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Networks and Network Pruning
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Abstract—This paper presents an exact pruning algorithm with
adaptive pruning interval for general dynamic neural networks
(GDNN). GDNNs are artificial neural networks with internal dynam-
ics. All layers have feedback connections with time delays to the
same and to all other layers. The structure of the plant is unknown, so
the identification process is started with a larger network architecture
than necessary. During parameter optimization with the Levenberg-
Marquardt (LM) algorithm irrelevant weights of the dynamic neural
network are deleted in order to find a model for the plant as
simple as possible. The weights to be pruned are found by direct
evaluation of the training data within a sliding time window. The
influence of pruning on the identification system depends on the
network architecture at pruning time and the selected weight to be
deleted. As the architecture of the model is changed drastically during
the identification and pruning process, it is suggested to adapt the
pruning interval online. Two system identification examples show
the architecture selection ability of the proposed pruning approach.

Keywords—System identification, dynamic neural network, recur-
rent neural network, GDNN, optimization, Levenberg Marquardt, real
time recurrent learning, network pruning, quasi-online learning.

I. INTRODUCTION

IN static neural networks the output is directly calculated
from the input through forward connections. Dynamic

neural networks include delay lines between the layers. So the
output depends also on previous inputs and/or previous states
of the network. This paper uses dynamic neural networks in
which all layers have feedback connections with several time
delays, see Fig. 1. The structure of this neural network model
can be choosen very general, thus we call it general dynamic
neural networks (GDNN).

The weights of the GDNN are trained with the Levenberg-
Marquardt (LM) algorithm. LM-training normally is offline.
That means all training patterns have to be available before
training is started. In order to get an online training algorithm
we use a sliding time window, that includes the information
of the last Q time steps, see Fig. 2. With the last Q errors
the Jacobian matrix is calculated quasi-online. If the time
window is large enough, it can be assumed that the information
content of the training data is constant. The pruning algorithm
suggested in this paper uses the same training data from this
sliding time window to calculate the exact saliency for every
weight. The saliency is defined as the change in the output
error if a special weight is deleted.

In the system identification process we want to find a
sufficient model for an unknown plant. As we do not know
the structure of the plant we start with a larger network
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architecture than necessary. During the optimization process
irrelevant weights are deleted. There are several pruning
algorithms [1]-[4]. Two well known methods in static neural
networks are optimal brain damage (OBD) [1] and optimal
brain surgeon (OBS) [2]. The OBD method approximates
the saliency with the pivot elements of the Hessian without
retraining after the pruning step. The OBS uses the complete
Hessian information to approximate the saliency, which is
regarded as a continuation of the OBD method. After an OBS
pruning step the remaining weights are retrained. The exact
pruning approach in this paper calculates the saliencies exactly
and uses a retraining step like in OBS pruning. The structure
of the GDNN is changed drastically during the pruning and
identification process. So the influence of one pruning step to
the identification system can be quite different. The deletion
of one weight in a very large neural network usually does not
influence the identification system very much and the error
after pruning can be reduced quite fast. Whereas the deletion
of one weight in a small neural network can influence the
system extremely leading to huge model errors. In the latter
case the identification system needs more time to cope with
the structural changes in the GDNN. In this paper the time
between two pruning steps, the so-called pruning interval, is
adapted. The time adaption makes use of a scaling algorithm
by evaluating the mean error between successive pruning steps.
A too short pruning interval leads to high mean errors.
Reducing the model size has a lot of advantages:

• the generalization is improved
• the training speed is getting faster
• larger networks have better local and global minima, the

goal is to keep the low cost function during pruning
• since the optimization problem after a pruning step is

changed it is possible to overcome a local minimum
The next section presents the recurrent neural network used for
system identification. Administration matrices are introduced
to manage the pruning process. Section III deals with param-
eter optimization and the quasi-online approach used through-
out this paper. In Section IV the exact pruning algorithm with
adaptive pruning interval for architecture selection in GDNNs
is suggested. Identification examples are shown in section V.
Finally, in Section VI we summarize the results.

