
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

831


Abstract—In VLSI, testing plays an important role. Major

problem in testing are test data volume and test power. The important
solution to reduce test data volume and test time is test data
compression. The Proposed technique combines the bit mask-
dictionary and 2n pattern run length-coding method and provides a
substantial improvement in the compression efficiency without
introducing any additional decompression penalty. This method has
been implemented using Mat lab and HDL Language to reduce test
data volume and memory requirements. This method is applied on
various benchmark test sets and compared the results with other
existing methods. The proposed technique can achieve a compression
ratio up to 86%.

Keywords—Bit Mask dictionary, 2n pattern run length code,
system-on-chip, SOC, test data compression.

I. INTRODUCTION

circuit or system consumes more power in test mode than
in normal mode, this leads to severe hazard in circuit

reliability, instant circuit damage, increases cost, increases
verification problems and decrease in overall yield. Some of
Test challenges are Escalating transistor counts, increasing
chip’s complexity, while maintaining its size. Testing is one of
the most expensive and problematic aspects in a circuit design
cycle. Test efficiency correlates with toggle rate. In test mode,
switching activity of all nodes is often several times higher
than normal operation. Often parallel testing is used in system-
on-chip (SOC) to reduce test application time, which might
result in excessive energy consumption and power dissipation.
DFT circuit is designed to reduce test complexity, which is
often idle during normal operation, but might be intensively
used in test mode. Correlation between successive functional
inputs may be significant; however, for test patterns it is
generally very low. Switching activity during test leads to
increase in both hardware costs and time. As a result of new
fabrication technologies and design complexities, standard
stuck-at scan tests are no longer sufficient. Each new
fabrication process technology increases the number of tests as
well as corresponding data volume. Higher circuit densities in
system-on-chip (SOC) designs have led to drastic increase in
test data volume. Larger test data size demands higher
memory requirements as well as an increase in testing time.
Test data compression solved this problem by reducing the test

C. Kalamani and K. Paramasivam are with the ECE Department, Dr.
Mahalingam College of Engineering and Technology, Karpagam College of
Engineering, Coimbatore, Tamilnadu, India (e-mail:kalamec18@gmail.com,
kp_sivam@yahoo.com).

data volume without affecting the overall system performance.
Test data compression involves adding some additional on-
chip hardware before and after the scan chains. This additional
hardware decompresses the test stimulus coming from the
tester; it also compact the response after the scan chains and
before it goes to the tester. This permits storing the test data in
a compressed form on the tester. It is also easier to adopt in
industry because its compatibility with the conventional
design rules and test generation flows for scan testing. Test
data compression provides two benefits. First, it reduces the
memory requirements on the tester, which can extend the life
of older testers that have limited memory. Secondly, it applies
even for testers with plenty of memory it can reduce the test
time for a given test data bandwidth because less test data has
to be transferred between the tester and the chip.

Fig. 1 A process of test data compression and decompression for cut

Test vectors are highly compressible because typically
only 1% to 5% of their bits are specified (care) bits. To
solve this problem, various test data compression
techniques have been proposed. There are three types of
test compression techniques such as, linear-decompression
scheme, broadcast-scan scheme and coding scheme [1]-[3].
Coding scheme is widely used one and it doesn’t require
any structural information of IP cores. In this scheme, a
given test input is compressed by data compression
techniques and stored in VLSI tester memory. While a CUT
on a chip is tested, the compressed test input set is
transported to a decompression on the chip and then it is
restored. The compressed test set can achieve the reduction
of the time for test transportation, not just the size of the
test storage device. The overview of traditional test data
compression/decompression process method is shown in
Fig. 1. The original test vector is compressed and stored in

Test Data Compression Using a Hybrid of Bitmask
Dictionary and 2n Pattern Runlength Coding

Methods
C. Kalamani, K. Paramasivam

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

832

the memory. Thus, the memory size is significantly
reduced. An on-chip decoder decodes the compressed test
data from the memory and delivers the original
uncompressed set of test vectors.

