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Abstract— Fault tolerance is critical in many of today’s large 
computer systems. This paper focuses on improving fault tolerance 
through testing. Moreover, it concentrates on the memory faults: how 
to access the editable part of a process memory space and how this 
part is affected. A special Software Fault Injection Technique (SFIT) 
is proposed for this purpose. This is done by sequentially scanning 
the memory of the target process, and trying to edit maximum 
number of bytes inside that memory. The technique was 
implemented and tested on a group of programs in software packages 
such as jet-audio, Notepad, Microsoft Word, Microsoft Excel, and 
Microsoft Outlook. The results from the test sample process indicate 
that the size of the scanned area depends on several factors. These 
factors are: process size, process type, and virtual memory size of the 
machine under test. The results show that increasing the process size 
will increase the scanned memory space. They also show that input-
output processes have more scanned area size than other processes. 
Increasing the virtual memory size will also affect the size of the 
scanned area but to a certain limit. 

Keywords— Complex software systems, Error detection, Fault 
tolerance, Injection and testing methodology, Memory faults, Process 
and virtual memory.

I. INTRODUCTION 

There are three lines of defense against software faults: 
Fault avoidance, fault elimination and fault tolerance [9, 10].  

The main objective of the Software Fault Injection 
Technique (SFIT) is to test the fault tolerance capability 
through injecting faults into the system and analyze if the 
system can detect and recover from faults as expected [5]. The 
SFIT is an important technique for at least two reasons: 
Failure acceleration, and systematic testing. There are several 
challenges in the pursuit of a methodology for testing fault 
tolerance [7]: Complexity of software, Dormancy of faults, 
and Constraint of resource availability. 

In section 2, we present related work to fault injection. 
Section 3 presents the proposed technique. Section 4 explains 
the results. Section 5 concludes the advantages and drawbacks 
of the research. 
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II. LITERATURE REVIEW

A huge amount of time and money is often spent to verify that 
a system is fault free. But some faults can not be found due to 
either lack of time or simply overlooked faults, [1, 2]. In a big 
system that is used by thousands or maybe even millions of 
users' everyday, some faults may occur that the designers 
never even thought were possible, [3]. Faults in a software 
program are often called bugs. Every programmer sees his/her 
program bug-free until the next bug is discovered. Many bugs 
can often be hard to locate, these are called Heisenbugs 
(whereas the Bohrbugs causes predictable failures) [3].  
 In order to make sure that a fault will not crash the system 
or even stay hidden in the system without being discovered 
Fault Injection is used, [8]. The principle is to inject a fault 
into the system, a fault as close to a “real” fault that can occur 
in the field, and check how the system reacts. A simple fault-
tolerance device could be a watchdog that “watches” over 
applications and restarts the application if it should hang or 
crash. The fault can result in an error when executed. Errors 
should not go undetected, so some sort of error detection 
mechanism is necessary. This could be as simple as parity 
checking. Once the error is detected, it should be localized 
(fault-diagnostic) [7].  
 The Fault Injection can be achieved on different levels. 
Low-level fault injection in which one tries to simulate 
hardware faults to check how the software reacts. This can 
include changing memory and register contents etc. High-
level fault injection that means changing code, corrupt data or 
change program states.  
The Fault injection can be done by injecting faults manually, 
using commercial tools or make a program for automatic 
injection of faults according to statistical models and 
algorithms. The commercial tools developed for fault injection 
are often called Software Implemented Fault Injector (SWFI). 
These are often relatively inexpensive compared to other tools 
such as hardware injectors. Software Fault Injection is a 
flexible approach of injecting faults compared to hardware 
injection, but it has shortcomings, [5]: 
1. It cannot inject faults into locations that are inaccessible to 
software. 
2. The software instrumentation may disturb the workload 
running on the   target system and even change the structure 
of original software. Careful design of the injection 
environment can minimize perturbation  to the workload. 
The poor time-resolution of the approach may cause fidelity 
problems. For long latency faults, such as memory faults, the 
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low time-resolution may not be a problem. For short latency 
faults, such as bus and CPU faults, the approach may fail to 
capture certain error behavior, like propagation [7]. Engineers 
can solve this problem by taking a hybrid approach, which 
combines the versatility of software fault injection and the 
accuracy of hardware monitor. The hybrid approach is well 
suited for measuring extremely short latencies. However, the 
hardware monitoring involved can cost more and decrease 
flexibility by limiting observation points and data storage size, 
[5]. 