II. GENERAL DYNAMIC NEURAL NETWORK (GDNN)

De Jesus described in his doctoral theses [7] a broad class
of dynamic networks, he called the framework layered digital
dynamic network (LDDN). The sophisticated formulations and
notations of the LDDN allow an efficient computation of the
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Jacobian matrix using real-time recurrent learning (RTRL).
Therefore we follow these conventions suggested by De Jesus.
In [5]-[8] the optimal network topology is assumed to be
known. In this paper the network topology is unknown and so
we choose an oversized network for identification. In GDNN
all feedback connections exist with a complete tapped delay
line (from a first-order time delay element z−1 up to the
maximum order time delay element z−dmax). The output of a
tapped delay line (TDL) is a vector containing delayed values
of the TDL input. Also the network inputs have a TDL. Fig. 1
shows a three-layer GDNN. The simulation equation for layer
m is

nm(t) =
∑

l∈Lf
m

∑
d∈DLm,l

LW˜
m,l(d) · al(t − d)+

∑
l∈Im

∑
d∈DIm,l

IW˜
m,l(d) · pl(t − d) + bm

(1)

nm(t) is the summation output of layer m, pl(t) is the l-
th input to the network, IW˜m,l is the input weight matrix
between input l and layer m, LW˜ m,l is the layer weight matrix
between layer l and layer m, bm is the bias vector of layer m,
DLm,l is the set of all delays in the tapped delay line between
layer l and layer m, DIm,l is the set of all input delays in the
tapped delay line between input l and layer m, Im is the set
of indices of input vectors that connect to layer m, Lf

m is the
set of indices of layers that directly connect forward to layer
m. The output of layer m is

am(t) = fm(nm(t)) (2)

where fm(·) are nonlinear transfer functions. In this paper we
use tanh-functions in the hidden layers and linear transfer
functions in the output layer. At each point of time the
equations (1) and (2) are iterated forward through the layers.
Time is incremented from t = 1 to t = Q. (See [7] for a full
description of the notation used here). In Fig. 1 the information
under the matrix-boxes and the information under the arrows
denote the dimensions. Rm and Sm respectively indicate the
dimension of the input and the number of neurons in layer
m. ŷ is the output of the GDNN. During the identification
process the optimal network architecture should be found.
Administration matrices show us, which weights are valid.

A. Administration Matrices

The layer weight administration matrices AL˜m,l(d) have
the same dimensions as the layer weight matrices LW˜ m,l(d)
of the GDNN. The input weight administration matrices
AI˜ m,l(d) have the same dimensions as the input weight
matrices IW˜m,l(d). The bias weight administration vectors
Abm have the same dimensions as the bias weight vectors
bm. The elements in the administration matrices indicates
which weights are valid or not, e.g. if the layer weight
lwm,l

k,i (d) = [LW˜ m,l(d)]k,i from neuron i of layer l to
neuron k of layer m with a dth-order time-delay is valid,
then

[AL˜m,l(d)
]
k,i

= αlm,l
k,i (d) = 1. If the element in the

administration matrix equals to zero the corresponding weight
has no influence on the GDNN. With these definitions the kth

output of layer m can be computed by

nm
k (t) =

∑
l∈Lf

m

∑
d∈DLm,l

⎛
⎝ Sl∑

i=1

lwm,l
k,i (d) · αlm,l

k,i (d) · al
i(t − d)

⎞
⎠

+
∑
l∈Im

∑
d∈DIm,l

⎛
⎝ Rl∑

i=1

iwm,l
k,i (d) · αim,l

k,i (d) · pl
i(t − d)

⎞
⎠

+ bm
k · αbm

k

am
k (t) =fm

k (nm
k (t))

(3)

where Sl is the number of neurons in layer l and Rl is
the dimension of the lth input. Table I shows an example
of administration matrices for a three-layer GDNN with 3
Neurons in each hidden layer and dmax = 2 at the beginning
of a pruning process. Only the weight αl2,2

1,3(1) from neuron
3 of layer 2 to neuron 1 of the same layer 2 with first-order
time-delay is deleted. All other weights are valid.

TABLE I
EXAMPLE OF ADMINISTRATION MATRICES FOR A THREE-LAYER GDNN, 3

NEURONS IN THE HIDDEN LAYERS AND dmax = 2

B. Implementation

For the simulations throughout this paper the graphical
programming language Simulink (Matlab) was used. GDNN,
Jacobian calculation, optimization algorithm and pruning were
implemented as S-function in C.

