
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

558

The Application of Bayesian Heuristic for
Scheduling in Real-Time Private Clouds

Sahar Sohrabi

Abstract—The emergence of Cloud data centers has revolutionized
the IT industry. Private Clouds in specific provide Cloud services
for certain group of customers/businesses. In a real-time private
Cloud each task that is given to the system has a deadline that
desirably should not be violated. Scheduling tasks in a real-time
private CLoud determine the way available resources in the system
are shared among incoming tasks. The aim of the scheduling policy is
to optimize the system outcome which for a real-time private Cloud
can include: energy consumption, deadline violation, execution time
and the number of host switches. Different scheduling policies can be
used for scheduling. Each lead to a sub-optimal outcome in a certain
settings of the system. A Bayesian Scheduling strategy is proposed
for scheduling to further improve the system outcome. The Bayesian
strategy showed to outperform all selected policies. It also has the
flexibility in dealing with complex pattern of incoming task and has
the ability to adapt.

Keywords—Bayesian, cloud computing, real-time private cloud,
scheduling.

I. INTRODUCTION

THE propagation of Cloud data centers has radically

changed the IT industry by providing services for

businesses and individuals on Pay-as-you-go basis. Private

Clouds in particular aim to serve the internal units in a business

or tasks from similar businesses. Private Clouds, in comparison

to public Clouds, have less resources available. Private Clouds

are especially complicated to study when they have deadline

restrictions on tasks. Such private Clouds are real-time. The

aim in these Cloud systems is to serve the tasks within an

acceptable time frame. However, a violation of deadline will

not cause a meltdown in the system. The goal is to prevent

the deadline violation where possible.

To serve the incoming tasks within the time frame

scheduling policies are needed to determine the way available

resources are dedicated to each task. The dynamic nature of the

private Clouds and the uncertainty in future resource requests

makes optimal scheduling a complicated job, especially when

there is not an accurate information about the resource

requirements in hand. Although there are examples of

scheduling policies proposed for distributed systems, they

usually rely on the existence of knowledge about resource

requirements [1] or an approximated value of it [2], [3]. But

such information is not always available to the scheduler.

Moreover, differences in the values presumed by scheduler

and the real resource requirements can potentially change the

outcome for the policies relying on them. Therefore, there

is a need for having scheduling policies that are capable of

handling the scheduling in a real-time private Cloud without

Sahar Sohrabi is a PhD student at Swinburne University of Technology,
Melbourne, Australia (e-mail: ssohrabi@swin.edu.au).

relying on the information on resource requirements. The

earlier part of our research [4] showed that the applicable

scheduling policies result in a substantially different outcome

for the system according to the circumstances such as task

arrival rate. A policy that outperforms all the others in a

pressurized system falls short in a relaxed setting and the other

way around.

The sub-optimality of scheduling policies brought up the

need for an adaptive scheduling mechanism that switches

between scheduling policies according to the system’s current

status in order to get closer to an optimal outcome for the

system. The system outcome can be measure as a combination

of some criteria including energy consumption, deadline

violation, execution time and the number of host switches.

Energy consumption is the major contributor in the cost of

running a Cloud system. Deadline violation is also important

because of the system’s real-time aspect. Execution time

provides insight into the system’s behavior regardless of the

deadlines. Host switches add to the energy consumption and

execution time, and potentially the deadline violation, due to

the start up energy peak and time delay. An accumulated

measure of these criteria can be used to compare the

performance of the scheduling policies in a real-time private

Cloud.

An adaptive scheduling policy that leads to a more desirable

measure needs to be adaptive and respond to the changes in the

system status. It is required to change and learn based on the

observed results. Bayesian heuristic has shown its potential

in dealing with complicated systems. So, a Bayesian based

mechanism that switches between the available scheduling

policies is expected to result in objective measures that are

closer to optimal measures.

The remainder is organized to include a short review of

the related literature in Section II. Section III describes the

way system status is defined and the scheduling policies for

scheduling tasks in a real-time private Cloud. It also covers the

criteria for system outcome and the constraints in the system.

Then the Bayesian heuristic for scheduling in a real-time

private Cloud is explained in Section IV. A set of experiments

are carried out in Section V and the results are illustrated in

Section VI. It is then followed by the conclusion and directions

for future work in Section VII.