III. THE PROPOSED TECHNIQUE 

 When a process is running on a machine, and while it 
resides in memory, there are two parts of the memory space of 
the process; a read-only part and an editable part. The first 
part is locked by the system and cannot be altered. The second 
part is the part of concern for the injector [4]. The method 
used here is aimed to find out the size of the second part of the 
process and to study the factors that affect this part. The 
technical details of the method proposed in this paper are as 
follows: 

The injector will go through the following stages. 
Get commandline.
Create new process and handle commandline to it. 

Windows does this task with full transparency to the child 
process. 

Wait until the process is fully initialized. This is 
necessary, because the memory of the child process isn’t 
committed yet, which means that the contents of the 
memory space of the new process is garbage at this point. 
WaitForInputIdle is used to make sure the memory is 
committed before the injector starts to work on the 
memory space.  

Faults are injected in the memory space of the child 
process. After the process memory is committed and the 
byte check is done, the injection process can be started. 

Finally, terminate and leave the new process alone. This is a 
simple out put process. The results are committed to a text 
file.  
Close the process and thread handles. 

As shown above, the process flow starts at the process of 
loading the target process into memory and then waits for the 
target to be idle and ready to start after the loading operation. 
This part of the job is controlled by the activator subsystem. 

After the target process is loaded into memory and ready to 
start, the injector starts scanning the memory space of the 
target process from location 0x00000000 and tries editing 
each single byte of that process. At this stage, we have one of 
two options. First,  the byte is a locked byte, which will be 
counted as BAD byte. The second option is that the editing 
operation succeeds and the byte is a GOOD byte. 

The injector will keep memory editing task going on until 
the target process crashes at some certain point. At that point, 
the numbers of good, bad, and total bytes scanned are 
recorded. The percentages for good and bad bytes are 
calculated, and finally the results are stored into a text file for 

analysis. 
The main contribution of this work is to presenting the 

technique explained for measuring the size of attackable 
memory space, and to study the factors that affect this 
memory space.  The technique is not concerned in simulating 
the running environment in order to catch faults. It is only 
interested in knowing the ability of a program to be edited 
inside memory. It is an important point to know that the 
program needs to have the ability to be edited even if the 
number of faults that occur in memory is in millions. 

IV. RESULTS AND ANALYSIS 

The proposed methodology has shown that the number of 
edited memory locations varies from one target process to 
another as shown in Tables I and II. The tables demonstrate 
the results of running the fault injector on 9 different 
processes. The number represents the average number of bytes 
over 20 different runs of the program on these software 
samples.  

Table I shows the total size of the area scanned before the 
process crashes. This is an indication of the size of interfere 
that the process can take before the injection process become 
harmful.  

The fact that Table III shows is the size and percentage of 
the edited area of the total area scanned, that is:

 Percentage of Edited Bytes = (number of successfully 
edited bytes) / (Edit bytes + blocked bytes) 

TABLE 1: the size of maximum scanned and edited areas for 9 samples.

GOOD BYTES

SAMPLE ID NUMBER OF 

SCANNED 

BYTES

NUMBER OF 

EDITED BYTES

PERCENTAGE

OF EDITED 

BYTES

0 551546 82182 15% 

1 1380251 77115 6% 

2 1359806 113002 8% 

3 1312855 40645 3% 

4 474341 73223 18% 

5 894649 95192 13% 

6 582838 79367 17% 

7 899303 107514 19% 

8 472738 36226 10% 
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Fig 1 : Sample size vs. Percentage of bytes edited 

The number of injected memory locations is affected by 
more than one factor, such as process type and process size. 

Process size:  The number of injected memory locations is 
proportional to the size of the loaded process. The larger the 
target process is, the higher the number of memory locations 
that are edited. Figure 1 shows the relation between the 
sample size in megabytes and the percentage of the injected 
bytes for five processes out of the nine samples mentioned in 
Table II. These five processes are non interactive processes. 

The process type : as a general method for classifying 
programs, in this paper the software samples are of two types, 
[6]: Input / Output processes and Executable processes.  

The injection process itself is affected by some factors such 
as operating system security policy and virtual memory size. 

Tables II, III, IV, and V demonstrate the results of the 
injection process under various virtual memory sizes. The 
sizes used for this part are four categories, 300, 500, 700, and 
1000 Megabytes. 

Table II : Injection results for 300 MB virtual memory. 

