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Abstract—The three-species food web model proposed and 

investigated by Gakkhar and Naji is known to have chaotic behaviour 
for a choice of parameters. An attempt has been made to synchronize 
the chaos in the model using bidirectional coupling. Numerical 
simulations are presented to demonstrate the effectiveness and 
feasibility of the analytical results. Numerical results show that for 
higher value of coupling strength, chaotic synchronization is 
achieved.  Chaos can be controlled to achieve stable synchronization 
in natural systems.

Keywords—Lyapunov Exponent, Bidirectional Coupling, Chaos 
Synchronization, Synchronization Manifold

I. INTRODUCTION

YNCHRONIZATION is a ubiquitous phenomenon 
characteristic of many processes in natural systems and 

nonlinear science. It is an area of intensive research and is 
today considered as one of the basic nonlinear phenomena 
studied in mathematics, physics, engineering or life sciences 
[1].  Synchronizing of two dynamical systems generally means 
that one system somehow traces the motion of another. It is 
well known that many coupled oscillators have the ability to 
adjust to common behavior due to weak interaction between 
them. This gives rise to a situation in which synchronization-
like phenomenon takes place [2]. The idea of synchronizing 
two identical chaotic systems with different initial conditions 
was introduced by Pecora and Carroll [3]. According to them 
two chaotic systems could be synchronized by coupling them. 
In ecological aspect, asynchrony allows for the global 
persistence of a population through rescue effects, even there 
are local extinctions. Indeed in certain circumstances, the 
highly synchronizing effects of chaos have been shown to 
enhance the global persistence of model populations even 
though large population swings often (but not always) 
associated with chaotic dynamics increase the chance of local 
extinction.

  In this paper, Gakkhar and Naji model system [4] has been 
taken for chaos synchronization. They obtained several
complex behaviors including limit cycles and chaos for 
different ranges of parameters. The bi-directional coupling 
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technique is used to synchronize two model systems [5]. In this 
paper same technique has been applied in an ecological 
context. The phenomenon of synchronization through this 
mechanism in two model systems is investigated. It is seen that 
the synchronizing effects sensitively depends on the values of 
the coupling strength K. Then numerical simulations are done 
to verify the effectiveness of present method.

II. GAKKHAR & NAJI FOOD WEB    MODEL SYSTEM

The dynamics of the three-species system consisting of two 
independent preys and one predator is governed by the 
following system of differential equations [4]:
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The model parameters , , and i i ir K e d  assume only 

positive values. The state variables 1X and 2X are the 

densities of two prey species, while 3X  is the density of a 

common predator.  The predator consumes the prey iX

according to the functional response  1 2,iF X X , where iA  is 

the search rate of a predator for the prey iX and i i iB h A , ih

being the expected handling time spent with the prey iX . The 

constant , 1,2ie i   is conversion rate of prey iX  to 

predator 3X . Clearly, for very small values of 1B  and 2B  the 

nonlinear functional response approaches to linear type 
functional response. However, it approaches to hyperbolic 
Holling type-II functional response when only one of

iB tends to zero. Since the amount of food consumed by each 

predator per unit of time depends on the available food sources 
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(the two preys 1X  and 2X ), a variation in Holling type-II 

functional response is assumed as given in (1). 
The following non dimensional parameters are chosen to 

non-dimensionalize the system (1)
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The transformed system is

Numerical simulations of the system (2) were carried by 
Gakkhar and Naji [4] and it was observed that the system has 
chaotic behavior for the following set of parameter values:  
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As it is well known, the Lyapunov exponents measure the 
mean rate of divergence or convergence of nearby trajectories 
on to another. By using computational method of Lyapunov 
exponents for the continuous system [6], Lyapunov exponents 
of the system (2) are calculated as

   1 2 30.05782, 0.0001, 0.83685     

As one exponent is positive, one is negative and one is almost 
zero, Lyapunov dimension is fractal, it also guarantees the 
chaos in the system (3).