III. PARAMETER OPTIMIZATION

First of all a quantitative measure of the network perfor-
mance has to be defined. In the following we use the squared
error

E(wk) =
1
2
·

Q∑
q=1

(y
q
− ŷ

q
(wk))T · (y

q
− ŷ

q
(wk))

=
1
2
·

Q∑
q=1

eT
q (wk) · eq(wk)

(4)

where q denotes the pattern in the training set, y
q

and ŷ
q
(wk)

are, respectively, the desired target and actual model output
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Fig. 1. Three-layer GDNN (two hidden layers)

on the qth pattern. The vector wk is composed of all weights
in the GDNN. The cost function E(wk) is small if the
training (and pruning) process performs well and large if the
it performs poorly. The cost function forms an error surface in
a (n + 1)-dimensional space, where n is equal to the number
of weights in the GDNN. In the next step this space has to be
searched in order to reduce the cost function.

A. Levenberg-Marquardt Algorithm

All Newton methods are based on the second-order Taylor
series expansion about the old weight vector wk:

E(wk+1) = E(wk + Δwk)

= E(wk) + gT
k
· Δwk +

1
2
· ΔwT

k · H˜ k · Δwk

(5)

If a minimum on the error surface is found, the gradient of
the expansion (5) with respect to Δwk is zero:

∇E(wk+1) = g
k

+ H˜ k · Δwk = 0 (6)

Solving (6) for Δwk gives the Newton method

Δwk = −H˜ −1
k · gT

k

wk+1 = wk − H˜ −1
k · g

k
(7)

The vector −H˜ −1
k · gT

k
is known as the Newton direction,

which is a descent direction, if the Hessian matrix H˜ k is
positive definite. There are several difficulties with the direct
application of Newton’s method. One problem is that the
optimization step may move to a maximum or saddle point
if the Hessian is not positive definite and the algorithm could
become unstable. There are two possibilities to solve this
problem. Either the algorithm uses a line search routine (e.g.
Quasi-Newton) or the algorithm uses a scaling factor (e.g.
Levenberg Marquardt).

The direct evaluation of the Hessian matrix is computa-
tionally demanding. Hence the Quasi-Newton approach (e.g.
BFGS formula) builds up an increasingly accurate term for
the inverse Hessian matrix iteratively, using first derivatives
of the cost function only. The Gauss-Newton and Levenberg-
Marquardt approach approximate the Hessian matrix by [9]

H˜ k ≈ J˜T (wk) · J˜(wk) (8)
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and it can be shown that

g
k

= J˜T (wk) · e(wk) (9)

where J˜(wk) is the Jacobian matrix

J˜(wk) =

⎡
⎢⎢⎢⎢⎣

∂e1(wk)

∂w1

∂e1(wk)

∂w2
· · · ∂e1(wk)

∂wn
∂e2(wk)

∂w1

∂e2(wk)
∂w2

· · · ∂e2(wk)
∂wn

...
...

. . .
...

∂eQ(wk)
∂w1

∂eQ(wk)
∂w2

· · · ∂eQ(wk)
∂wn

⎤
⎥⎥⎥⎥⎦ (10)

which includes first derivatives only. n is the number of all
weights in the neural network and Q is the number of time
steps evaluated, see subsection III-B.

With (7), (8) and (9) the Gauss-Newton method can be
written as

wk+1 = wk − [
J˜T (wk) · J˜(wk)

]−1 · J˜T (wk) · e(wk) (11)

Now the Levenberg-Marquardt (LM) method can be expressed
with the scaling factor μk

wk+1 = wk −
[
J˜T (wk) · J˜(wk) + μk · I˜

]−1 · J˜T (wk) · e(wk)
(12)

where I˜ is the identity matrix. As the LM algorithm is the best
optimization method for small and moderate networks (up to a
few hundred weights), this algorithm is used for all simulations
in this paper. In the following subsections the calculation of
the Jacobian matrix J˜(wk) and the creation of the error vector
e(wk) are considered.

B. Quasi-Online Learning

The quasi-online learning approach is shown in Fig. 2. For
every optimization step the last Q errors are used for the
Jacobian calculation. It is like a time window that slides along
the time axis. In every time step the eldest training pattern
drops out of the time window. It is assumed, that the training
data of the time window describes the optimization problem
definitely and so the error surface is constant. The data content
of the time window is used for parameter optimization. With
this simple method we are able to implement the LM algorithm
online. As this quasi-online learning method works surpris-
ingly well, it is not necessary to use a recurrent approach like
[10]. For the simulations in this paper the window size is set
to 250 steps (using a sampling time of 0.01sec), but its size
can be varied from 10 to 1000 or even more. A change in
window size does not have too much influence, as the matrix
J˜T (wk)·J˜(wk) (wich have to be inverted) has n×n elements.