II. RELATED WORK

Scheduling policies, in general, determine the way available

resources are shared among tasks and their corresponding

Virtual Machines (VM). The impact of scheduling policies

on the results of provisioning in a private Cloud is tangible



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

559

due to its relatively limited resources. When the private Cloud

has the limitation of being a real-time system, this impact is

further highlighted.

The system outcome for a Cloud system covers a

wide range of criteria including energy consumption [5],

[6], cost (budget) [7], [8], total execution/completion time

(make-span) [9], [10], number of host switches [11]

and resource utilization/wastage [12] or a combination of

criteria [13], [14]. Verma et al. [14], [15] proposed a bi-criteria

Particle Swarm Optimization (PSO) algorithm to schedule

tasks in the Cloud. They compared their algorithm with

BHEFT proposed by Zheng and Sakellariou [16], which itself

is an alteration of HEFT [17]. They have deadline and budget

constraints as criteria. PSO is also used by Xiong and Wu [18],

and Sridhar and Babu [19] for scheduling. However, these

approaches mostly rely on knowledge about tasks’ resource

requirements, that is not necessarily available to the scheduler.

Among the criteria chosen by researchers some are

particularly important in the context of real-time private Cloud.

Energy consumption is the major component in cost of running

a Cloud. Therefore, minimizing total energy consumption and

subsequently total cost of private Cloud is important. An

energy-aware scheduler in a real-time private Cloud should

optimize total execution time because of its potential effect

on total deadline violation. The importance of minimizing

total execution time is highlighted when its effect on deadline

violation is taken into account. The number of host switches

also contributes to the cost of running the Cloud, because of

the host start-up energy peak, and total execution time and/or

deadline violation, due to the host start-up delay.

Kim, Beloglazov and Buyya [1] run a set of experiments on

a private Cloud to decrease energy consumption. They assume

complete knowledge about each incoming task’s resource

requirements. Therefore, they can change the CPU frequency

of the host (using Dynamic Voltage and Frequency Scaling -

DVFS) to meet task’s associated deadline. Nevertheless, this

prior knowledge of tasks’ resource requirements are not always

available to the scheduler.

In a study by Panda et al. [13] maximizing the profit and

minimizing the task make-span was sought. They combined

Profit Based Task Scheduling (PBTS) and Cloud Min-Min

Scheduling (CMMS) [20]. They claimed improvements in

average utilization. Because the presumed Cloud system was

heterogeneous, they argued the host selection strategy changes

the results.

Resource utilization, task run time and response time are

studied by Tsafrir, Etsion and Feitelson when a back-filling

mechanism is proposed to schedule tasks in distributed

systems [2]. It requires prior knowledge/prediction about

tasks’ resource requirements to fill the remaining resources

with suitable tasks. This knowledge might not exist or the

predictions might not be accurate enough. Another scheduling

policy is proposed by Kaur and Challa [21] where it aimed

to minimize energy consumption and execution time. They

considered prior knowledge about tasks’ resource requirements

as well.

Lee and Zomaya [22] proposed two energy-conscious

scheduling policies ECTC and MaxUtil. They intended to

maximize resource utilization and explicitly taking into

account both active and idle energy consumption. For a given

task, ECTC and MaxUtil check every resource and identify the

most energy-efficient resource for it. The difference between

the two is in their cost functions. The cost function of ECTC

computes the actual energy consumption of the current task

subtracting the minimum energy consumption. MaxUtil, on the

other hand, is devised with the average utilization of resources

and assigns the task to a host with maximum utilization.

The results showed that ECTC and MaxUtil outperformed

random scheduling algorithms. ECTC and MaxUtil focus on

consolidation of as many tasks onto fewer hosts in order to

decrease the number of active hosts. MaxUtil involves lower

level of complexity as it uses average resource utilization.

Although it was not designed for a real-time private Cloud, it

has the potential to minimize the number of active hosts and

subsequently decrease total energy consumption. Nonetheless,

consolidating tasks to a fewer number of hosts in turn

might cause resource conflicts and even increase total energy

consumption and undesirably total execution time.

