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Abstract—One of the approaches enabling people with amputated
limbs to establish some sort of interface with the real world includes
the utilization of the myoelectric signal (MES) from the remaining
muscles of those limbs. The MES can be used as a control input to a
multifunction prosthetic device. In this control scheme, known as the
myoelectric control, a pattern recognition approach is usually utilized
to discriminate between the MES signals that belong to different
classes of the forearm movements. Since the MES is recorded using
multiple channels, the feature vector size can become very large. In
order to reduce the computational cost and enhance the generalization
capability of the classifier, a dimensionality reduction method is
needed to identify an informative yet moderate size feature set. This
paper proposes a new fuzzy version of the well known Fisher’s
Linear Discriminant Analysis (LDA) feature projection technique.
Furthermore, based on the fact that certain muscles might contribute
more to the discrimination process, a novel feature weighting scheme
is also presented by employing Particle Swarm Optimization (PSO)
for estimating the weight of each feature. The new method, called
PSOFLDA, is tested on real MES datasets and compared with other
techniques to prove its superiority.

Keywords—Discriminant Analysis, Pattern Recognition, Signal
Processing.

I. INTRODUCTION

THE myoelectric signal (MES), also known as the Elec-
tromyogram (EMG), is a non-stationary signal that car-

ries the distinct signature of the voluntary intent of the central
nervous system. It is usually recorded in a noninvasive scheme
utilizing a set of surface electrodes mounted on the human
forearm. One of the most important applications of the MES is
its use in controlling prosthetic devices functioning as artificial
alternatives to missing limbs [1]. Advances in myoelectric sig-
nal studies revealed that the MES exhibits different temporal
structure for different kinds of the arm movements. This in
turn facilitates the use of pattern recognition in myoelectric
control for prosthetic control. To this end, a wide set of
pattern recognition methods were proposed in the literature
to to accuratly classify the MES into one of a predefined set
of movements [2].

In order to capture the complete muscles activity and
maximize the amount of available information, a multi chan-
nel approach is usually utilized when measuring the MES
signal. However, this will increase the number of extracted
features (variables that describe these movements) and hence
it will increase the learning parameters of the classifier and
may degrade its performance. A straight forward solution to
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these problems is to project the data onto low-dimensional
subspaces to extract the most significant features. Many feature
projections techniques were used in myoelectric control with
the aim to produce a statistically uncorrelated or independent
feature set, a desirable goal in any pattern recognition system.
Various approaches of dimensionality reduction were utilized
in myoelectric control, these include: principal component
analysis (PCA) [3], a combination of PCA and self organizing
feature map (SOFM) [4] and linear discriminant analysis
(LDA) [5].

Despite being a well known projection technique, the classi-
cal LDA suffers from a number of limitations [6]. The first is
that it requires the scatter matrices to be nonsingular, while
in real world problems they can be singular. The second
limitation with LDA is that it treats all data points equivalently,
whereas in real world problems each sample may belong to
each of the different classes with a certain degree. Finally,
classical LDA pays no attention to the decorrelation of the
data, which is a desirable property in many applications.
One possible approach to overcome the first and the third
problems is to use the uncorrelated linear discriminant analysis
(ULDA) that requires the reduced features to be statistically
uncorrelated with one another [7].

As a variation to the ULDA approach which is based on
Singular Value Decomposition (SVD) that is known to be
expensive in terms of time and memory requirements for
large datasets, this paper proposes a new mixture of fuzzy
logic and discriminant analysis as a novel dimensionality
reduction technique. The proposed method aims to reduce
the dimensionality of the extracted feature set and cluster
features, such that the classification accuracy is improved. Due
to the fact that most of the biosignals generated by the human
body tend to produce patterns that are fuzzy in nature (i.e.,
belongs to different classes with certain degrees), then the
incorporation of the concept of fuzzy memberships is required
to reduce the effect of overlapping and outliers points. Unlike
the current available variations to Fisher’s linear discriminant
analysis (LDA), the new method, called PSOFLDA, accounts
for the different contribution of different muscles into the
discrimination process. Thus, it assumes that the extracted
features vary in their importance. In order to implement this
muscle importance concept, a novel feature weighting scheme
that employs Particle Swarm Optimization (PSO) for the
estimation of features’ weights is introduced. Also in order to
overcome the singularity problem, a regularization parameter
is included within each particle (where each particle represents
one member of the population).