C. Jacobian Calculations

To create the Jacobian matrix, the derivatives of the errors
have to be computed, see Eq. (10). The GDNN has feedback
elements and internal delays, so that the Jacobian cannot be
calculated by the standard backpropagation algorithm. There
are two general approaches to calculate the Jacobian matrix for
dynamic systems: By backpropagation-through-time (BPTT)
[11] or by real-time recurrent learning (RTRL) [12]. For
Jacobian calculations the RTRL algorithm is more efficient
than the BPTT algorithm [8]. According to this, the RTRL

algorithm is used in this paper. Therefore we make use of the
developed formulas of the layered digital dynamic network.
The interested reader is referred to [5]-[8] for further details.

IV. ARCHITECTURE SELECTION

Pruning algorithms [1]–[4] have initially been designed for
static neural networks to obtain good generalization. Due to
the quasi-online approach III-B we do not have overtraining
problems. This paper is focused on the question: Is it possible
to find the optimal structure of a nonlinear dynamic system?
In the following subsection we present an exact pruning algo-
rithm for architecture selection in GDNN. In Subsection IV-B
the algorithm is improved by an adaptive pruning interval.

A. Exact Network Pruning in GDNN

The goal of network pruning is to set one of the GDNN
weights to zero while the cost function given by Eq. (4) is
minimized. This particular weight is denoted as wk,z . The
optimization problem is constrained, so we have to construct a
Lagrangian operator. Solving this the optimum change of the
weights is [2]

Δwk = − wk,z[
H˜ −1

k

]
z,z

· H˜ −1
k · iz (13)

As the LM training algorithm already approximates the Hes-
sian by the Jacobian, this information can be used. With (8)
and (12) the optimum change in weights can be approximated
by

Δwk = −wk,z · (J˜T (wk) · J˜(wk) + μk · I˜)−1 · iz
[(J˜T (wk) · J˜(wk) + μk · I˜)−1]z,z

(14)

The saliency Sk,z for the weight wk,z is calculated by exact
evaluation of the training data

Sk,z =
E(wk) − E(wk + Δwk)

(d + 1)
(15)

where Δwk is calculated by Eq. (14). As the final GDNN-
model should be as simple as possible, the factor d + 1
produces a smaller saliency for network weights with higher
order of delay. Thus two weights with similar cost functions
but different delay orders have a different influence on the
pruning process. Bias-weights and forward-weights have no
TDL, hence d = 0. All other weights have at least one time
delay and are therefore more attractive to pruning. The cost
function value E(wk) in Eq. (15) is already known and the
cost function after the pruning step E(wk+Δwk) is calculated
by the actual training data within the sliding time window (see
subsection III-B).

B. Adaptive Pruning Interval

Every Tp time steps one pruning step is executed. The time
constant Tp is called pruning interval. Usually the cost function
increases after a pruning step, the optimization problem is
changed. The optimization algorithm tries to reduce the error.
It can be seen, that deleting one weight in a very large GDNN
does not have too much influence on the identification system.
There are many redundant weights available. The smaller the
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Fig. 2. Quasi-Online Learning

network, the more complex the retraining process after the
pruning step. For this reason the pruning process can be
improved, if the pruning interval Tp is adapted online. It must
be assured, that the optimization algorithm is able to cope with
the structural changes in the GDNN-model within the pruning
interval Tp.
The cost function value E0p before pruning has to be stored
to evaluate the success of the pruning process. Every pruning
step starts with the evaluation of the last pruning step. The user
defined parameter Δp > 1 limits the maximum error increase.
The last pruning step is cancelled if

E(wk) > Δp · E0p = Δp · E(wk−Tp−1) (16)

Therefore also the GDNN weights have to be stored before
pruning. In Eq. (4) the index q denotes the pattern in the
training set within the time window, see Fig. 2. To define
the mean error, this relative index has to be substituted:

E(wk) =
1
2
·

Q−1∑
q=0

(y
k−q

− ŷ
k−q

(wk))T · (y
k−q

− ŷ
k−q

(wk))

(17)
The mean error Emean between two pruning steps can be
computed as

Emean =
1

2Tp
·

k∑

t=k−Tp

Q−1∑

q=0

(y
t−q

− ŷ
t−q

(wt))
T ·(y

t−q
− ŷ

t−q
(wt))

(18)
This mean error indicates, if the actual pruning interval Tp is
suitable. If the mean error Emean is high, the optimization
algorithm cannot cope with the new optimization task within
the time Tp, the pruning interval should be increased. If the
mean error Emean is small, the pruning process could be sped
up. The pruning interval Tp is adapted by the following scaling

algorithm:

if Emean > Δp · E0p

Tp = ϑ · Tp

else

Tp =
1
ϑ
· Tp

(19)

with the user defined scaling factor ϑ > 1.