Compression ratio is defined as the ratio between the
original test vector Size and compressed test vector size:

Compression Ratio= compressed test vector Size
 Original test vector Size

The test data compression ratio can serve as a measure of

the complexity of a test data set.

II. EXISTING METHOD

In test data compression, lossless data compression is used
to compress the test data. In lossless data compression, the
integrity of the data is preserved. The original data and the
data after compression and decompression are exactly the
same because, in these methods, the compression and
decompression algorithms are exact inverses of each other. No
part of the data is lost in the process. Redundant data is
removed in compression and added during decompression.
Lossless compression methods are normally used when it
cannot afford to lose any data. Various compression
techniques have been proposed over the years to reduce the
test data volume and test time. Many coding schemes have
been proposed for code-based scheme. Some of Huffman
coding based methods were proposed, however, this method
suffered from high area overhead [4]. To cure this problem,
the selective Huffman encoding technique was proposed [5]. It
only encodes the symbols with higher occurrence frequencies.
The size of the decompression circuit can be reduced
substantially. Hence, the optimal selective Huffman coding
technique was proposed [6]. It reduces the test data. A 9C
technique uses exactly nine code words aiming at pre-
computed data of intellectual property cores in SOC. It is
flexible in utilizing both fixed-length and variable-length
blocks [7]. In addition, run-length methods can make a good
trade-off between test data compression ratio and area
overhead was improved using variable-to-variable encoding
techniques, Golomb coding and FDR coding consist of a
prefix and a tail with same size. It requires complicated
decoder and inefficient for long run of 1’s [8], [9]. An
enhanced coding scheme named Extended Frequency-Directed
Run-length (EFDR) was proposed [10]. This method took
advantage of both runs of 0’s and runs of 1’s and
outperformed the other coding techniques that are based on
only runs of 0’s. RL-HC combines the run length based
Huffman coding for scan testing to reduce the test data volume
[11]. PRL is also an efficient approach. The compression is
data-independent and the program for decompression is very
small and simple, thereby allowing fast and high throughput to
minimize test time [12]. Some other methods were proposed,
Tunstall coding [13]. LZW coding [14], 9-coded technique
[15], heterogeneous compression technique [16], multilevel
Huffman coding [17] have shown test data reduction using an
on-chip pattern decompression scheme. These methods

produce a moderate compression. In order to increases
Compression ratio further this paper propose the combination
of the bitmask-dictionary [18], [19] and 2n PRL [20]. The rest
of the paper is organized as follows; section III describes the
background of this method. Section IV describes the proposed
methods. Section V describes the results and comparison with
existing. Section VI concludes the paper.

III BACKGROUND

A. Bitmask Based Dictionary Compression

The bitmask based dictionary compression technique is
proposed [18], [19]. It is a promising technique that illustrates
better compression ratio over dictionary based compression
technique. This technique uses extra bits to record the
differences in unmatched words from the dictionary entries
and encode them as usual dictionary indices. This technique
uses limited dictionary to match many words with small bit
changes. A bitmask makes use of the fact that binary numbers
are made up of 1's and 0's, each digit in a binary number being
equivalent to one bit. It easily checks the state of individual
bits regardless of the other bits. The bit masking approach tries
to incorporate maximum bit changes using mask patterns
without adding significant cost (extra bits) such that the
compression ratio is improved. Bit masking compression
technique also ensures that the decompression efficiency is
improved. Fig. 2 illustrates the encoding scheme used by the
bit masking compression technique. This encoding format can
store information for each pattern; it stores the mask type, the
location of mask, and the mask pattern. The encoding scheme
can be optimized, only the types and sizes of the bitmask
combinations are determined.

Fig. 2 Encoding format for bit masking compression technique

The bitmask can be applied on different places on a vector
and the number of bits required for indicating the position
varies depending on the bitmask type. For instance, if consider
a 32-bit vector, an 8-bit mask is applied on only byte
boundaries require 2-bits, since it can be applied on four
locations. It will require 5 bits to indicate any starting position
on a 32-bit vector. Bitmask-based compression is an
enhancement on the dictionary-based compression scheme,
which helps to get more matching patterns. In dictionary-
based compression, each vector is compressed only if it
completely matches with a dictionary entry. There are three
major challenges in bitmask-based test data compression.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

833

1) Dictionary Selection: A profitable dictionary is to be
selected which takes into account the bit savings due to
frequency matching as well as bitmasks.