An energy-aware scheduling algorithm is proposed by Li et

al. [23] to achieve a balanced load in a private Cloud. In their

study, load balancing is defined as having an equal number

of VMs on each processing node regardless of how much

resources they might need. It makes this scheduling policy an

applicable one in a real-time private Cloud where the tasks’

resource requirements are unknown to the scheduler. However,

because of their presumed Cloud system not being real-time,

the scheduling policy was not devised to minimize deadline

violation or completion time. We refer to this policy as Equal

Load (EL). Even though EL was not designed to work in a

real-time private Cloud, it has the potential to improve the

system outcome.

In our earlier set of experiments, we proposed a

scheduling policy for heterogeneous real-time Clouds called

Energy-aware Deadline-Based Scheduling (EDS) [4]. This

policy considers the limitations on all resources on the system

including CPU, memory and network and substantially focuses

on minimizing the total deadline violation. The same policy

has the potential to lead to a desirable outcome for a real-time

private Cloud.

In general, there are many scheduling policies for Cloud

systems in the literature. However, the ones that do not rely on

knowledge about tasks’ resource requirements are applicable.

Among them, it seems unlikely to find the best scheduling

policy in all system settings. It is expected that the outcome

of a scheduling policy is closer to the optimal value in some

settings and not all. It brings the question about the possibility

of having a single scheduling policy as an optimal policy that

outperforms all the others in all settings of the real-time private

Cloud system. If there is not such a policy, that seems to

be likely, there is a need for developing a scheduling policy

that learns and adapts. Such scheduling policy can use be the

application of techniques such as Bayesian learning.

Bayesian learning is used in different areas. Its diverse set

of applications in different disciplines represents its strength

in dealing with a wide variety of problems. Bayesian method

in Cloud computing is presented in a study by Sallam and



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

560

Li [24] where they carried out a multi-objective optimization

when migrating VMs from a host to another. Their method is

about selecting a VM for migration that satisfies objectives

including load volume, power consumption, thermal state,

resource wastage and migration cost. They are not concerned

about the host selection process or initial scheduling policy.

Bayesian techniques are also applied for failure

management [25], [26], mobile Cloud computing [27]

and scheduling [28]. In the area of scheduling Wang et

al. [28] used the concept of trust to provide a fair distribution

of the load in the system or balance the load. It doesn’t cover

the other important objectives in the Cloud such as energy

consumption and execution time. The goal of the study is a

reliable scheduling policy that guarantees task execution even

in the case of hardware failure. The degree of trust in each

node is defined as its performance and the feedback from its

performance in cooperation with other nodes. The framework

is an extension of the Dynamic Scheduling framework

presented by Harrison [29] in 1975. The data from a study

by Calheiros et al. [30] are used for evaluation and they show

that their approach can reduce the task’s failure ratio.

Bayesian technique is widely used in Cloud computing in

failure management. The reason can lie in the uncertainty

of the hardware failure that can happen to any resource at

any time. Bayesian techniques gives the system the ability

to adapt to the changes in the system. A scheduling policy

that is equipped with Bayesian learning technique is expected

to provide a better system outcome for Cloud systems and

real-time private Cloud in particular, because of its specific

characteristics.

III. OPTIMIZING SCHEDULING IN REAL-TIME PRIVATE

CLOUDS

The notion of a scheduling in a real-time private Cloud

refers to the allocation of tasks to the hosts (Cloud resources).

In the following subsections the formal annotations for

real-time private Cloud scheduling optimization are given in

details. These are then used to explain the Bayesian heuristic.

A. System Input Set

The optimized scheduling method can utilize the

information from the system to facilitate scheduling in

a real-time private Cloud. Available information include

task arrival rate, average remaining deadline and current

CPU utilization. System Input (SI) represents a set of

value ranges. If TAR = {tar0, tar1, . . . , tarn}, ARD =
{ard0, ard1, . . . , ardm} and CCU = {ccu0, ccu1, . . . , ccup}
Let SI = (tar2, ard6, ccu0) be an example of the system

input.

• Task arrival rate (TAR) is the mean value for the tasks’

arrival intervals. The longer the intervals and the more

apart the tasks arrive, the bigger the TAR is. A small

TAR value shows that the real-time private Cloud receives

tasks relatively fast and is under pressure to schedule

them. On the other hand a large TAR value means the

system is relatively relaxed in scheduling the tasks.

