Tensorial Transformations of Double Gai sequence spaces

N.Subramanian and U.K.Misra

Abstract

The precise form of tensorial transformations acting on a given collection of infinite matrices into another ; for such classical ideas connected with the summability field of double gai sequence spaces. In this paper the results are impose conditions on the tensor g so that it becomes a tensorial transformations from the metric space χ^{2} to the metric space \mathbb{C}

Keywords-tensorial transformations, double gai sequences, double analytic,dual.

I. Introduction

LET $\left(x_{m n}\right)$ be a double sequence of real or complex numbers. Then the series $\sum_{m, n=1}^{\infty} x_{m n}$ is called a double series. The double series $\sum_{m, n=1}^{\infty} x_{m n}$ is said to be convergent if and only if the double sequence $\left(s_{m n}\right)$ is convergent, where

$$
s_{m n}=\sum_{i, j=1}^{m, n} x_{i j}(m, n=1,2,3, \ldots)
$$

see[1]). We denote w^{2} as the class of all complex double sequences $\left(x_{m n}\right)$. Let Ω be the family of infinite matrices endowed with usual operations of pointwise addition and scalar multiplication.
A sequence $x=\left(x_{m n}\right) \in \Omega$ is said to be double analytic if

$$
\sup _{m n}\left|x_{m n}\right|^{1 / m+n}<\infty .
$$

The vector space of all prime sense double analytic sequences are usually denoted by Λ^{2}. A sequence $x=$ $\left(x_{m n}\right) \in \Omega$ is called a double gai sequence if

$$
\left((m+n)!\left|x_{m n}\right|\right)^{1 / m+n} \rightarrow 0 \text { as } m+n \rightarrow \infty
$$

We denote χ^{2} as the class of prime sense double gai sequences. The spaces Λ^{2} and χ^{2} are metric spaces with metrics
$d(x, y)=\sup _{m n}\left\{\left(\left|x_{m n}-y_{m n}\right|^{1 / m+n}\right): m n=1,2, \cdots\right\}$
for all $x=\left(x_{m n}\right)$ and $y=\left(y_{m n}\right)$ in Λ^{2} and

$$
\begin{gathered}
\tilde{d}(x, y)= \\
\sup _{m n}\left\{\left((m+n)!\left|x_{m n}-y_{m n}\right|\right)^{1 / m+n}: m, n=1,2, \cdots\right\} \\
\text { for all } x=\left(x_{m n}\right) \text { and } y=\left(y_{m n}\right) \text { in } \chi^{2} \\
\text { respectively. }
\end{gathered}
$$

$\ell^{2}=\left\{x=\left(x_{m n}\right) \in \Omega: \sum \sum\left|x_{m n}\right|<\infty\right\}$.
The space χ^{2} can be then regarded as the space of
N.Subramanian is with the Department of Mathematics,SASTRA University, Tanjore-613 402, India. e-mail:(nsmaths@yahoo.com).
U.K.Misra is with the Department of Mathematics, Berhampur University, Berhampur-760 007,Orissa, India. e-mail: (umakanta_misra@yahoo.com).
Manuscript received July 20, 2009; revised July 30, 2009.
gai functions of two variables equipped with the topology of uniform convergence on compact sets $C \times C$, where C is the complex plane. These spaces are known to be Frechet spaces.

For any double sequence $x=\left(x_{m n}\right)$ the $(m, n)^{t h}$ section $x^{[m, n]}$ of the sequence is defined by

$$
x^{[m, n]}=\sum_{i, j=0}^{m, n} x_{i j} \zeta_{i j} \text { for all } m, n \in \aleph
$$

where

$$
\zeta_{m n}=\left(\begin{array}{cccccc}
0, & 0, & \ldots 0, & 0, & \ldots & \\
0, & 0, & \ldots 0, & 0, & \ldots & \\
\cdot & & & & & \\
\cdot & & & & & \\
\cdot & & & & & \\
0, & 0, & \ldots 1, & -1, & 0, & \ldots \\
0, & 0, & \ldots 0, & 0, & \ldots &
\end{array}\right)
$$

with 1 in the $(m, n)^{t h}$ and $-1(m+1, n+1)^{t h}$ position and zero other wise.