2) Bitmask Selection: Appropriate number and type of
bitmasks are to be selected for compression.

3) Don’t Care Resolution: It is necessary to selectively
replace each don’t care with “0” or “1”.

Fig. 3 Bitmask based code compression technique

Fig. 3 demonstrates the bitmask based code compression

techniques. The first step divides the uncompressed test data
set into equal length slices for compression. After getting the
input test data, the next task would be to divide them into scan
chains of predetermined length. Let us assume that the test
data consists of n test patterns. Divide the scan elements into
m scan chains in the best-balanced manner possible. This
results in each vector being divided into m sub-vectors, each
of length L. Dissimilarity in the lengths of the sub-vectors are
resolved by padding don’t cares at the end of the shorter sub-
vectors. Thus, all the sub-vectors are of equal length. The m
bit data which is present at the same position of each sub-
vector constitutes an m bit slice. If there are n vectors at the
beginning, obtain a total of n ×L m bit slices, which is the
uncompressed data set that needs to be compressed. Two types
of bitmask are present. A fixed bitmask is one which can be
applied to fixed locations. However, sliding bitmasks can be
applied anywhere in the test vector. Since the fixed bitmasks
can be applied only to fixed locations, the number of positions
where they can be applied is significantly less compared to
sliding bitmasks. Hence, the number of bits needed to
represent them is less than sliding bitmasks. The number of
bitmasks selected, which depends on both the test vector
length and the dictionary. The dictionary selection algorithm is
a critical part in bitmask- based test data compression which is
shown in Fig. 4.

Bits in two vectors are said to be compatible if they meet
any one of the following two requirements: 1) for all positions,
the corresponding characters in the two vectors are either
equal or one of them is a don’t care; or 2) two vectors can be
matched by predetermined profitable bitmasks. Each edge
contains weight information. The weight is determined based
on the number of bits that can be saved by using that edge.
Three dictionary selection techniques are used. They are:
1. Two-step method (TSM)

2. Method using compatible edges (MCE) without edge
weights

3. MCE with edge weights (MEW).

Fig. 4 Compression using bitmask and dictionary

 Each of these techniques uses a variant of well-known
clique partitioning algorithm. In TSM, consider only edges
that are formed by direct matching. The graph will not have
any edges corresponding to bitmask-based matching. Then a
clique partitioning algorithm is performed on the graph. This
is a heuristics-based procedure that selects the node with the
largest connectivity and is entered as the first entry to a clique.
Now, the nodes connected with it are analyzed, and the node
having the largest connectivity among these (and not in the
entire graph) is selected. This process is repeated until no node
remains to be selected. The entries of the clique are deleted
from the graph. The algorithm is repeated until the graph
becomes empty. The clique partitioning algorithm is used in
MCE and MEW as well. The number of cliques selected may
be greater than the predefined number of entries or vice versa.
Method Using Compatible Edges (MCE) Without Edge
Weights: In MCE, weight of all the edges (direct or bitmask-
based match) is considered equal. MCE with Edge Weights
(MEW) is same as MCE except that it considers edge weights.
As indicated earlier, the edge weight is determined based on
the number of bits saved if that edge is used for direct or
bitmask-based matching.