• Average Remaining Deadline (ARD) is the averaged

value of the deadlines for the tasks that are currently

running in the system. It is worth noting that the real-time

private Cloud is not aware of the exact resource capacities

required for finishing the task. The remaining deadline is

the only information about tasks that is available to the

system.

• Current CPU Utilization (CCU) is the average CPU

utilization over all hosts. It represents the way CPU in the

system is being used. Although it is an averaged value, it

can help in understanding the behavior of the system and

predicting the system’s energy consumption in particular.

B. Scheduling Assignments in Real-Time Private Clouds

Let T = {t1, t2, . . . , tn}, where n ∈ N, denote the set of

tasks in a workload and the parameters of the task be given

as follows:

• Task Intensity, TI = {CPU-intensive, memory-intensive,

network-intensive, non-intensive}, ti: T → TI
• Task Deadline, td: T → N

Let H = {h1, h2, . . . , hm}, where m ∈ N, denote the set

of hosts in a real-time private Cloud and let its parameters be

as follows

• Host Processing Speed, hps: H → N

• Host Memory, hm: H → N

• Host available bandwidth, hb: H ×H → N

• Host Maximum number of VMs, hmvm: H → N

• Host Status, hs: H → {On,Off}
The assignment of tasks to the hosts can be defined as A =

{a|a : T → H}, where A is the set of all assignments of tasks

to hosts. Note that, since T and H are finite, A is also finite,

and represents the set of all possible assignments. A single

deployment set can be ai = {(t1, hi), (t2, hi), . . . , (tn, hi)} ∈
A. Not all scheduling policies can be used in a real-time private

Cloud. The followings are applicable to schedule tasks in a

real-time private Cloud.

– MaxUtil [22] It schedules based on a host’s average CPU

utilization and focuses on consolidating as many tasks

onto fewer hosts in order to reduce the number of active

hosts.

– Intensity Based (IB) It follows the elementary idea of

assigning an intensive task to a host with the most

available capacity on that resource. A non-intensive task

is randomly assigned.

– Greedy Deadline (GD) [4] It aims to decrease the

deadline violation by deploying the task on a host with

the least utilization. It does not turn on a new host unless

the active hosts cannot accommodate any new task.

– Intensity-aware Greedy Deadline (IGD) IGD is similar

to GD with the difference of how it deals with intensive

tasks. If the host with maximum available resource A

is running an A-intensive task, the host with the second

maximum available resource A will be selected. Unless

all hosts have the same number of A-intensive tasks. A

non-intensive task is treated like a CPU-intensive one.

– Equal Load (EL) [23] It is an energy-aware scheduling

policy proposed to balance the load in a private Cloud.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

561

EL keeps the number of tasks on each host as equal as

possible.

– Intensity-aware Equal Load (IEL) IEL acts like EL but

puts into account the intensity of the tasks as described in

IGD. If the selected host by EL is running an A-intensive

task, another host will be chosen, unless all hosts are

running the same number of A-intensive tasks.

The changes on the scheduling policies are expected to

improve the measured criteria as they take into account the

intensity of the tasks. Also, each policy results in a set of

assignments. These assignments influence the performance of

the system (system outcome). To find an optimal assignment

and compare the performance of different scheduling policies,

relevant criteria should be chosen.

C. Criteria

The criteria that are aimed to be optimized are denoted as

C : A → R. To illustrate our approach we use four criteria

energy consumption, deadline violation, execution time and

number of host switches, C = {ec, dv, et, hs}.

– Energy Consumption (EC) Energy consumption

contributes to carbon emissions and directly affects the

cost of running the Cloud (both the hosts and the cooling

devices). To calculate the total energy consumption, the

energy model reported by Hsu et al [31] is applied.

It provides a set of rules that determine the energy

consumption for VM number i, Vi, at the time t using

α, the idle energy consumption and β = α as in (1) in

Watts (W).

Et(Vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α if idle
β + α if 0% ≤ CPUutil. ≤ 20%
3β + α if 20% < CPUutil. ≤ 50%
5β + α if 50% < CPUutil. ≤ 70%
8β + α if 70% < CPUutil. ≤ 80%
11β + α if 80% < CPUutil. ≤ 90%
12β + α if 90% < CPUutil. ≤ 100%

(1)

EC values can be divided into levels where EC =
{ec0, ec1, . . . , eci}.