An infinite matrix shall be denoted by $x=\left(x_{m n}\right)$

$$
x=\left(\begin{array}{cccc}
x_{00}, & x_{01}, & \ldots x_{0 n}, & \ldots \\
x_{10}, & x_{11}, & \ldots x_{1 n}, & \ldots \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
x_{m 0}, & x_{m 1}, & \ldots x_{m n}, & \ldots \\
\cdot & & & \\
\cdot & & & \\
\cdot & & &
\end{array}\right)
$$

where $x_{m n}$'s belong to the field K of scalars. Denote by N the set of all non-negative integers. Thus Ω is a vector space over K. By a matrix space X we mean any subspace Ω. The matrix space generated by $\left\{\zeta_{m n}: m, n \in N\right\}$ shall be denoted by φ. If $N \in N$ and $x \in \Omega$, we define

$$
x^{N}=\sum \sum_{0<m+n<N} x_{m n} \zeta_{m n}
$$

and call it as the $N^{t h}$ place section of the matrix x. For a matrix space X, we define X^{\prime} by
$X^{\prime}=$
$\left\{y=\left(y_{m n}\right): y \in \Omega\right.$ with $\sum \sum\left|x_{m n} y_{m n}\right|<\infty$ forall $\left.x \in X\right\}$
where $\sum \sum x_{m n} y_{m n}=$
$\lim _{N \rightarrow \infty} \sum \sum_{0<m+n<N} x_{m n} y_{m n}$ and term it as the K - dual of X. Clearly X^{\prime} is a vector space over K and contains φ.

We assume that each matrix space X contains φ under

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:3, No:11, 2009
this assumption, X and X^{\prime} form a dual system which express as $\left(X, X^{\prime}\right)$. Hence, the weak topology $\sigma\left(X, X^{\prime}\right)$, the Mackey topology $\tau\left(X, X^{\prime}\right)$, the strong toplogy $\beta\left(X, X^{\prime}\right)$ and so on.

K - normal and K - perfect matrix spaces:

A matrix space is called K - normal provided $x=\left(x_{m n}\right) \in X$ whenever $\left|x_{m n}\right| \leq,\left|y_{m n}\right|$ for $m+n \geq 0$, for some $y=\left(y_{m n}\right) \in X$. Clearly X^{\prime} is K - normal for any matrix space X. A matrix X is said to be K - perfect, if $X=\left(X^{\prime \prime}\right)=\left(X^{\prime}\right)^{\prime}$; observe that $X \subset X^{\prime \prime}$ is always true.

II. Preliminaries

Some initial works on double sequence spaces is found in Bromwich[3]. Later on, it was investigated by Hardy[5], Moricz[7], Moricz and Rhoades[8], Basarir and Solankan[2], Tripathy[10], Colak and Turkmenoglu[4], Turkmenoglu[11], Patterson [9] and many others. In this paper we study some of the properties of transformations resulting from a tensor of order four, which relate various matrix spaces. Indeed, if $g=\left(\chi^{2}\right)_{m n}^{p q}$ is a tensor of order four having values in the field of scalars for fixed pair of integers p, q and m, n, we assume that its multiplication with any preassigned matrix $y=\left(y_{p q}\right)$ is defined for all indices $m, n \geq 0$, namely

$$
\begin{equation*}
g . y=\sum \sum p+q \geq 0\left(\chi^{2}\right)_{m n}^{p q} \cdot y_{p q}=x_{m n} \tag{1}
\end{equation*}
$$

is well defined for all $m, n \geq 0$. In the following result we impose conditions on the tensor g so that it becomes a tensorial transformation from the metric space χ^{2} to the metric space C.

III. Main Results

A. Theorem

We have $\left(\chi^{2}\right)^{\prime}=\Lambda^{2}$ and $\left(\Lambda^{2}\right)^{\prime}=\chi^{2}$. Thus χ^{2} and Λ^{2} are K - perfect
Proof: We prove only $\left(\chi^{2}\right)^{\prime}=\Lambda^{2}$; the proof of $\left(\Lambda^{2}\right)^{\prime}=\chi^{2}$ is similar. Now observe that $\Lambda^{2} \subset\left(\chi^{2}\right)^{\prime}$ is obvious.
For $\left(\chi^{2}\right)^{\prime} \subset \Lambda^{2}$, let $x \in\left(\chi^{2}\right)^{\prime}$ and $x \notin \Lambda^{2}$. For each integer $i \geq 1$ there exist sequences $\left(m_{i}\right)$ and $\left(n_{i}\right)$ (atleast one of which tends to infinity with i) such that

$$
\left|x_{m_{i} n_{i}}\right|>\frac{i^{2\left(m_{i}+n_{i}\right)}}{\left(m_{i}+n_{i}\right)!}
$$

