
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1948

Abstract—We present the development of a system of programs
designed for the compilation and execution of applications for
handheld computers. In introduction we describe the purpose of the
project and its components. The next two paragraphs present the first
two components of the project (the scanner and parser generators).
Then we describe the Object Pascal compiler and the virtual
machines for Windows and Palm OS. In conclusion we emphasize
the ways in which the project can be extended.

Keywords—Compiler design, Palm OS applications, rapid
application development, virtual machine.

I. INTRODUCTION
HIS paper describes a system of programs intended to be
used for rapid development of applications that can be

executed on handheld computers with Palm operating system.

The project has two major components:
• a compiler for a subset of Object Pascal language that

generates virtual object code [1]
• virtual machines that execute the object code [2] on a

Windows platform as well as on a Palm OS platform [3].
This system of programs allows the development of

applications that does not involve the use of the applications
programming interface (API) of Palm OS. This interface is
rather complex, as it is described in detail in Palm OS
Programmer’s Reference, a document that contains 2360
pages [4].

The implemented language includes besides basic elements
(simple and structured types, definition of procedure and

Authors are with Computer and Software Engineering Department, Faculty

of Automation and Computers, Politechnica University of Timisoara,
Romania.

functions, etc.) the following advanced features:
• object oriented programming
• exceptions
• file operations.
The entire system of programs was realized using object
oriented design techniques [5]. The programming language
that was chosen for implementation is C++ [6].
For the development of the compiler we decided to use

scanner and parser generators that we developed as part of this
project.

II. THE SCANNER GENERATOR
The input of the scanner generator is represented by a text

file that contains a set of regular expressions which describes
the source language atoms and generates the corresponding
transitions table and the C++ code of the scanner.

The steps of generation follow below (fig.1):
• the generator creates first an explicit abstract syntax tree
corresponding to the regular expressions set from the input
file;
• then it creates the corresponding non-determinist finite
state machine (NFSM) based on the abstract syntax tree
from above;
• finally, the generator transforms the above NFSM into the
equivalent determinist finite state machine (DFSM)
represented by a transitions table and generates the C++
code of the scanner.

III. THE PARSER GENERATOR

The input of the parser generator is represented by a text file
that contains the productions of the grammar and generates
C++ code corresponding to the syntactic analysis as well as to
the construction of the complete syntax tree.

System of Programs for Rapid Development and
Execution of Palm OS Applications

Mihai Ciocarlie, Marcela-Simona Atanasoae, and Horia Ciocarlie

T

Scanner
+

Parser

NFSM
generator

DFSM
generator

Regular
expression

set

Abstract
syntax tree NFSM DFSM

Fig. 1 The structure of the scanner generator

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1949

We have chosen recursive descent parsing because it is best
suited for an object oriented design. The syntax tree is
complete because for each type of non-terminal in the
grammar it is generated a new class of nodes.

 Each of the functions that are produced by the generator
returns a certain type of node. The children of the node created
inside a function are constructed through recursive calls to
other functions of the parser.

The parser generator produces C++ code that can be used
together with the C++ code produced by the scanner

generator.
The user of these tools will be working with the complete

syntax tree constructed by the automatically generated parser
to realize the other phases of a compiler. Fig. 2 shows the
phases of a compiler developed using the two generators.

The generators were used at the developing of the Object
Pascal compiler, but also at the developing of an assembler for
the virtual object code.

IV. THE DESIGN OF THE COMPILER
The development of the compiler is based on a subset of

Object Pascal grammar which is implemented by the Borland
Company in its product Delphi [7].

The main facilities offered by the Object Pascal subset are:
• a type system
• the conditional statement if
• the cyclic statements, for and while
• simple statements like assigns and procedure/function

calls

• procedures and functions
• object oriented programming
• exceptions.
The type system includes:
• the four simple types from Pascal: integer, real, boolean

and char
• the Pascal string type
• structured types like arrays and files
• the procedure type.
The type system also allows the definition of new types.

Source program

Scanner
(generated
with the scanner
generator)

Parser
(generated
with the parser
generator)

Syntax tree

Exception
(in case of error)

+
Contextual checker,
code generator
(visitors of the syntax
tree)

Object code

Fig. 2 The phases of a compiler developed using the generators

� Visits the nodes of the abstract
syntax tree

� Creates the symbol table
� Checks the type and scope rules

Contextual checker

Generates exceptions in
case of errors (type errors,

scope errors)

Abstract syntax tree Abstract syntax tree

Symbol table

� Visits the nodes of the
abstract syntax tree

� Generates virtual object
code

Code generator

Virtual object
code

Fig. 3 The structure of the compiler

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1950

The facilities of object oriented programming offered by
this Object Pascal subset are:
• inheritance
• polymorphism
• constructors
• information hiding.
There has been added a set of predefined functions and

procedures which are directly translated in the corresponding
instructions of the virtual machine. The main feature of this
functions and procedures is their fast execution.