The Lyapunov dimension of chaotic attractor obtained in 
model system (2) is computed by the formula of Kaplan and 
Yorke [7] as
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Thus, the dynamics is of fractal dimension. It means that the 
nearby trajectories soon diverge and follow totally different 
paths in the attractor. This also confirms chaos in the model 
system (2).

III. BIDIRECTIONAL COUPLING

Many biological and physical systems consist of bi-
directionally interacting elements or components which act as 
a controlled feed backing. In bi-directional (mutual) coupling, 
both drive and response subsystems are connected in such a 
way that they mutually influence each other’s behavior. For 
this, two copies of the system (2) are taken and two way 
coupling is added through a linear constant term 0K  in 
first two equations in both copies as follows:
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For 0K  the two subsystems are uncoupled and for 
0K  both subsystems are bi-directionally coupled. 

Let Y  and Y   denote the column vectors of state variables 
and Γ is the matrix of coupling coefficients. The two coupled 
systems (3a) and (3b) can be written as:

where 
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The discrete version of above equation is 
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The Synchronous state reside on a synchronization manifold 

(dimension 3) defined by 1 2{ ( )}M Y Y s t   where the 

chaotic solution ( )s t satisfies ( )s F s  [8].

The variational equation corresponding to (5), is
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1( ) ( ) (6)j j j jDF s K      

The collection of variations is 1 2 3 4 5 6 .{ }, , , ,      
and ( )DF s  is the Jacobian of F on ( )s t , see [8]-[9]. 

Equation (6) can be written in the form 

[ ]. (7)DF K    1 G

Where 1  is an N N  unit matrix and G is given by 
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Lyapunov exponents are calculated from master stability 
function of (7) [10]. The computed exponents are called as 
transverse Lyapunov exponents (TLEs) w. r. to 
synchronization manifold M . The necessary condition for 
stability of synchronization manifold is that the largest TLE is 
negative.
   By using Equation (7), TLE are computed for same set of 
parameters, given in section 2 at 0.05K   as follows:

  1 2 30.27341, 0.62559, 0.01385...       

All transverse Lyapunov exponents are negative which ensures 
the stable synchronization manifold. It can be concluded that 
the systems are synchronized. Further, the bi-directional 
coupling may control the occurrence of chaos in the system 
(3).

IV. NUMERICAL SIMULATIONS

In this section, simulation results have been shown for 
verifying the effectiveness the bi-directional coupling method. 
By using chosen parameter given in section 2, it has been 
demonstrated the model has chaotic behavior. For occurrence 
of synchronization phenomenon, the model system is explored 
for various values of critical parameter K . The system (3) is 
numerically integrated for various values of K .The solution 

of both systems 1y  versus 1y   and 2y versus 2y are plotted.

(

          (a)

          (b)
Fig. 1 Illustration of no synchronization when  0.0004K 

No synchronization is achieved for smaller value of K . For 
example, when 0.0004K   synchronization of the system 
does not occur, as is evident from Fig. 1. 

Both Systems are heading towards synchronization as K  is 
increased. A typical result is shown for 0.001K  in Fig. 2.

With further increase in K  synchronization is improved. 
Fig. 3 displays the synchronization phenomenon in systems 
at 0.05K  . As the value of K  is increased, the 
synchronization effect will be better.
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(a)

(b)
Fig. 2 Illustration of onset of synchronization of system for  

0.001K 

V. CONCLUSIONS

In this paper, chaos synchronization of a three species food 
web model system applying the bidirectional coupled method 
is discussed. From the numerical results, it is noticed that for 
sufficiently weak coupling K synchronous phenomenon does 
not occur. When the value of K is increased the two systems 
start to synchronize. 

It is showed that when two different systems are coupled 
with sufficiently strong coupling strength, a general 
synchronous relation between their states could exist. As 
synchronization might play an important role in enhancing 
population persistence, the embarrassing situation caused by 
chaos can be changed and food web system can reach up to a 
dynamic balance.

       (a)

            (b)

. Fig. 3 Illustration of onset of synchronization of system for  
0.05K 
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