This paper is structured as follows: Section 2 explains the
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proposed methodology. Section 3 presents the swarm-based
weight optimization. The experimental results are given in
section 4. Finally the conclusion is given in section 5.

II. METHODOLOGY

A variation of fisher’s classical LDA is the fuzzy discrimi-
nant analysis (FLDA) [8] that emerged as a classification tool,
proving to present better performance than LDA. The goal
of FLDA is to determine the linear discriminant function that
provides the maximum separation of fuzzy groups in a real
space. Although the initial work on FLDA dates back to 1986
[8], there were only few attempts in the literature to propose
variations to the original FLDA classifier. Inspired by the work
of [8], an interesting approach in fuzzy linear discriminant
analysis was proposed for use with chemical datasets [9]. In
their approach a K-nearest neighbor (KNN) rule was utilized
in order to estimate the required memberships. The approach
was compared with classical LDA and proved to outperform
classical LDA on chemical datasets. The authors mentioned
explicitly that several runs should be made in order to decide
the best value of K and the other membership parameter
utilized in their approach. A different approach in estimating
the FLDA memberships using the KNN rule was proposed
in [10]. The main difference between the two approaches
presented in [9] and [10] is that a preprocessing step em-
ploying PCA is utilized by the latter. This in turn forms a
fuzzy variation to classical subspace LDA [11]. It is generally
known from the literature that the limitation of this approach
is that the application of PCA may leads to loosing useful
information. In another attempt and inspired by fuzzy support
vector machine principles, another technique for estimating
the memberships in FLDA was presented first, then a kernel
technique was introduced to perform the nonlinear mapping
[12]. The presented comparison between the kernel based
FLDA (KFDA) and FLDA indicated that better results were
achieved by the former, but with the additional computational
requirements of the kernel matrix.

In spite of the good performance achieved by FLDA in a
number of applications, there are two main issues that both
LDA and FLDA suffer from. Firstly, both techniques pay no
attention to the decorrelation of the data. Hence they may not
always give the optimal results especially when the feature set
contains a large degree of redundancy. Secondly, both LDA
and FLDA require the total scatter matrix to be nonsingular,
while in real problems the scatter matrix can be singular. In
order to overcome these problems with LDA and FLDA, a
number of approaches were proposed, such as the subspace
LDA (mentioned earlier) and regularized LDA [13]. In the
regularized LDA a constant z is added to the diagonal elements
of SW , SW = SW + zI, for some z> 0, where IN is an identity
matrix. It is easy to see that the new SW is nonsingular, but
the main problem is finding the optimal value of z.

This paper proposes a new weighted fuzzy linear discrim-
inant analysis technique (termed as PSOFLDA) for feature
projection. A novel approach is presented within PSOFLDA
to overcome the earlier mentioned problems by assigning a
weighting factor wj for each feature. In such approach, the

features that are most relevant to the problem will be weighted
with higher importance than other features. Thus rather than
applying PCA to minimize redundancies, we employ a weight-
ing process that aims to maximize the interaction between
features. In order to identify these weights, particle swarm
optimization is utilized, as explained in the next section.