– Deadline Violation (DV) In a real-time system each

task has a deadline. The resource allocation should

aim to prevent or decrease the total deadline violation.

Preventing the deadline violation in a real-time system is

an important aspect of QoS. DV can sit in a range from

{dv0, dv1, . . . , dvj} set.

– Execution Time (ET) Total execution time for a given

workload is another indicator of how well the system

satisfies the task’s resource requirements and is a

measurement of QoS. ET values will be a member of

{et0, et1, . . . , etk} set.

– Host Switches (HS) The number of host switches

is an explanation for a portion of delays and

energy consumption. The energy needed for starting

a host increases the energy consumption. Also, each

host switch (on/off) creates a switching delay. By

preventing unnecessary host switches, there is a chance

to decrease the total energy consumption, deadline

violation and execution time. HS can have ranges from

{hs0, hs1, . . . , hsl} set.

D. Constraints

Not all assignment candidates a ∈ A represent feasible

alternatives. For instance, placing all tasks to a single host

might exceed the threshold for the maximum number of

VMs on the host. The set of constraints Omega is defined

that considers only the limitation on the number of VMs

that a host can run as Omega = {Omegahmvm}. Note

that any other constraint can be added to the system.

Let a−1 : H → P (T ) denote the inverse relation to

a ∈ A, i.e. a−1(x) = {t ∈ T |a(t) = h}. Then the

constraint on the maximum number of VMs on a host

OmegahmvmA → {true, false} is defined as follows:

Omegahmvm = ∀h ∈ Hσtina−1(h)1 ≤ hmvm(h)

IV. BAYESIAN HEURISTIC FOR SCHEDULING IN

REAL-TIME PRIVATE CLOUDS

An important aspect of scheduling optimization in real-time

private Clouds is to realize how a certain setting in the input

affects the criteria. Bayesian learning method requires the prior

probability of a criterion value for a given system input. SI

values in combination with the scheduling policy chosen can

be used to calculate the conditional probabilities of the values

for each criterion. These conditional probabilities then can be

utilized to obtain posterior probabilities in scheduling tasks in

a real-time private Cloud.

P (eci) is the probability of the system output being eci
for energy consumption. This is the prior probability. Prior

probability is then used to calculate the conditional probability.

p(eci(SIj & SchedulingPolicyk)) is the probability of the

energy consumption sitting in the eci range when SIj is the

system input and scheduling policy k is applied. Conditional

probability should be calculated for range of each criterion as

in Algorithm 3.

Data: Obtained results from scheduling policies

Result: Bayesian scheduling policy selection

Read Training DataSet;

Calculate the prior probability for currentSI (current

system input set);

Calculate the prior probability for each scheduling policy,

SPi;

Calculate conditional probabilities;

posterior probability for each scheduling policy SPi =
conditionalProbabilitySPi×priorProbabilitySPi

priorprobabilityforcurrentSI ;

Select a scheduling policy based on the posterior

probabilities;
Algorithm 1: Bayesian scheduler

The first stage of Bayesian heuristic is to calculate prior

and conditional probabilities as in algorithm 1. In a real-time

private Cloud the aim in to minimize the value of the outcome

criteria, EC, DV, ET and HS. Therefore, for any given



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

562

Data: Obtained results from scheduling policies

Result: Prior probability for currentSI and each

scheduling policy

for each instance from TrainingDataSet do
increment totalCounter;

if instance’s SystemInputSet equals currentSI OR
currentSI doesn’t exist in the TrainingDataSet AND
instance’s SystemInputSet’s TAR equals currentSI’s
TAR then

increment counter;

end
end
prior probability for currentSI = counter

totalCounter ;

for each scheduling policy, SPi do
for textbfeach instance from TrainingDataSet do

if instance’s scheduler equals SPi then
increment ki

end
end

end
prior probability for SPi = ki

totalCounter ;
Algorithm 2: Calculating prior probabilities

Data: Obtained results from scheduling policies

Result: Conditional probability for each scheduling

policy resulting in a Low criteria value

for each instance from TrainingDataSet do
for each scheduling policy, SPi do

if instance’s scheduler equals SPi then
increment counteri;
totalCriteriaV aluei+ =
instance′soutcomevalue;

end
end

end
conditional probability for each scheduling policy, SPi

resulting in a ’Low’ criteria value = totalCriteriaV aluei
counteri

;
Algorithm 3: Calculating conditional probabilities

SI set criteria values should be calculated based on which

scheduling policy is applied. Then, the scheduling policy with

the minimum value for the given setting will be chosen. It

means the scheduling algorithm has the highest probability

to lead to a more optimal outcome for the system. It is the

posterior probability.

