastic process follows a geometric Brownian motion, a 
mixed diffusion-jump, or a mean-reverting process.  These 
equivalent valuation techniques can be readily decomposed 
into conventional investment rules and “option impacts”, the 
latter of which describe the impacts on optimal investment rules 
with the option value considered.  Based on numerical analysis 
and Monte Carlo simulation, three major findings are derived.  
First, it is shown that real options could be successfully 
integrated into the mindset of conventional capital budgeting.  
Second, the inclusion of option impacts tends to delay 
investment.  It is indicated that the delay effect is the most 
significant under a GBM process and the least significant under 
a MR process.  Third, it is optimal to adopt the new capital 
budgeting criteria in investment decision-making and adopting 
a suboptimal investment rule without considering real options 
could lead to a substantial loss in value. 
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