A. Weighted Fuzzy Discriminant Analysis

Consider a classification problem with c classes, in which
the data set of labelled training samples is given as:

S = {(x1,y1),(x2,y2), ...,(xl ,yl)} ⊆ (X ,Y )l (1)

Where X is the input space and Y is the output space. X ⊆
ℜn
,Y ⊆ ℜn , and l is the number of samples. Each training

point xi originally belongs to one of the c classes and is given
a label yi ∈ {1,2,3, . . . ,c} for i= {1,2,3, . . . , l}. The goal is to
find an optimal hyper-plane using the training samples that can
recognize the test points, i.e., the classifier will have a good
generalization capability. In PSOFLDA each point, xi, belongs
to each of the c classes with a certain degree of membership.
The fuzzy within class scatter matrix SW , fuzzy between class
scatter matrix SB, and the fuzzy total class scatter matrix ST

are given as follows:

SW =
c

∑
i=1

l

∑
k=1

um
ik(xk− vi)(xk− vi)

T ⊗ (wwT ) (2)

SB =
c

∑
i=1

l

∑
k=1

um
ik(vi− x)(vi− x)T ⊗ (wwT ) (3)

ST =
c

∑
i=1

l

∑
k=1

um
ik(xk− x)(xk− x)T ⊗ (wwT ) (4)

where uik is the membership of pattern k in class i, m (given
that m> 1) is the fuzzification parameter, xk j is the value of
the k’th sample across the j’th dimension, vi is the mean of
the patterns belonging to class i, and vi j is its value across the
j’th dimension. ⊗ refers to the Kronecker product operation,
w is the weight vector associated with all features, i.e., w ={

w1,w2, ...,wf
}

, where f is the total number of features. x
is the mean of the training samples which is given in Eq.(5)
below.

x =
1
l

l

∑
k=1

xk (5)

In this paper, the value of the membership uik is calculated
using a possibilistic fuzzy clustering approach. The cost func-
tion of the possibilistic clustering approach is adopted from
[14], as given in Eq.(6) below.

J(θ ,U) =
l

∑
k=1

c

∑
i=1

um
ik(xk−θi)

2 +
c

∑
i=1

ηi

l

∑
k=1

(1−uik)
m (6)

where θi is the i’th cluster center, ηi are positive constants
that are suitably chosen. The first term in Eq. (6) is the same
objective function used in probabilistic clustering approach,
while the second term is added to reduce the effect of
outliers. In order to find the membership values from the above
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equation, then the values of the clusters centers are needed. A
direct way would be to differentiate Eq. (6) with respect to θi,
but this in turn would cancel the second term leaving only the
first term. A general look at the first term of Eq. (6) reveals
that it represents the classical within class scatter matrix SW

given in Eq. (2) if the weight is removed. Thus applying the
values of the clusters means ensures that the objective function
given by Eq. (6) would settle at a global optimum value. Then
in order to compute the membership values, a differentiation
of the resultant function with respect to uik needs to be done
as follows.

∂J(θ ,U)

∂uik
= mum−1

ik (xk− vi)
2−mηi(1−uik)

m−1 = 0 (7)

This would in turn result in the following function

uik =
1

1+
(
(xk−vi)2

ηi

) 1
m−1

(8)

The values of ηi, where i= {1,2,3, . . . ,c} were chosen to be
equal to the maximum distance between the samples belonging
to that class and the class center.

After computing all the variables, PSOFLDA finds the
vector G that would maximize the ratio of the between class
scatter matrix to the within class scatter matrix by solving the
following equation:

G = arg max
G

trace
(
(GT SW G)−1GT SBG

)
(9)

The solution can be readily computed by applying an eigen-
decomposition on S−1

W SB, provided that the within class scatter
matrix SW is nonsingular. In this paper, we are using a
regularized version of SW given by SW = SW + zI , for some
z > 0 that is included in the particle representation of the
weights, where I is an identity matrix. In this way the scatter
matrix is guaranteed to be nonsingular. Since the rank of the
between class scatter matrix is bounded from above by c - 1,
there are at most c - 1 discriminant vectors by PSOFLDA.

III. SWARM BASED WEIGHT OPTIMIZATION

One possible solution for finding the best values of the
weights is to employ evolutionary algorithms, or EAs. Power-
ful EA algorithms include genetic algorithm (GA) and Particle
Swarm Optimization (PSO). PSO is an effective continuous
function optimizer that encodes the parameters as floating-
point numbers and manipulate them with arithmetic operators.
By contrast, GAs are often better suited for combinatorial
optimization because they encode the parameters as bit strings
and modify them with logical operators. There are many
variants to both approaches, but because PSO is primarily a
numerical optimizer, thus PSO is considered in this paper.