V. EVALUATION

The real-time private Cloud simulations are performed

in a system with 20 homogeneous hosts. The reason for

choosing a homogeneous system is to eliminate the effect of

different host capacities on the system outcome. The initial

available bandwidth to each host is set to 1000 Hertz. Different

scheduling policies (discussed in Section III-B) are deployed.

A. Experimental Settings

System input set have the value ranges as follows:

• TAR To generate the task arrival intervals, Poisson

distribution is used. Multiple mean values are assigned

to this distribution as 2, 3, 4, 5 and 6. Therefore the

TAR value range is a member of the TAR set with

{2orshorter, 3, 4, 5, 6orlonger} as members.

• ARD Averaged remaining deadlines is the set ARD that

according to the simulations can have these members

{Low,Medium,High}.

• CCU Current CPU utilization set is a set where the

members are {Low,Medium,High}.

The value ranges representing each member in ARD and

CCU are the first, second and third portion of the observed

results.

B. Test Data Sets

For evaluation purposes, it is to test the proposed method on

workloads from a real system. We used the workloads provided

in CloudSim package [30], [32] in its later version used for

evaluating consolidation algorithms [11]. These workloads are

parts of the CoMon project, a monitoring infrastructure for

PlanetLab [33]. Ten days were randomly chosen in March and

April 2011 and we base our evaluation on the same chosen

dates to facilitate the reproduction of the results. However, the

workloads do not belong to a private real-time Cloud, so the

tasks do not have a deadline. Uniformly randomly numbers

are associated to them as deadlines.

VI. RESULTS

The results are then compared with scheduling policies in

Section III-B. Fig. 1 illustrates the box plots for accumulated

criteria values.

In Fig. 1 (a), IEL and EL have outliers that are substantially

high in comparison to other schedulers. After zooming in,

showed in Fig. 1 (b), GD and IGD exhibit non-optimal high

measurements. It is in Fig. 1 (c) that Bayesian strategy shows

its strength over the rest of the scheduling policies, MaxUtil

and IB. Bayesian scheduler does not have the outlier values

and resulted in a more optimal outcome for the system.

VII. CONCLUSIONS AND FUTURE WORK

In a real-time private Cloud different scheduling policies

might lead to a sub-optimal outcome for the system in specific

settings of hosts, current VMs running on the hosts, arrival

intervals, resource utilization and the deadline of the tasks.

In this paper a Bayesian heuristic strategy is proposed for

scheduling tasks in private real-time Clouds where it switches

between available policies to come closer to the optimal

outcome according to the system’s current status.

The results showed that the Bayesian heuristic strategy

lead to a more optimal outcome for the system based

on energy consumption, deadline violation, execution time

and the number of host switches. It means that in any

given real-time private Cloud the historical data for different

deployed scheduling policy can be used in the Bayesian

heuristic strategy to determine the best possible policy to

choose according to the current status of the system. It



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

563

Scheduler
BayesianIELELIGDGDIBMaxUtil

A
cc

um
ul

at
ed

 O
bj

ec
tiv

e 
Va

lu
e

15000M

10000M

5000M

0M

(a) Box plots of scheduling policies

Scheduler
BayesianIELELIGDGDIBMaxUtil

A
cc

um
ul

at
ed

 O
bj

ec
tiv

e 
Va

lu
e

1500M

1000M

500M

0M

(b) Re-scaled box plots of scheduling policies

Scheduler
BayesianIELELIGDGDIBMaxUtil

A
cc

um
ul

at
ed

 O
bj

ec
tiv

e 
Va

lu
e

150M

100M

50M

0M

(c) Re-scaled box plots of scheduling policies

Fig. 1 The box plots for the outcome of each scheduling policy in comparison to the Bayesian scheduler



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

564

also accentuates the potential for switching between policies

to further optimize the outcome as a universally optimal

scheduling policy is unlikely.
It is worth noting that this research is conducted using

six scheduling policies. However, the Bayesian strategy is

expandable to any number of deployed policies in the system

as it uses the observed results of any given policy for training.