Define the matrix y by

$$
y_{m n}=\left\{\begin{array}{cc}
i^{-m_{i}-n_{i}}, & \text { if } m=m_{i}, n=n_{i} ; \\
0, & \text { otherwise }
\end{array}\right.
$$

Thus, $y \in \chi^{2}$. However $\sum \sum\left|x_{m n} y_{m n}\right|=\infty$ and so $x \notin$ $\left(\chi^{2}\right)^{\prime}$, a contradiction. This completes the proof.

B. Theorem

Suppose eqn. (1) is true for each $y \in \chi^{2}$. Then $x=\left(x_{m n}\right) \in$ C if and only if there exists a constant $M>0$ such that
$\left|\chi^{2}\right|_{m n}^{00} ;\left((p+q)!\left|\chi^{2}\right|_{m n}^{p q}\right)^{1 / p+q} \leq M$, for all $m, n, p, q \in N$,
and

$$
\begin{equation*}
\lim _{m+n \rightarrow \infty}\left(\chi^{2}\right)_{m n}^{p q}=\Lambda_{p q}^{2} \text { exists for every } p, q \geq 0 \tag{3}
\end{equation*}
$$

Proof:The proof of the sufficiency part is straight forward and is therefore omitted.
For converse, let $x \in C$ where $x=\left(x_{m n}\right)$ is given by eqn.(1). For $y \in \chi^{2}$, define the matrix $f=\left(f_{m x}\right)$ of functionals by

$$
f_{m x}(y)=x_{m n}=\sum \sum_{p+q \geq 0}\left(\chi^{2}\right)_{m n}^{p q} y_{p q} .
$$

Since the set

$$
\left\{\left|\chi^{2}\right|_{m n}^{00},\left((p+q)!\left|\chi^{2}\right|_{m n}^{p q}\right)^{1 / p+q}, p+q \geq 1\right\}
$$

is analytic for fixed pair of integers m, n; it follows that the functionals $f_{m x}^{\prime}$ are continuous. Moreover, therese functionals are pointwise analytic. Therefore by uniform boundness principle there exists a ball $B_{\epsilon}(z)$ such that for all $y \in B_{\epsilon}(z)$.

$$
\left|f_{m x}(y)\right| \leq M, \text { for all } m, n \geq 0
$$

where M is a constant and all y with $|y| \leq \epsilon$. Choosing y to be the matrices $y^{p q}$ for $p+q \geq 0$ respectively, where $y^{p q}=\left(\epsilon_{i j}\right)$

$$
\epsilon_{i j}=\left\{\begin{array}{cc}
\frac{\epsilon^{p+q}}{(p+q)!}, & \text { if } i=p, j=q \\
0, & \text { otherwise }
\end{array}\right.
$$

when $p+q>0$ and $y^{00}=\left(\epsilon_{i j}\right), \chi_{00}^{2}=\epsilon, \epsilon_{i j}=0, i+$ $j \geq 1$. We obtain $\left|\chi^{2}\right|_{m n}^{00} \epsilon \leq M$ for all $m, n \geq 0$ and $\left|\chi^{2}\right|_{m n}^{p q} \frac{\epsilon^{p+q}}{(p+q)!} \leq M$, for all $m, n \geq 0$ and $p+q \geq 1$. Thus

$$
\left|\chi^{2}\right|_{m n}^{00} \leq \frac{M}{\epsilon},\left((p+q)!\left|\chi^{2}\right|_{m n}^{p q}\right)^{1 / p+q} \leq M^{1 / p+q} \times \frac{1}{\epsilon} \times \frac{1}{(p+q)!}
$$

for $m+n \geq 0$ and $p+q>0$.
Since $M^{1 / p+q} \times \frac{1}{(p+q)!} \leq M$ for $p+q>0$ it follows that

$$
\begin{gathered}
\left|\chi^{2}\right|_{m n}^{00},\left(\left|\chi^{2}\right|_{m n}^{p q}\right)^{1 / p+q} \leq \frac{1}{(p+q)!} \frac{1}{\epsilon} \times M^{1 / p+q} \text { for } m+n \geq \\
0 \text { and } p+q>0 .
\end{gathered}
$$

This proves eqn. (2). The condition of eqn. (3) obviously follows.
This completes the proof.