V. IDENTIFICATION

A crucial task in identification with recurrent neural net-
works is the selection of an appropriate network architecture.
How many layers and how many nodes in each layer should
the neural network have? Should the layer have feedback
connections and what about the taped delay lines between
the layers? Should every weight in a layer weight matrix
or an input matrix exist? It is very difficult to decide a
priori what architecture and what size are adequate for an
identification task. There are no general rules for choosing the
structure before identification. A common approach is to try
different configurations until one is found and works well. This
approach is very time consuming if many topologies have to
be tested. In this paper we start with a ”larger than necessary”
network and remove unnecessary parts, so we only require an
estimate of what size is ”larger than necessary”.

In this section two simulation results for plant identification
are presented, using the exact pruning algorithm suggested
in (14) and (15), with adaptive pruning interval suggested in
(18) and (19), Jacobian calculation with real time recurrent
learning and the Levenberg Marquardt algorithm (12). The
first example to be identified is a simple linear PT2 system.
This example is chosen to test the architecture selection ability
of the exact pruning approach suggested in subsection IV-A.
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The second example shows the identification of a nonlinear
dynamic system with adaptive pruning interval.

A. Excitation Signal

In system identification it is a very important task to use
an appropriate excitation signal. A nonlinear dynamic system
requires, that all combinations of frequencies and amplitudes
(in the system’s operating range) are represented in the signal.
In this paper an APRBS-signal (Amplitude Modulated Pseudo
Random Binary Sequence) was used, uniformly distributed
from -1 to +1. For more information see [13].

B. Identification of PT2 plant

The simple PT2-plant 10
0.1·s2+s+100 is identified by a three-

layer GDNN (with three neurons in the hidden layers and
dmax = 2 ⇒ n = 93). This network architecture is obviously
larger than necessary. The initial pruning interval is Tp = 500,
the maximum error increase is set to Δp = 100 and the scaling
factor ϑ is defined to 1.1. Fig. 3 shows the weight reduction
from n = 93 to n = 10 and the identification error, which
is also reduced although the model is becoming smaller. At
the end of the pruning process four pruning steps have to be
cancelled due to Eq. (16), the error increase is too hight.
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Fig. 3. Squared Error E(wk) and number of weights n for PT2-
identification example (at the beginning: n = 93, at the end: n = 10)

To see the online adaption of the pruning interval Tp, in
the next Fig. 4 only the first 500 seconds are depicted. The
pruning interval decreases for the first 60 seconds, afterwards
it increases again.

Table II summarizes the administration matrices after the
identification and pruning process.

Most of the weights are deleted. Fig. 5 shows the output of
the PT2-plant y (solid gray line), the output of the GDNN-
model ŷ (thick dashed black line) and the APRBS excitation
signal (thin dashed black line) during the first 5 seconds.
The output of the GDNN-model follows the output of the
plant almost immediately. Fig. 6 shows the identification result
and the successful weight reduction of the suggested pruning
approach. Each circle in the signal flow chart includes a
summing junction and a transfer function. The input and the
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Fig. 4. Squared Error E(wk) and number of weights n for PT2-
identification example for the first 500 seconds.

TABLE II
ADMINISTRATION MATRICES AFTER PT2-IDENTIFICATION
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Fig. 5. Output of the PT2-plant y (solid gray line), output of the GDNN-
model ŷ (thick dashed black line) and APRBS excitation signal (thin dashed
black line) for the first 5 seconds.

output of the model has two time delays. If the continuous-
time model 10

0.1·s2+s+100 is discretized using zero-order hold
[14] with a sample time of 10ms the discrete model can be
expressed as

y(k) = 0.004798 · u(k − 1) + 0.00464 · u(k − 2)+
1.81 · y(k − 1) − 0.9048 · y(k − 2)

(20)

The factors 1.81 and 0.9048 of the difference equation corre-
spond to the feedback weights of the GDNN model. Because
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Fig. 6. Identification result: Model of PT2 example

of the very small input weights in the GDNN (see Fig. 6)
only the linear region (with gradient 1) of the tanh-functions
is crucial. Note: Also the other factors of the difference
equation (20) correspond exact to the weights of the GDNN
(e.g.−0.0002821 · (−2.9076065) · 7.1081169 − 0.0019630 ·
(−0.3219240) · (−1.6343226) = 0.0047975), see Fig. 6.

