Tensorial Transformations of Double Gai sequence spaces

N.Subramanian and U.K.Misra

Abstract—The precise form of tensorial transformations acting on a given collection of infinite matrices into another; for such classical ideas connected with the summability field of double gai sequence spaces. In this paper the results are impose conditions on the tensor g so that it becomes a tensorial transformations from the metric space χ^2 to the metric space \mathbb{C}

Keywords-tensorial transformations, double gai sequences , double analytic, dual.

I. INTRODUCTION

LET (x_{mn}) be a double sequence of real or complex numbers. Then the series $\sum_{m,n=1}^{\infty} x_{mn}$ is called a double series. The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is said to be convergent if and only if the double sequence (s_{mn}) is convergent, where

$$s_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m, n = 1, 2, 3, ...)$$

see[1]). We denote w^2 as the class of all complex double sequences (x_{mn}) . Let Ω be the family of infinite matrices endowed with usual operations of pointwise addition and scalar multiplication.

A sequence $x = (x_{mn}) \in \Omega$ is said to be double analytic if

$$\sup_{mn} |x_{mn}|^{1/m+n} < \infty$$

The vector space of all prime sense double analytic sequences are usually denoted by Λ^2 . A sequence $x = (x_{mn}) \in \Omega$ is called a double gai sequence if

$$((m+n)! |x_{mn}|)^{1/m+n} \to 0 \text{ as } m+n \to \infty.$$

We denote χ^2 as the class of prime sense double gai sequences. The spaces Λ^2 and χ^2 are metric spaces with metrics

$$d(x,y) = \sup_{mn} \left\{ \left(|x_{mn} - y_{mn}|^{1/m+n} \right) : mn = 1, 2, \cdots \right\}$$

for all $x = (x_{mn})$ and $y = (y_{mn})$ in Λ^2 and
 $\tilde{d}(x,y) =$
 $\sup_{mn} \left\{ \left((m+n)! |x_{mn} - y_{mn}| \right)^{1/m+n} : m, n = 1, 2, \cdots \right\}$
for all $x = (x_{mn})$ and $x_{mn} = (x_{mn})$ in Λ^2

for all $x = (x_{mn})$ and $y = (y_{mn})$ in χ^2 , respectively.

$$\ell^2 = \{x = (x_{mn}) \in \Omega : \sum \sum |x_{mn}| < \infty\}.$$

The space χ^2 can be then regarded as the space of

gai functions of two variables equipped with the topology of uniform convergence on compact sets $C \times C$, where C is the complex plane. These spaces are known to be Frechet spaces.

For any double sequence $x = (x_{mn})$ the $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by

$$x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \zeta_{ij}$$
 for all $m, n \in \aleph$,

where

$$\zeta_{mn} = \begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots & \\ 0, & 0, & \dots 0, & 0, & \dots & \\ \cdot & & & & & \\ \cdot & & & & & \\ 0, & 0, & \dots 1, & -1, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \end{pmatrix}$$

with 1 in the $(m,n)^{th}$ and -1 $(m+1,n+1)^{th}$ position and zero other wise.

An infinite matrix shall be denoted by $x = (x_{mn})$

where x_{mn} 's belong to the field K of scalars. Denote by N the set of all non-negative integers. Thus Ω is a vector space over K. By a matrix space X we mean any subspace Ω . The matrix space generated by $\{\zeta_{mn} : m, n \in N\}$ shall be denoted by φ . If $N \in N$ and $x \in \Omega$, we define

$$x^N = \sum \sum_{0 < m+n < N} x_{mn} \zeta_{mn}$$

and call it as the N^{th} place section of the matrix x. For a matrix space X, we define X' by

$$X' = \{y = (y_{mn}) : y \in \Omega \text{ with } \sum \sum |x_{mn}y_{mn}| < \infty \text{ for all } x \in X\}$$

where $\sum \sum x_{mn}y_{mn} = lim_{N\to\infty} \sum \sum_{0 < m+n < N} x_{mn}y_{mn}$ and term it as the K- dual of X. Clearly X' is a vector space over K and contains φ .

We assume that each matrix space X contains φ under

N.Subramanian is with the Department of Mathematics,SASTRA University, Tanjore-613 402, India. e-mail:(nsmaths@yahoo.com). U.K.Misra is with the Department of Mathematics, Berhampur University,

Berhampur-760 007,Orissa, India. e-mail: (umakanta_misra@yahoo.com). Manuscript received July 20, 2009; revised July 30, 2009.

this assumption, X and X' form a dual system which express as (X, X'). Hence, the weak topology $\sigma(X, X')$, the Mackey topology $\tau(X, X')$, the strong toplogy $\beta(X, X')$ and so on.