C. Theorem

Let eqn.(1) be true for $y \in \ell^{2}$. Then $x=\left(x_{m n}\right) \in \chi^{2}$ if and only if

$$
\begin{equation*}
\left((m+n)!\left|\chi^{2}\right|_{m n}^{p q}\right)^{1 / m+n} \rightarrow 0 \text { as } m+n \rightarrow \infty \tag{4}
\end{equation*}
$$

uniformly in p and q.
Proof:Sufficiency follows by straightforward calculations. For necessity, assume that eqn. (4) is not true. Then for $\epsilon>0$, and any $N \in N$, there exist integers m, n and p, q such that $m+n>N$ and

$$
\begin{equation*}
\left((m+n)!\left|\chi^{2}\right|_{m n}^{p q}\right)^{1 / m+n}>\epsilon \tag{5}
\end{equation*}
$$

Since a maps ℓ^{2} in χ^{2}, it follows a transforms ℓ^{2} into itself and therefore

$$
\sup \left\{\sum \sum_{m+n \geq 0}\left|\chi^{2}\right|_{m n}^{p q}: p+q \geq 0\right\} \leq M .
$$

Then we write

$$
\begin{gather*}
w_{m n}=\sup _{p+q \geq 0}\left|\chi^{2}\right|_{m n}^{p q}, \text { we can find a constant } K> \\
0 \text { such that } \tag{6}\\
\left|w_{m n}\right| \leq \frac{K}{2} \text { for all } m, n \geq 0
\end{gather*}
$$

We also have

$$
\begin{equation*}
\left((m+n)!\left|\chi^{2}\right|_{m n}^{p q}\right)^{1 / m+n} \rightarrow 0 \text { as } m+n \rightarrow \infty \tag{7}
\end{equation*}
$$

for each fixed p and q. By eqn. (5) we can find $m_{1} n_{1}$ and $p_{1} q_{1}$ such that

$$
\begin{equation*}
\left(\left(m_{1}+n_{1}\right)!\left|\chi^{2}\right|_{m_{1} n_{1}}^{p_{1} q_{1}}\right)^{1 / m_{1}+n_{1}}>\epsilon / 2 \tag{8}
\end{equation*}
$$

Now from the relations eqn. (5) to eqn. (7), choose m_{2}, n_{2} sufficiently large with $m_{2}+n_{2}>m_{1}+n_{1}$ and p_{2}, q_{2} with $p_{2}+q_{2}>p_{1}+q_{1}$ such that

$$
\begin{align*}
& \left|\frac{K}{2^{m_{2}+n_{2}}}\right|<\left(\frac{\epsilon}{8}\right)^{m_{1}+n_{1}} \times \frac{1}{\left(m_{1}+n_{1}\right)!} \tag{9}\\
& \left(\left(m_{2}+n_{2}\right)!\left|\chi^{2}\right|_{m_{2} n_{2}}^{p_{2} q_{2}}\right)^{1 / m_{2}+n_{2}}>\epsilon / 2 \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{\left(m_{2}+n_{2}\right)!}\left|\chi^{2}\right|_{m_{2} n_{2}}^{p_{1} q_{1}}\right)^{m_{2}+n_{2}}<\frac{\epsilon}{16} \tag{11}
\end{equation*}
$$

Proceeding in this way, we get sequences $\left\{m_{k}\right\}\left\{n_{k}\right\},\left\{p_{k}\right\}$ and $\left\{q_{k}\right\} \quad$ with $\quad m_{k}+n_{k}>$ $m_{k-1}+n_{k-1}, p_{k}+q_{k}>p_{k-1}+q_{k-1} ; k \geq 2$ such that

$$
\begin{gather*}
\left|\frac{K}{2^{m_{k}+n_{k}}}\right|<\left(\frac{\epsilon}{8(k-1)}\right)^{m_{k-1}+n_{k-1}} \times \frac{1}{\left(m_{k-1}+n_{k-1}\right)!} \tag{13}\\
\quad\left(\left(m_{k}+n_{k}\right)!\left|\chi^{2}\right|_{m_{k} n_{k}}^{p_{k} q_{k}}\right)^{1 / m_{k}+n_{k}}>\epsilon / 2 \tag{12}
\end{gather*}
$$