Note: The final GDNN-model is not unique. The pruning
algorithm can find different GDNN-structures for the PT2

identification example. All these models use the first and
second time delay from the input and from the output, like the
difference equation of the PT2-model. Fig. 7 shows another
final GDNN-model with n = 7 for the same PT2-identification
example. The input weight −0.0027 (see Fig. 6) is quite small

-0.0027 1.0998 -1.6319

-0.9048

1.8105

-1.0194
1.5482

p1 ŷ

z−1

z−1

z−1

z−2

Fig. 7. Identification result: Model of PT2 example

again, to achieve linear behavior. The weights of the final
GDNN-model in Fig. 7 correspond to the coefficients of the
difference equation (20). The different final GDNN-models
have the same input-output behavior.

The LM-scaling factor μ decreases during system identifi-
cation, this is illustrated in Fig. 8. The developing of μ looks
similar to the model error in Fig. 3.

The adaptive pruning interval in the PT2 simulation exam-
ple assures, that the optimization algorithm can cope with
the structural changes. The identification error is reduced,
although the number of weights is decreased drastically. If
the pruning interval is constant and too small (Tp = 10, the
other settings are not changed), the optimization algorithm is
not able to retrain the remaining weights after pruning. The
identification error increases during the pruning process, see
Fig. 9.

C. Identification of a nonlinear plant
The first example is chosen to underline the weight re-

duction ability of the suggested pruning algorithm. In this
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Fig. 8. Decrease in LM-Scaling Factor μ during system identification
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Fig. 9. Constant pruning interval is too small: Squared Error E(wk) and
number of weights n for PT2-identification example

subsection a nonlinear dynamic system presented by Narendra
[15] is considered:

y(k) =
y(k − 1) · y(k − 2) · y(k − 3) · u(k − 2) · [y(k − 3) − 1] + u(k − 1)

1 + y2(k − 2) + y2(k − 3)

For this identification example a three-layer GDNN (with four
neurons in the hidden layers and dmax = 3 ⇒ n = 212) is
used. The initial pruning interval is Tp = 100, the maximum
error increase is set to Δp = 20 and the scaling factor ϑ is
defined to 1.1. Fig. 10 shows the weight reduction from n =
212 to n = 57 and the identification error. The pruning process
is stopped after 182 seconds due to the abrupt rise of the cost
function E(wk). The last pruning step is cancelled. Fig. 11
shows the output of the nonlinear plant y (solid gray line), the
output of GDNN-model ŷ (thick dashed black line) and the
APRBS excitation signal (thin dashed black line) during the
first 2.5 seconds.

VI. CONCLUSION

In this paper it is shown, that network pruning not only
works in static neural networks but can also be applied to
dynamic neural networks. For this an exact pruning algorithm
with adaptive pruning interval is suggested. The weights to
be pruned are found by direct evaluation of the training data
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Fig. 11. Output of the nonlinear plant y (solid gray line), output of GDNN-
model ŷ (thick dashed black line) and APRBS excitation signal (thin dashed
black line) for the first 2.5 seconds.

within a sliding time window. Weights with higher order
of delay are preferred to pruning. The pruning interval is
adapted by a scaling algorithm, as the architecture of the
GDNN-model is changed drastically during the identification
process. The scaling algorithm uses the mean error between
two pruning steps. The mean error indicates, if the pruning
interval is suitable. The adaptive pruning interval assures, that
the optimization algorithm is able to cope with the structural
changes in the GDNN-model within the pruning interval. In
every pruning step the success of the last pruning step is
checked. If the increase of the error is too high, the last pruning
step is cancelled. For this revision, the weights have to be
stored in every pruning step.

The Jacobian matrix for the optimization algorithm is cal-
culated quasi-online with RTRL. Quasi-online learning uses a
time window for parameter optimization. With this approach
the LM algorithm can be applied online. To manage the
pruning process with GDNNs, adminstration matrices are
introduced. These matrices show us the actual GDNN and
indicate, which weights are already deleted. The suggested
algorithm finds accurate models of low order. A simple linear

system identification example is chosen to show the weight
reduction ability. The final GDNN model is not unique. The
input weights of the final GDNN models are very small to
get an almost linear behavior of the models in the system’s
operating range. In addition to that the weights of the GDNN
models correspond very closely to the coefficients of the
according difference equation. Also the nonlinear dynamic
system example is identified accurately, whereas the number
of weights is reduced drastically.
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