K- normal and K- perfect matrix spaces:

A matrix space is called K- normal provided $x = (x_{mn}) \in X$ whenever $|x_{mn}| \leq |y_{mn}|$ for $m + n \geq 0$, for some $y = (y_{mn}) \in X$. Clearly X' is K- normal for any matrix space X. A matrix X is said to be K- perfect, if X = (X'') = (X')'; observe that $X \subset X''$ is always true.

II. PRELIMINARIES

Some initial works on double sequence spaces is found in Bromwich[3]. Later on, it was investigated by Hardy[5], Moricz[7], Moricz and Rhoades[8], Basarir and Solankan[2], Tripathy[10], Colak and Turkmenoglu[4], Turkmenoglu[11], Patterson [9] and many others. In this paper we study some of the properties of transformations resulting from a tensor of order four, which relate various matrix spaces. Indeed, if $g = (\chi^2)_{mn}^{pq}$ is a tensor of order four having values in the field of scalars for fixed pair of integers p, q and m, n, we assume that its multiplication with any preassigned matrix $y = (y_{pq})$ is defined for all indices $m, n \ge 0$, namely

$$g.y = \sum \sum_{p+q \ge 0} \sum_{p+q \ge 0} (\chi^2)_{mn}^{pq} \cdot y_{pq} = x_{mn}$$
(1)

is well defined for all $m, n \ge 0$. In the following result we impose conditions on the tensor g so that it becomes a tensorial transformation from the metric space χ^2 to the metric space C.

III. MAIN RESULTS

A. Theorem

We have $(\chi^2)' = \Lambda^2$ and $(\Lambda^2)' = \chi^2$. Thus χ^2 and Λ^2 are K- perfect

Proof: We prove only $(\chi^2)' = \Lambda^2$; the proof of $(\Lambda^2)' = \chi^2$ is similar. Now observe that $\Lambda^2 \subset (\chi^2)'$ is obvious.

For $(\chi^2)' \subset \Lambda^2$, let $x \in (\chi^2)'$ and $x \notin \Lambda^2$. For each integer $i \geq 1$ there exist sequences (m_i) and (n_i) (atleast one of which tends to infinity with *i*) such that

$$|x_{m_i n_i}| > \frac{i^{2(m_i + n_i)}}{(m_i + n_i)!}$$

Define the matrix y by

$$y_{mn} = \begin{cases} i^{-m_i - n_i}, & \text{if } m = m_i, n = n_i; \\ 0, & \text{otherwise} \end{cases}$$

Thus $y \in \chi^2$. However $\sum \sum |x_{mn}y_{mn}| = \infty$ and so $x \notin (\chi^2)'$, a contradiction. This completes the proof.

B. Theorem

Suppose eqn. (1) is true for each $y \in \chi^2$. Then $x = (x_{mn}) \in C$ if and only if there exists a constant M > 0 such that

$$\left|\chi^{2}\right|_{mn}^{00};\left((p+q)!\left|\chi^{2}\right|_{mn}^{pq}\right)^{1/p+q} \leq M, \, for \, all \, m, n, p, q \in N,$$
(2)

and

$$\lim_{m+n\to\infty} \left(\chi^2\right)_{mn}^{pq} = \Lambda_{pq}^2 \text{ exists for every } p, q \ge 0 \quad (3)$$

Proof: The proof of the sufficiency part is straight forward and is therefore omitted.

For converse, let $x \in C$ where $x = (x_{mn})$ is given by eqn.(1). For $y \in \chi^2$, define the matrix $f = (f_{mx})$ of functionals by

$$f_{mx}(y) = x_{mn} = \sum \sum_{p+q \ge 0} (\chi^2)_{mn}^{pq} y_{pq}.$$

Since the set

$$\left\{ \left|\chi^{2}\right|_{mn}^{00}, \left((p+q)!\left|\chi^{2}\right|_{mn}^{pq}\right)^{1/p+q}, p+q \ge 1 \right\}$$

is analytic for fixed pair of integers m, n; it follows that the functionals f'_{mx} are continuous. Moreover, therese functionals are pointwise analytic. Therefore by uniform boundness principle there exists a ball $B_{\epsilon}(z)$ such that for all $y \in B_{\epsilon}(z)$.