A. Particle Swarm Optimization

Particle swarm optimization, is a population based stochas-
tic optimization technique developed by Eberhart and Kennedy
in 1995 [15]. It represents an example of a modern search

heuristics belonging to the category of Swarm Intelligence
methods. PSO mimics the behavior of a swarm of birds or a
school of fish. The swarm behavior is modelled by particles in
multidimensional space that have two characteristics: position
(p) and velocity (s). These particles wander around the hyper
space and remember the best position that they have discov-
ered. A particle’s position in the multi-dimensional problem
space represents one solution for the problem. They exchange
information about good positions to each other and adjust
their own position and velocity with certain probabilities based
on these good positions. The original formula developed by
Kennedy and Eberhart was improved by Shi and Eberhart with
the introduction of an inertia weight ϖ that decreases over
time, (typically from 0.9 to 0.4), to narrow the search that
would induce a shift from an exploratory to an exploitative
mode. Though the maximum velocity of a particle (smax)
was no longer necessary for controlling the explosion of the
particles, Shi and Eberhart continued to use it, often setting
smax = pmax that is the maximum velocity is equalled to the
maximum value along the specific dimension, in order to
keep the system within the relevant part of the search space.
This was found to be a good idea that significantly improves
the PSO performance and at the same time it costs very
little computationally. During iterations each particle adjusts
its own trajectory in the space in order to move towards its
best position and the global best according to the following
equations:

si j(t +1) = ϖsi j(t)+ c1r1(pbesti j− pi j)+ c2r2(gbesti j− pi j)
(10)

pi j(t +1) = pi j(t)+ si j(t +1) (11)

Where
i: is the particle index
j: is the current dimension under consideration
pi: is the current position,
si: is the current velocity
ϖ : is the inertia weight
t: is the current time step
r1 and r2 are two random numbers uniformly distributed in

the range (0,1), c1 and c2 are cognitive and social parameters
respectively, . pbesti is the local best position, the one asso-
ciated with the best fitness value the particle has achieved so
far, and gbesti is the global best position, the one associated
with the best fitness value found among all of the particles.

The personal best of each particle is updated according to
the following equation:

pbesti(t +1) =

{
pbesti(t) if (pbesti(t))≤ f (pi)
pi(t) if (pbesti(t))> f (pi)

}

(12)
Finally, the global best of the swarm is updated using the

following equation:

gbest(t+ 1) = arg min
pbesti

f (pbesti(t +1)) (13)

Where f (.) is a function that evaluates the fitness value for
a given position. This model is referred to as the gbest (global
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best) model. In this paper, each particle will represent a vector
whose elements are the weights assigned to each feature plus
the regularization parameter z. The idea here is to generate a
new weight vector by utilizing a set of particles that wander
through the solution space searching for the best possible
representation achieving the minimum error rates. In such a
system, the fitness function was chosen to be the error rates
achieved by a suitable classifier. The details of the classifiers
chosen will be given in the experiments section.

B. Application of PSO in Fuzzy Discriminant Analysis

The aim of this section is to help the reader understand how
to apply PSO in discriminant analysis. As mentioned before,
the equation for both the between-class scatter matrix SW and
the within-class scatter matrix SB require the multiplication
by the weight vector w that consists of the weights values
associated with all features, i.e., w =

{
w1,w2, ...,wf

}
. This

paper propose to utilize PSO to find the optimal values for w,
as shown in Fig. 1.

In the first steps, the particles and their associated velocities
are initialized with random numbers. Each of the particles will
hold one possible representation for the weight vector based
on which the scatter matrices are computed. After computing
the scatter matrices, the datasets (training and validation) are
projected. The optimality of each particle, i.e., the fitness,
is evaluated using a classical wrapper approach in which a
suitable classifier is chosen as will be mentioned later in
the experiments section. Then using the fitness values for all
particles, the local best (pbesti) and global best (gbesti) for
the whole swarm are updated. The stopping criterion chosen
in this paper was to stop the PSO optimization after reaching
a certain number of iterations. In such a procedure, the
weight vector that will correspondingly produce the minimum
training and validation errors will be the optimal one. When
the procedure finishes the testing dataset is employed to test
the generalization capability of this technique on completely
unseen data.