B. 2 n Pattern Run Length Coding

2n PRL (pattern run length) [20], relies on encoding
compatible patterns within the test data. Two patterns of the
same length are compatible (inversely compatible) if every bit
pair at the same position has the same (opposite) value after
properly filling the values of don’t-cares. 2n PRL first
partitions test data into fixed-length (L-bit) segments where L
has a power of 2. Compression is then conducted on 2|n|
compatible patterns where n is a signed integer. Depending on
whether encoding is performed within a segment or across
several adjacent segments, test data can be encoded in either
of the following two ways which are shown in Fig. 5.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

834

Fig. 5 Code word format for 2N PRL and its example

Internal 2n -PRL (n < 0) compresses 2|n| runs of compatible

(inversely compatible) sub segments of single segments and
code word for this method consists of three components as
sign(S)(S=0 means positive and S=1 means negative which is
inversely compatible) and exponent (E) of K bit and
pattern(p), if don’t care bits are properly filled to make
compatible with corresponding sub segments and external 2 n -
PRL (n ≥ 0), compresses 2n consecutive compatible segments
into shorter one. The following steps are used to perform
further compression, Bitmask compressed data taken as an
input to the 2n pattern run length coding. The input data is split
into fixed length (L) segments and set the exponent. The data
can be encoded either of two types and exception type (non-
compressible segment). The encoding process updates the
reference segment during three conditions. First, when a
segment is encoded by internal 2n -PRL the corresponding
segment becomes reference segment. Secondly, when several
segments, inversely compatible with the reference segments
are encoded by external 2n -PRL. The inversely compatible
becomes the reference segments. Third condition occurs when
segment is encoded by exception type. This becomes the
reference segment.

IV. PROPOSED

In the proposed method, combines the bitmask and
dictionary method and 2n

 PRL (pattern run length) methods.
In the first stage of compression is performed using bitmask
and dictionary method using two-step methods [19]. Second
stage of compression is performed using 2n

 PRL (pattern run
length) methods. The proposed method shows better
compression than the above methods.

A. Compression Algorithm

The compression algorithm is developed in two stages. The
first stage of implementation, concept of bitmask-dictionary
method is used and the second stage, concept of 2n PRL
coding is used. Test vector is given at the first stage which is
cascaded with the second stage and finally the compressed test
data is obtained:

Algorithm is as follows:

Steps:

1. Divide the uncompressed test data based on number of scan
chains;

2. Select Bitmasks and Dictionary
3. Perform Test compression using selected dictionary and bitmask
4. Store the compressed data and dictionary.
5. The compressed data is split into compatible or incompatible if

two pattern of the same length with bit pair at the same position
has same value or opposite value after careful filling of don’t
cares bits.

6. Partitions test data into fixed length (L) segments where L has a
power of 2 and set exponent value.

7. Check whether the type of encoding are internal 2n PRL (n < 0)
or external 2n PRL (n > 0) or exception and based on the result,
set the reference segment, encode the data.

8. Find the length of the bit pattern and calculate the compression
efficiency.

B. Decompression Mechanism

The decompression architecture is shown in Fig. 6. It
consists of Finite State Machine (FSM) for identifying the
code words, Control and Generation Unit (CGU) is used for
data transmission control and generating test pattern.
Decompression logic generates the bitmask data which is
XOR with the dictionary in parallel. So, it reduces the
additional penalty. The decompression is worked based on the
algorithm given below.

Algorithm Steps:

1. Compressed data is partitioned into 8 bit segment
2. Find the encoding type of segment whether compatible,

uncompatible or exception
3. Find the code word based on encoding type
4. Repeat the above steps for all segments.
5. The decompression output is sent to bitmask-dictionary

decompression stage.
6. Let p be the first bit of the compressed string
7. If p= =1 the remaining bits are the uncompressed string go to

step14
8. Let q be the second bit of the compressed string
9. If q==1 the remaining bits correspond to dictionary index, it

is a direct match, read the dictionary entry go to step 14.
10. Read respective bits for mask values and positions.
11. Compose final bitmask using the data from step 10.
12. Read the dictionary entry based on dictionary index.
13. Find XOR of dictionary entry with final bitmask to generate the

uncompressed string.
14. Send uncompressed string to DUT.