Moreover, Bayesian strategy includes the recent results in its

next decision. It provides the system with the ability to adapt

to the changes in the system in a robust manner. The system

can benefit from this in order to cope with the changes. It

include but is not limited to the way this strategy deals with

hardware failure. Nonetheless, its effectiveness in hardware

failure needs to be evaluated.
This work can be further improved by experimenting other

heuristic strategies for policy switching. Although there are

widely used heuristics for scheduling, their performance in

switching scheduling policy in a real-time private Cloud and

the comparison with Bayesian strategy can be studied. The

candidate heuristics, however, need to have the learning and

adapting ability to suit the tests for hardware failure recovery.

ACKNOWLEDGMENT

This research is conducted with the financial support

of SUPRA (Swinburne University Postgraduate by

Research Award). Constructive reviews by Irene Moser

from Swinburne University of Technology (Melbourne,

Australia) and productive ideas by Aldeita Aleti from Monash

University (Melbourne, Australia) are greatly appreciated and

acknowledged.

REFERENCES

[1] Kyong Hoon Kim, Rajkumar Buyya, and Jong Kim. Power aware
scheduling of bag-of-tasks applications with deadline constraints on
dvs-enabled clusters. In CCGRID, volume 7, pages 541–548, 2007.

[2] Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. Backfilling using
system-generated predictions rather than user runtime estimates. Parallel
and Distributed Systems, IEEE Transactions on, 18(6):789–803, 2007.

[3] Chuan-Feng Chiu, Steen J Hsu, Sen-Ren Jan, and Jyun-An Chen.
Task scheduling based on load approximation in cloud computing
environment. In Future Information Technology, pages 803–808.
Springer, 2014.

[4] Sahar Sohrabi and Irene Moser. Energy-aware deadline-based scheduling
in IaaS cloud with regard to the available memory. In Proceedings of
International Conference on Advanced Computing and Services. World
IT Congress, 2015.

[5] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy aware
consolidation for cloud computing. In Proceedings of the 2008
conference on Power aware computing and systems, volume 10. San
Diego, California, 2008.

[6] Nikzad Babaii Rizvandi, Javid Taheri, Albert Y Zomaya, and
Young Choon Lee. Linear combinations of DVFS-enabled processor
frequencies to modify the energy-aware scheduling algorithms. In
Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on, pages 388–397. IEEE, 2010.

[7] Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and
meet application deadlines in cloud workflows. In Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, page 49. ACM, 2011.

[8] Jia Yu and Rajkumar Buyya. Scheduling scientific workflow applications
with deadline and budget constraints using genetic algorithms. Scientific
Programming, 14(3):217–230, 2006.

[9] Shu-Ching Wang, Kuo-Qin Yan, Wen-Pin Liao, and Shun-Sheng Wang.
Towards a load balancing in a three-level cloud computing network.
In Computer Science and Information Technology (ICCSIT), 2010 3rd
IEEE International Conference on, volume 1, pages 108–113. IEEE,
2010.

[10] Linan Zhu, Qingshui Li, and Lingna He. Study on cloud computing
resource scheduling strategy based on the Ant Colony Optimization
Algorithm. IJCSI International Journal of Computer Science Issues,
9(5):1694–0814, 2012.

[11] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic
algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data
centers. Concurrency and Computation: Practice and Experience,
24(13):1397–1420, 2012.

[12] Aameek Singh, Madhukar Korupolu, and Dushmanta Mohapatra.
Server-storage virtualization: integration and load balancing in data
centers. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, page 53. IEEE Press, 2008.

[13] Sanjaya K Panda and Prasanta K Jana. A multi-objective task scheduling
algorithm for heterogeneous multi-cloud environment. In Electronic
Design, Computer Networks & Automated Verification (EDCAV), 2015
International Conference on, pages 82–87. IEEE, 2015.