In fig. 3 we present the structure of the compiler.
The abstract syntax tree corresponding to a Object Pascal

program includes two types of nodes: internal nodes,
corresponding to the non-terminal symbols of the grammar;
and leaf nodes, corresponding to the terminal symbols [8].

Both contextual analysis and code generation are realized
through sequential traversals of the abstract syntax tree. The

two complex operations are represented through the visitor
design pattern. The two visitors are the contextual checker and
the code generator. This pattern makes the abstract syntax tree
structure independent of its operations.

The symbols table is the main structure of the compiler. It is
implemented like a hash table. The table contains objects of
different classes; each object corresponds to each kind of
identifier (variables, constants, etc.). The symbols table is
constructed during the contextual analysis [9]. Both contextual
analysis and code generation use the information about
identifiers contained by this table.

The errors reported by all phases of the compilation are
treated through the exception mechanism from C++. The way
of treating errors doesn’t allow the recovery in case of errors,
meaning that the compiler stops its execution when the first
error is detected.

V. THE DESIGN OF THE VIRTUAL MACHINE
The largest part of the source code of the virtual machine is

platform independent. All the function calls that are platform
dependent are grouped within a single interface.

The classes that extend this interface are the only one that
contains platform dependent code.

The kernel of the virtual machine has the role of executing
instructions. The main components of the kernel are the stack,
the data memory and the code memory. Besides the kernel, the
virtual machine includes modules for console type interface,
graphic interface, communication and file management.

The structure of the virtual machine is shown in the fig.4.
The main feature of the virtual machine is the organization

of the data memory. This is a collection of the following
types: integer, real, character, logic, string, array and class.
The first five store values of simple types, while those of array
or class type contain a list of references to other objects of

simple type or array/class type.
A reference counter is associated with each object in the

data memory, which is used for a mechanism of automatic
deallocating.

The instructions of the virtual machine offer direct support
for operations specific to object oriented programming, like
the dynamic linking of functions (polymorphism). For this
purpose the virtual machine accesses a table of classes. Also,
there are special instructions for working with exceptions.

There have also been implemented instructions
corresponding to common operations (printing to console, file
operations, conversions, etc.). If these operations had been
implemented like function calls then they would have been
executed slower. For other operations an instruction for
system calls is used. System calls with specific codes are

Object
code

Operating
system

(Windows/
Palm)

Virtual machine

Platform
interface

Kernel

Graphic
interface
module

Comm.
module

File
operations

module

Console
interface
module

Operating
system

function
calls

Stack

Data memory

Code memory

Platform independent
source code

Platform
dependent

source code

Fig. 4 The architecture of the virtual machine

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1951

generated for working with the graphic interface, for
operations with the communication module, etc.

The module for graphic interface offers functions for
drawing on the screen, for creation of user interface elements
(buttons, edit fields, etc.) or for access to various operating
system functions.

The communication module allows communication through
infrared (IrDA protocol), or through radio (Bluetooth
protocol)[10].

VI. CONCLUSIONS
Because modern computers, PCs as well as handhelds, offer

good enough computational performances, we focused
primarily on the quality of the object oriented design. This
way we ensured a clear, modular code, that can be easily
extended. This decision proved to be correct as the execution
of code is fast enough under Windows as well as under Palm
OS.

The project could be developed further through:
• more language facilities (for example pointers, definition

of interfaces, modular development of programs, etc.)
• optimization of the processes of compilation and

execution

• more execution facilities (more graphic interface
components, access to more functions of the operating
system)

• development of virtual machines for other platforms.
The system of programs can be easily modified to allow

execution of programs on other platforms, as most of the code
of the virtual machines is portable, platform independent.

REFERENCES
[1] Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, Koen Langendoen,

Modern Compiler Design, John Wiley & Sons, 2003.
[2] David A. Watt, Deryck F. Brown , Programming Language Processors

in Java – Compilers and Interpreters, Prentice Hall, 2000.
[3] Lonnon R. Foster, Palm OS Programming Bible, Wiley Publishing,

2002.
[4] *** Palm OS Programmer’s API Reference, PalmSource Inc.,2002.
[5] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design

Patterns – Şabloane de proiectare, Editura Teora, 2002.
[6] Kris Jamsa, Lars Klander , Totul despre C şi C++, Editura Teora, 2001.
[7] Steve Teixeira, Xavier Pacheco, Delphi 5, Editura Teora, 2002.
[8] Spinllis D., Global Analysis and Transformations in Preprocessed

Languages, IEEE Transactions on Software Engineering, Vol. 29, No.
11, November 2003.

[9] Horia Ciocarlie , A Mechanism of Visibility Control, Preceedings of the
International Conference on Signal Processing, ICSP Istanbul, 2004.

[10] *** Palm OS Programmer’s Companion, PalmSource Inc., 2002.