$$|f_{mx}(y)| \leq M, \text{ for all } m, n \geq 0$$

where M is a constant and all y with $|y| \le \epsilon$. Choosing y to be the matrices y^{pq} for $p+q \ge 0$ respectively, where $y^{pq} = (\epsilon_{ij})$

$$\epsilon_{ij} = \begin{cases} \frac{\epsilon^{p+q}}{(p+q)!}, & \text{if } i = p, j = q; \\ 0, & \text{otherwise} \end{cases}$$

when p + q > 0 and $y^{00} = (\epsilon_{ij}), \chi^2_{00} = \epsilon, \epsilon_{ij} = 0, i + j \ge 1$. We obtain $|\chi^2|_{mn}^{00} \epsilon \le M$ for all $m, n \ge 0$ and $|\chi^2|_{mn}^{pq} \frac{\epsilon^{p+q}}{(p+q)!} \le M$, for all $m, n \ge 0$ and $p + q \ge 1$. Thus

$$\begin{aligned} \left|\chi^2\right|_{mn}^{00} &\leq \frac{M}{\epsilon}, \left((p+q)! \left|\chi^2\right|_{mn}^{pq}\right)^{1/p+q} \leq M^{1/p+q} \times \frac{1}{\epsilon} \times \frac{1}{(p+q)!} \\ \text{for } m+n \geq 0 \text{ and } p+q > 0. \end{aligned}$$

Since $M^{1/p+q} \times \frac{1}{(p+q)!} \leq M$ for p+q > 0 it follows that

$$|\chi^2|_{mn}^{00}, (|\chi^2|_{mn}^{pq})^{1/p+q} \le \frac{1}{(p+q)!} \frac{1}{\epsilon} \times M^{1/p+q} \text{ for } m+n \ge 0 \text{ and } p+q > 0.$$

This proves eqn. (2). The condition of eqn. (3) obviously follows.

This completes the proof.

C. Theorem

Let eqn.(1) be true for $y \in \ell^2$. Then $x = (x_{mn}) \in \chi^2$ if and only if

$$\left((m+n)!\left|\chi^2\right|_{mn}^{pq}\right)^{1/m+n} \to 0 \, as \, m+n \to \infty \qquad (4)$$

uniformly in p and q.

Proof: Sufficiency follows by straightforward calculations. For necessity, assume that eqn. (4) is not true. Then for $\epsilon > 0$, and any $N \in N$, there exist integers m, n and p, q such that m + n > N and

$$\left(\left(m+n \right)! \left| \chi^2 \right|_{mn}^{pq} \right)^{1/m+n} > \epsilon$$
⁽⁵⁾

Since a maps ℓ^2 in χ^2 , it follows a transforms ℓ^2 into itself and therefore

Vol:3, No:11, 2009

$$\sup\left\{\sum\sum_{m+n\geq 0} \left|\chi^2\right|_{mn}^{pq} : p+q\geq 0\right\} \leq M.$$

Then we write

$$w_{mn} = \sup_{p+q \ge 0} \left| \chi^2 \right|_{mn}^{pq}, we \ can \ find \ a \ constant \ K > 0 \ such \ that$$

$$|w_{mn}| \le \frac{K}{2} \text{ for all } m, n \ge 0 \tag{6}$$

We also have

$$\left((m+n)!\left|\chi^2\right|_{mn}^{pq}\right)^{1/m+n} \to 0 \, as \, m+n \to \infty \qquad (7)$$

for each fixed p and q. By eqn. (5) we can find m_1n_1 and p_1q_1 such that

$$\left((m_1 + n_1)! \left| \chi^2 \right|_{m_1 n_1}^{p_1 q_1} \right)^{1/m_1 + n_1} > \epsilon/2 \tag{8}$$

Now from the relations eqn. (5) to eqn. (7), choose m_2, n_2 sufficiently large with $m_2 + n_2 > m_1 + n_1$ and p_2, q_2 with $p_2 + q_2 > p_1 + q_1$ such that

$$\left|\frac{K}{2^{m_2+n_2}}\right| < \left(\frac{\epsilon}{8}\right)^{m_1+n_1} \times \frac{1}{(m_1+n_1)!} \tag{9}$$

$$\left((m_2 + n_2)! \left|\chi^2\right|_{m_2 n_2}^{p_2 q_2}\right)^{1/m_2 + n_2} > \epsilon/2 \tag{10}$$

and

$$\left[\frac{1}{(m_2+n_2)!} \left|\chi^2\right|_{m_2n_2}^{p_1q_1}\right]^{m_2+n_2} < \frac{\epsilon}{16}$$
(11)