V. IMPLEMENTATION RESULT AND DISCUSSION

 Compression algorithm was implemented using MATLAB-
13 and VHDL and simulated and experimented on various
ISCAS benchmark circuits. Compression Ratio is used to
identify the efficiency of the compression technique. The
proposed method is implemented in two stages, in the first
stage Bitmask and dictionary method [19] and in the second
stage is 2n PRL compression technique are used [20].
Implementation results of two stages are shown in Table I. It
shows that 2n PRL performs well compared with proposed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

835

methods for small circuits and proposed methods outperforms
for large circuits. Table II and Fig. 7 shows the comparison of
proposed method with existing methods that the proposed
Combination of bitmask-dictionary and 2n PRL provides better
compression efficiency than 2n PRL but 1% and 15 % higher
than [17] for s9234 and s38417 test sets respectively. Bit mask
dictionary technique shows better compression for s15850 test
sets than proposed methods because of more number of don’t

care bits. This technique provides good compression
efficiency when compared with the existing methods which is
shown in Table II. The proposed method is implemented using
VHDL and simulated using Xilinx 9.2 –model-sim simulator
which is shown in Table III. The MATLAB implementation of
compression is simple and easy, it outperforms than VHDL
Implementation. The decompression was implemented using
VHDL is simple and easy.

Fig. 6 Decompression architecture

VI. CONCLUSION

Testing power and large data volume are the most important
issues in testing a VLSI circuit. Code compression technique
offers an efficient solution for this issue. This Paper proposed
an efficient code compression technique by combining
bitmask-dictionary and 2n pattern run length coding and
implemented to reduce the large test data volume. The
proposed algorithm applied on various benchmarks circuits
and compared the results with existing test compression
technique which shows that the proposed method presents a
better compression ratio.

TABLE I

 IMPLEMENTATION RESULTS OF PROPOSED METHOD AND 2N PRL AND

BITMASK-DICTIONARY

Circuits 2n PRL [20] Bitmask-Dictionary [19] Proposed Method

C432 87.1 78.1 85.67

C499 86.19 77.47 85.08

C880 87.5 78.22 85.92

S5378 54.94 77.10 85.27

S9234 57.72 76.90 88.05

S38417 72.44 76.93 86.52

S15850 74.29 78.30 85.48

TABLE II
PERFORMANCE OF DIFFERENT COMPRESSION SCHEMES USING MINTEST TEST

DATA

Compression ratio (%)

Existing methods
Proposed
Method Circuits

SHC
[5]

VIHC
[7]

RL-HC
[11]

MD-
PRL
[21]

2n PRL
[20]

Bitmask &
dictionary

[19]
S5378 55.1 51.78 53.75 54.6 54.2 - 85.27
S9234 54.2 47.25 47.59 53.2 57.7 87 88.05
S38417 59 53.36 64.2 55.4 58.3 71 86.52

S15850 66 67.94 67.34 69.9 74.3 89 85.48

TABLE III

VHDL IMPLEMENTATION RESULTS OF PROPOSED METHOD

Circuits
Original

size

Compressed bits with
Dictionary

 (8-bit) (16 bit)

Compression Ratio
(%)

(8bit) (16 bit)
S5378 20758 3537 3259 83 84.3

S9234 25935 4408 3648 83.01 85.9

S13207 163100 24465 20174 85 87.6

S15850 57434 9189 8092 84.01 85.9

S35932 21156 2961 2618 86.01 87.6

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

836

Fig. 7 Comparison of compression ratio of proposed with existing

methods

REFERENCES
[1] Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen, “VLSI Test

Principles and Architectures: Design for Testability”, Morgan
Kaufmann; Academic Press; Newnes (781)- 2006-313-4732.

[2] N.A. Touba, "Survey of Test Vector Compression Techniques", IEEE
Design & Test Magazine, Vol. 23, Issue 4, Jul. 2006, pp-294-303.

[3] Kalamani. C and Dr. K. Paramasivam, “Survey of Low Power Testing
Using Compression Techniques'', International Journal of Electronics &
Communication Technology , Vol.4, Issue 4, Oct-Dec 2013,pp. 13-18.