IV. EXPERIMENTS AND RESULTS

In order to present a fair comparison with the available
techniques, we include many of them in the experiments. The
details of the experiments carried on are listed below:
• Comparison with other methods: The PSOFLDA will

be compared against two groups of other techniques: the
first has already been applied into myoelectric control
like ULDA [6], and PCA [3]. The second group include
technique that were not used within the myoelectric
control problems, like Orthogonal Linear Discriminant
Analysis (OLDA) [16], and Fuzzy Discriminant Analysis
(FLDA) [9]. These were included because they represent
new variations to Fihser’s LDA.

• Datasets employed: Since this work aims to present a
novel variation to the existing techniques, a comparison
with the existing techniques is necessary on different
datasets before employing it on an MES dataset. For this
reason, two sets of experiments are conducted. In the first,
the proposed PSOFLDA is tested on datasets acquired

from the Machine Learning Repository (www.ics.uci.
edu/∼mlearn/mlrepository.html) with different number of
samples and numbers of features. In the second exper-
iment, an MES dataset collected from thirty subjects is
employed.

• Testing method employed: The general testing scheme
employed is a three way data split. The dataset utilized is
divided into three sets: training, validation, and testing.
An initial projection matrix is calculated based on the
training set. Then a validation set is used in order to
optimize the weights to produce the optimum projection
matrix that can minimize the mean of the training and
validation errors. Finally a completely unseen testing set
is utilized to measure the generalization capability of the
proposed system.

• Parameters of PSO: Specifically the following parame-
ters values were used: maximum number of generations,
30; maximum velocity smax: 20% of the range of the
corresponding variable; maximum value along a specific
dimension pmax = 1 and minimum pmin =0; w decreases
linearly from 0.9 to 0.4; and acceleration constants c1, c2

are set to 2.0.
• Classifier Type: Three different classifiers will be utilized

to validate the results. The first is a K-Nearest Neighbor
classifier (k-NN). The second is Support Vector Machine
classifier (SVM) for which the LIBSVM package avail-
able online at (http://www.csie.ntu.edu.tw/∼cjlin/libsvm/)
is utilized. The third classifier is the Linear Discriminant
Analysis classifier (LDA).

A. Experiments on UCI datasets

Each dataset taken from the UCI Repository is subdivided
into three parts, with the percentage of the data forming each
of the training, validation and testing given as 20%, 20% and
60% respectively. The classification error results shown in
Table. I were acquired by utilizing a k-NN classifier with the
number of neighbors (k) being 5, while Table. II gives the clas-
sification error results obtained using the SVM classifier. The
results indicate that there are significant variations between the
results obtained by FLDA, ULDA, and OLDA on the different
datasets, in comparison with PCA. Meanwhile, the proposed
PSOFLDA proves to outperform all of those techniques on
all of the datasets utilized in a significant manner. This also
proves the effectiveness of the PSOFLDA while training and
validating on a very small number of samples and testing
on a bigger number of samples, thus better generalization is
achieved by PSOFLDA.

B. Experiments on MES datasets

The MES dataset utilized in this research was originally
collected and used by Chan et al [7]. Eight channels of surface
MES were collected from the right arm of thirty normally
limbed subjects (twelve males and eighteen females). Each
session consisted of six trials. Seven distinct limb motions
were used, hand open (HO), hand close (HC), supination
(S), pronation (P), wrist flexion (WF), wrist extension (WE),
and rest state (R). Data from the first two trials were used
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Fig. 1. Steps for finding the optimal weight vector value using PSO

as training set and data from the remaining four trials were
divided equally into two trials for validation (trails 1 and 2)
and two trails for testing (trails 3 and 4).