Proceeding in sequences this way, we get $\{m_k\}\{n_k\},\{p_k\} and \{q_k\}$ with m_k + n_k > $p_{k-1} + q_{k-1}; k$ \geq 2 such $m_{k-1} + n_{k-1}, p_k + q_k >$ that

$$\left|\frac{K}{2^{m_k+n_k}}\right| < \left(\frac{\epsilon}{8(k-1)}\right)^{m_{k-1}+n_{k-1}} \times \frac{1}{(m_{k-1}+n_{k-1})!}$$
(12)
$$\left((m_k+n_k)! \left|\chi^2\right|_{m_k n_k}^{p_k q_k}\right)^{1/m_k+n_k} > \epsilon/2$$
(13)

and

$$\left((m_k + n_k)! \left|\chi^2\right|_{m_k n_k}^{p_j q_j}\right)^{1/m_k + n_k} > \epsilon/8k \, where \, 1 \le j \le k-1.$$
(14)

Let us now introduce the matrix $y = (y_{pq}) \in \ell^2$ as follows

$$y_{pq} = \begin{cases} \frac{1}{2^{m_k + n_k}}, & \text{if } p = p_k, q = q_k, k = 1, 2, 3, \cdots \\ 0, & \text{otherwise} \end{cases}$$

It is easily verified that $x = (x_{mn}) \notin \chi^2$ where

$$x_{mn} = \sum \sum_{p+q \ge 0} \left(\chi^2\right)_{mn}^{pq} y_{pq} \text{ for all } m, n \ge 0$$

$$\begin{split} &\text{Indeed, } \left((m_k + n_k)! \left| \chi_{m_k n_k}^2 \right| \right)^{1/m_k + n_k} \\ &\geq \frac{1}{2} \left((m_k + n_k)! \left| \chi^2 \right|_{m_k n_k}^{p_k q_k} \right)^{1/m_k + n_k} - \\ & \left((m_k + n_k)! \left| \sum_{j < k} \chi^2 \right|_{m_k n_k}^{p_{jq_j}} y_{p_j q_j} \right)^{1/m_k + n_k} - \\ & \left((m_k + n_k)! \left| \sum_{j > k} \chi^2 \right|_{m_k n_k}^{p_{jq_j}} y_{p_j q_j} \right)^{1/m_k + n_k} - \\ & \left((m_k + n_k)! \left| \sum_{j > k} \chi^2 \right|_{m_k n_k}^{p_{jq_j}} y_{p_j q_j} \right)^{1/m_k + n_k} - \\ & \geq \frac{\epsilon}{4} - \frac{(k-1)\epsilon}{8k} - \frac{\epsilon}{8k} = \frac{\epsilon}{8} \end{split}$$

for all $k \ge 1$. Hence it is a contradiction and the result follows.

Similarly, we can prove the following result

D. Theorem

Let eqn.(1) be true for $y \in \ell^2$. Then $x = (x_{mn}) \in \Lambda^2$ if and only if

$$((m+n)! |\chi^2|_{mn}^{pq})^{1/m+n} \le M$$

uniformly in p, q and m, n; where M is a positive constant.

IV. CONCLUSION

Tensorial transformation of classical ideas connected with the field of double gai sequence spaces.

ACKNOWLEDGMENT

I wish to thank the referees for their several remarks and valuable suggestions that improved the presentation of the paper.

REFERENCES

- T.Apostol, Mathematical Analysis, *Addison-wesley*, *London*, 1978.
 M.Basarir and O.Solancan, On some double sequence spaces, *J. Indian*
- Acad. Math., 21(2) (1999), 193-200.
 [3] T.A.I_A. Browmich, An Introduction to the Theory of Infinite Series,
- Macmillan Co. Ltd. New York, **1965**. [4] R.Colak and A.Turkmenoglu, The double sequence spaces $\ell_{\infty}^2(p), c_0^2(p)$ and $c^2(p)$, (to appear).
- [5] G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
- [6] P.K.Kamthan and M.Gupta, sequence spaces and series, Marcel Dekker, New York, Basel, 1981.
- [7] F.Moricz, Extention of the spaces c and c₀ from single to double sequences, Acta. Math. Hungerica, 57(1-2), (1991), 129-136.
- [8] F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, *Math. Proc. Camb. Phil. Soc.*, **104**, (1988), 283-294.
- [9] R.F.Patterson, Analogue of some fundamental theorems of summability theory, *Internat. J. Math. Math. Sci.*, 23(1), (2000), 1-9.
- [10] B.C.Tripathy, On statistically convergent double sequences, *Tamkang J. Math.*, 34(3), (2003), 231-237.
- [11] A.Turkmenoglu, Matrix transformation between some classes of double sequences, *Jour. Inst. of math. and Comp. Sci. (Math. Seri.)*, **12(1)**, (1999), 23-31.
- [12] A.Wilansky, Summability Through Functional Analysis , North-Holland, Amsterdam , 1984.