[4] V. Iyengar, K. Chakrabarty, and B. T. Murray, “Huffman encoding of
test sets for sequential circuits'', IEEE Transactions on Instrumentation
and Measurement, vol. 47, February 1998, pp. 21-25.

[5] A. Jas, and N. A. Touba, et al, “An efficient Test vector compression
scheme using selective Huffman coding”,IEEE Trans Comput-Aided
Des Integr, Circuits Syst.,vol.22,no.6,jun.2003, pp.797-806.

[6] X. Kavousianos, E. Kalligeros and D. Nikolos, “Optical selective
Huffman Coding for test data compression”, IEEE Trans comput, vol.56,
no.8, Aug.2007, pp.1146-1152.

[7] Gonciari. P. T., “Variable length input Huffman coding for system-on-a-
chip test”, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.
22, no.6, Jun.2003, pp. 783–796.

[8] Chandra and K. Chakrabarty, “System-on-a-chip data compression and
decompression architecture based on Golomb codes,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 20, no. 3, Mar. 2001, pp.
355–368.

[9] A. Chandra and K. Chakrabarty, “Test Data Compression and Test
Resource Partitioning for system on chip using Frequency Directed Run
length coding”, IEEE Trans. Comput., vol.52,no8, Mar 2003, pp. 352-
363.

[10] Aiman El-Maleh et al, “Test Data Compression for System-on-a-Chip
using Extended Frequency-Directed Run-Length (EFDR) Code,” IET
Computers & Digital Techniques, vol. 2, No. 3, 2008, pp. 155–163.

[11] M. Nourani and M. Tehranipour, “RL-Huffman encoding for test
compression and power reduction in scan application”, ACM Trans.Des.
Automat Electron Syst., vol.10, no.1, 2005, pp. 91-115.

[12] Lung-Jen Lee, Wang-Dauh Tseng, and Rung-Bin Lin, “An Internal
Pattern Run-Length Methodology for Slice Encoding”, ETRI Journal,
Volume 33, Number 3, June 2011.

[13] H. Hashempour, L. Schiano, and F. Lombardi, “Error-resilient test data
compression using Tunstall codes”, in Proc. IEEE Int. Symp.
DefectFault Tolerance VLSI Syst., 2004, pp. 316–323.

[14] M. Knieser, F. Wolff, C. Papachristou, D. Weyer, and D. McIntyre, “A
technique for high ratio LZW compression”, in Proc. Des., Autom., Test
Eur., 2003, pp. 10116.

[15] M. Tehranipour, M. Nourani, and K. Chakrabarty, “Nine-coded com-
pression technique for testing embedded cores in SOCs”, IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 13, Jun. 2005, pp. 719–731.

[16] L. Lingappan, S. Ravi, et al, “Test-volume reduction in systems-on-a-
chip using heterogeneous and multilevel compression techniques”, IEEE
Trans.Comput.-Aided Des Integr. Circuits Syst., vol. 25, no. 10, Oct.
2006, pp.2193–2206.

[17] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Multilevel Huffman
coding: An efficient test-data compression method for IP cores”, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 6, Jun.
2007 pp.1070–1083.

[18] Seok-Won Seong and Prabhat Mishra, “Bitmask-Based Code
Compression for Embedded Systems”, IEEE Transactions on computer-
aided design of integrated circuits and systems, 2008.

[19] Kanad Basu, Prabhat Mishra, “Test Data Compression Using Efficient
Bitmask and Dictionary Selection”, IEEE Transactions on Very Large
Scale Integration (VLSI) systems, vol. 18, no. 9, September 2010.

[20] Lung-Jen Lee, et al, “2n Pattern Run-Length for Test Data
Compression”, IEEE transactions on computer- aided design of
integrated circuits and systems, vol. 31, no. 4, April 2012.

[21] Wang-Dauh Tseng & Lung-Jen Lee, “A Multidimensional Pattern Run
Length method for test data compression”, in proc. Asian Test Symp,
2009, pp. 111-116.

0

10

20

30

40

50

60

70

80

90

100C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o(

%)

Various Methods

S5378

S9234

S38417

S15850