[14] Amandeep Verma and Sakshi Kaushal. Bi-criteria priority based
particle swarm optimization workflow scheduling algorithm for cloud.
In Engineering and Computational Sciences (RAECS), 2014 Recent
Advances in, pages 1–6. IEEE, 2014.

[15] Amandeep Verma and Sakshi Kaushal. Cost minimized pso based
workflow scheduling plan for cloud computing. pages 37–43, 2015.

[16] Wei Zheng and Rizos Sakellariou. Budget-deadline constrained
workflow planning for admission control. Journal of grid computing,
11(4):633–651, 2013.

[17] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-effective
and low-complexity task scheduling for heterogeneous computing.
Parallel and Distributed Systems, IEEE Transactions on, 13(3):260–274,
2002.

[18] Ying Yidu Xiong and Yan Yan Wu. Cloud computing resource schedule
strategy based on pso algorithm. In Applied Mechanics and Materials,
volume 513, pages 1332–1336. Trans Tech Publ, 2014.

[19] M Sridhar and G Babu. Hybrid particle swarm optimization scheduling
for cloud computing. In Advance Computing Conference (IACC), 2015
IEEE International, pages 1196–1200. IEEE, 2015.

[20] Jiayin Li, Meikang Qiu, Zhong Ming, Gang Quan, Xiao Qin, and
Zonghua Gu. Online optimization for scheduling preemptable tasks on
iaas cloud systems. Journal of Parallel and Distributed Computing,
72(5):666–677, 2012.

[21] Harmeet Kaur and Rama Krishna Challa. A new hybrid virtual
machine scheduling scheme for public cloud. In Advanced Computing
& Communication Technologies (ACCT), 2015 Fifth International
Conference on, pages 495–500. IEEE, 2015.

[22] Young Choon Lee and Albert Y Zomaya. Energy efficient utilization of
resources in cloud computing systems. The Journal of Supercomputing,
60(2):268–280, 2012.

[23] Jiandun Li, Junjie Peng, Zhou Lei, and Wu Zhang. An energy-efficient
scheduling approach based on private clouds. Journal of Information &
Computational Science, 8(4):716–724, 2011.

[24] Ahmed Sallam and Kenli Li. A multi-objective virtual machine
migration policy in cloud systems. The Computer Journal, 2013.

[25] Qiang Guan, Ziming Zhang, and Song Fu. Ensemble of bayesian
predictors for autonomic failure management in cloud computing. In
Computer Communications and Networks (ICCCN), 2011 Proceedings
of 20th International Conference on, pages 1–6. IEEE, 2011.

[26] Qiang Guan, Ziming Zhang, and Song Fu. Ensemble of bayesian
predictors and decision trees for proactive failure management in cloud
computing systems. Journal of Communications, 7(1):52–61, 2012.

[27] Xianbin Wang, Guangjie Han, Xiaojiang Du, and Joel JPC Rodrigues.
Mobile cloud computing in 5g: Emerging trends, issues, and challenges
[guest editorial]. Network, IEEE, 29(2):4–5, 2015.

[28] Wei Wang, Guosun Zeng, Daizhong Tang, and Jing Yao. Cloud-DLS:
Dynamic trusted scheduling for cloud computing. Expert Systems with
Applications, 39(3):2321–2329, 2012.

[29] J Michael Harrison. Dynamic scheduling of a multiclass queue: Discount
optimality. Operations Research, 23(2):270–282, 1975.

[30] Rodrigo N Calheiros, Rajiv Ranjan, César AF De Rose, and Rajkumar
Buyya. CloudSim: A novel framework for modeling and simulation
of cloud computing infrastructures and services. arXiv preprint
arXiv:0903.2525, 2009.

[31] Ching-Hsien Hsu, Kenn Slagter, Shih-Chang Chen, and Yeh-Ching
Chung. Optimizing energy consumption with task consolidation in
clouds. Information Sciences, 258:452–462, 2014.

[32] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF
De Rose, and Rajkumar Buyya. CloudSim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

565

resource provisioning algorithms. Software: Practice and Experience,
41(1):23–50, 2011.

[33] KyoungSoo Park and Vivek S Pai. CoMon: a mostly-scalable monitoring
system for planetlab. ACM SIGOPS Operating Systems Review,
40(1):65–74, 2006.