Process
ID

Total Bytes 
Scanned 

Number of 
Edited Bytes 

Percentage of 
Edited Bytes 

P0 413438 73582.4 18% 

P1 544041 77824 14% 

P2 1375089 119236.6 9% 

P3 1407933 108368.6 8% 

P4 532545 38503.4 9% 

P5 552612 70583.8 17% 

P6 1073726 109633 11% 

P7 1297792 39696.8 3% 

P8 306105 53342.4 17% 

Analyzing the results in Tables 2, 3, 4 and 5 can lead to the 
fact shown in Figure 2. The fact indicated by this figure is that 
increasing the virtual memory size will lead to a decrement in 
the average number of memory locations scanned. One fact to 
notice is that the factor of page size will stop affecting the 
result of the injection process at some point. The virtual 
memory size will not affect the scanned area size when the 
process is not using the added virtual memory space. 

Table III : Injection results for 500 MB virtual memory. 

Process ID Total Bytes 
Scanned 

Edited Bytes Percentage of 
Edited Bytes 

P0 494586 72196.4 17% 

P1 524519 77824.2 15% 

P2 1393035 127435.8 9% 

P3 1432674 103365.2 7% 

P4 338722 34331.2 11% 

P5 769390 92196.4 16% 

P6 956496 106364.2 14% 

P7 1270044 30431.2 2% 

P8 317366 43212.6 13% 

Table IV:  

Process ID 
Total Bytes 
Scanned Edited Bytes 

Percentage of 
Edited Bytes 

P0 494586 72196.4 17% 

P1 524519 77824.2 15% 

P2 1393035 127435.8 9% 

P3 1432674 103365.2 7% 

P4 338722 34331.2 11% 

P5 769390 92196.4 16% 

P6 956496 106364.2 14% 

P7 1270044 30431.2 2% 

P8 317366 43212.6 13% 

Table IV : Injection results for 700 MB virtual memory. 

process ID Total Bytes 
Scanned 

Edited Bytes Percentage of 
Edited Bytes 

P0 421035 62370.8 16% 

P1 486671 89293 15% 

P2 1254795 105411 8% 

P3 1371124 80882.4 6% 

P4 394304 38503 10% 

P5 501901 67822.4 19% 

P6 956758 99357.6 13% 

P7 1414483 40141 3% 

P8 515391 75905.4 20% 

Table V: Injection results for 1000 MB virtual memory. 

Process 
ID

Total Bytes 
Scanned

Edited Bytes Percentage 
of Edited 
Bytes

P0 369270 63351.4 17% 

P1 507973 90931.4 14% 

P2 1247716 97672.8 7% 

P3 1475545 106831.4 7% 

P4 294713 33162.4 11% 

P5 355284 73728.4 21% 

P6 1032919 106309.4 12% 

P7 1290734 35531 3% 

P8 346871 73659.6 22% 
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V. CONCLUSIONS 

 The main contribution of this paper is presenting a 
technique for measuring the size of attackable memory space, 
and to study the factors that affect this memory space.  The 
technique is not concerned in simulating the running 
environment in order to catch faults. It is only interested in 
knowing the ability of a program to be edited inside memory 
to provide high-quality services to users during abnormal 
conditions and failures.   

The results of the method proposed in this paper lead to the 
following conclusions:  

Measuring the maximum scanned area of the memory will 
save the time that is needed for a fault injection process that 
uses simulation aspects. 

All the samples used in the paper did reach a crash state at 
some point. This fact means that the factor measured, i.e. the 
maximum scanned area, is a valid aspect to use for estimating 
the stability of a running process in the memory. 

Depending on the size of the process in memory, the size of 
the scanned area will differ. The results showed that the larger 
the process is, the larger the scanned area. 

The size of the virtual memory has a reverse effect on the 
scanned area size. Increasing the size of the virtual memory 
will decrease the area size directly. 

At some point, the virtual memory size becomes a non 
deterministic factor. This is the case when the page size in the 
virtual memory is larger than the size of the target process 
itself. 

The security policy of the operating system also has a direct 
effect on the size of the scanned area. The access to a memory 
location must have the permission of the operating system's 
rules before it is ready for update. 

 The main achievement of this research is an innovation 
of a technique that estimates software stability. This technique 
is not concerned in simulating the running environment in 
order to catch faults; it is only interested in knowing the 
ability of a program to be edited inside memory. However, the 
proposed method has two drawbacks: 
The termination process of the injection operation 
depends on the crash of the  target process, i.e. no 
results until the target process crashes. This operation 
deals with memory content directly. So, if it is not used 
carefully, it can corrupt other process in memory. Next 
steps might go towards: Developing a mechanism to 
investigate all states of the injected process, and not to 
wait for a crash in the process. 

A better classification of process types will make the 
injection process give much better results.
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Fig 2: Average Area Scanned (MB) vs. Virtual memory size 
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