and
$\left(\left(m_{k}+n_{k}\right)!\left|\chi^{2}\right|_{m_{k} n_{k}}^{p_{j} q_{j}}\right)^{1 / m_{k}+n_{k}}>\epsilon / 8 k$ where $1 \leq j \leq k-1$.
Let us now introduce the matrix $y=\left(y_{p q}\right) \in \ell^{2}$ as follows

$$
y_{p q}=\left\{\begin{array}{cc}
\frac{1}{2^{m_{k}+n_{k}}}, & \text { if } p=p_{k}, q=q_{k}, k=1,2,3, \cdots ; \\
0, & \text { otherwise }
\end{array}\right.
$$

It is easily verified that $x=\left(x_{m n}\right) \notin \chi^{2}$ where

$$
x_{m n}=\sum \sum_{p+q \geq 0}\left(\chi^{2}\right)_{m n}^{p q} y_{p q} \text { for all } m, n \geq 0
$$

Indeed, $\left(\left(m_{k}+n_{k}\right)!\left|\chi_{m_{k} n_{k}}^{2}\right|\right)^{1 / m_{k}+n_{k}}$
$\geq \frac{1}{2}\left(\left(m_{k}+n_{k}\right)!\left|\chi^{2}\right|_{m_{k} n_{k}}^{p_{k} q_{k}}\right)^{1 / m_{k}+n_{k}}-$
$\left(\left(m_{k}+n_{k}\right)!\left|\sum_{j<k} \chi^{2}\right|_{m_{k} n_{k}}^{p_{j} q_{j}} y_{p_{j} q_{j}}\right)^{1 / m_{k}+n_{k}}-$
$\left(\left(m_{k}+n_{k}\right)!\left|\sum_{j>k} \chi^{2}\right|_{m_{k} n_{k}}^{p_{j} q_{j}} y_{p_{j} q_{j}}\right)^{1 / m_{k}+n_{k}}$
$>\frac{\epsilon}{4}-\frac{(k-1) \epsilon}{8 k}-\frac{\epsilon}{8 k}=\frac{\epsilon}{8}$
for all $k \geq 1$. Hence it is a contradiction and the result follows.
Similarly, we can prove the following result

D. Theorem

Let eqn.(1) be true for $y \in \ell^{2}$. Then $x=\left(x_{m n}\right) \in \Lambda^{2}$ if and only if

$$
\left((m+n)!\left|\chi^{2}\right|_{m n}^{p q}\right)^{1 / m+n} \leq M,
$$

uniformly in p, q and m, n; where M is a positive constant.

IV. Conclusion

Tensorial transformation of classical ideas connected with the field of double gai sequence spaces.

Acknowledgment

I wish to thank the referees for their several remarks and valuable suggestions that improved the presentation of the paper.

References

1] T.Apostol, Mathematical Analysis, Addison-wesley, London, 1978
[2] M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
[3] T.A. I_{A}. Browmich, An Introduction to the Theory of Infinite Series, Macmillan Co. Ltd. New York, 1965.
[4] R.Colak and A.Turkmenoglu, The double sequence spaces $\ell_{\infty}^{2}(p), c_{0}^{2}(p)$ and $c^{2}(p)$, (to appear).
[5] G.H.Hardy, On the convergence of certain multiple series, Proc. Camb Phil. Soc., 19 (1917), 86-95.
[6] P.K.Kamthan and M.Gupta,sequence spaces and series, Marcel Dekker, New York, Basel, 1981.
[7] F.Moricz, Extention of the spaces c and c_{0} from single to double sequences, Acta. Math. Hungerica, 57(1-2), (1991), 129-136.
[8] F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988), 283-294.
9] R.F.Patterson, Analogue of some fundamental theorems of summability theory, Internat. J. Math. Math. Sci., 23(1), (2000), 1-9.
[10] B.C.Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.
[11] A.Turkmenoglu, Matrix transformation between some classes of double sequences, Jour. Inst. of math. and Comp. Sci. (Math. Seri.), 12(1), (1999), 23-31.
[12] A.Wilansky, Summability Through Functional Analysis , NorthHolland, Amsterdam , 1984.