As a first part of the MES pattern recognition system, two
sets of features were extracted from the raw data in order
to test the performance of the proposed method with different
feature extraction techniques. The first set of extracted features
included a combination of the first four autoregressive (AR)
coefficients and the root mean square value (Time-Domain
(TD) feature), i.e., number of features = 40 (8 channels ×
5 features/channel). This feature set was referred to as the
TDAR feature set. The second feature set extracted included
the mean of the square values of the wavelet coefficients using
a Symmlet wavelet family with five levels of decomposition,
i.e., number of features = 48 (8 channels× 6 features/channel).
This feature set was referred to as WT feature set. The analysis
window size was 256 msec. Data that were 256 msec before
or after a change in limb motion were removed from the
training set to avoid transitional data. As a dimensionality
reduction part, all of the folowwing five methods: PSOFLDA,
ULDA, OLDA, FLDA, and PCA were utilized to compare
their performance. The final step of the MES recognition
system involves a suitable classifier that can be chosen at

the disposal of the designer. In the current experiments a
Linear Discriminant Analysis (LDA) classifier was chosen.
The advantage of this classifier is that it does not require
iterative training, avoiding the potential for under- or over-
training [7].

The classification accuracy results averaged across thirty
subjects (with one standard deviation) using both the TDAR
and the WT feature sets reduced in dimensionality with
PSOFLDA, ULDA, OLDA, FLDA, and PCA are shown in
Fig.2. The number of extracted features from all methods
was set to c - 1, where c is the number of classes, as the
discriminant analysis based techniques usually ends up with
c - 1 features. The results shown for both the validation and
testing sets were given first without post processing (referred to
as Initial), then with a majority vote (MV) as a post processing
step, followed by the transitional data between classes removed
(NT), and finally with both majority vote and the removal
of the transitional data (MV+NT). The results for both the
validation and testing sets are given in the Table-III.

It is clear from the results that the PSOFLDA was able
to outperform all other methods. This is due to the fact the
PSOFLDA is assigning higher importance to good features
compared to those that are less useful. At the same time, the
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TABLE I
RESULTS ON DATA OBTAINED FROM THE UCI REPOSITORY AVERAGED ACROSS 10 RUNS, USING KNN CLASSIFIER, WITH K=5

Dataset Divisions PCA FLDA ULDA OLDA NPE LPP PSOFLDA
Train 26.0101 18.8889 11.7172 29.3435 18.5354 7.1774 6.2096

German Validate 31.4357 26.4356 27.7228 30.0495 26.6832 13.6508 6.3492
Test 30.1833 26.6833 27.0667 29.7333 26.7834 13.4133 11.6533
Train 3.5870 0.7126 0.5737 0.4288 1.1353 0.4288 1.2863

Dermatology Validate 9.5322 6.6078 9.3555 6.4796 8.4235 7.9037 1.5593
Test 9.3479 5.5652 8.9861 6.5222 9.1671 6.5232 5.5322
Train 16.4286 11.1905 10.4762 9.2857 7.8572 6.9048 3.5715

Glass Validate 32.9546 28.1818 31.8182 22.0455 23.4091 20.6818 3.6364
Test 29.3750 25.0782 26.7969 21.1719 20.8594 19.0625 8.6719
Train 20.2362 12.3150 12.3622 12.3307 7.5433 12.4724 11.3543

Splice Validate 33.0577 24.0874 24.7114 24.2746 30.5772 24.3994 14.7426
Test 33.3647 24.7492 24.7127 24.6186 32.1055 24.6238 17.9990
Train 18.7817 16.0914 20.9137 17.5127 16.7513 17.1066 19.4416

Vowel Validate 46.8844 42.5628 52.6633 43.1156 44.1709 42.7136 28.0905
Test 45.9259 40.1515 50.8249 42.7441 42.8283 41.2963 37.5421
Train 4.3750 0.3125 0.0000 0.0000 1.5257 0.0000 0.0000

Wine Validate 6.9369 5.6687 5.6687 5.9251 6.4379 6.6943 0.0000
Test 5.7943 3.2710 2.9906 4.0186 5.8878 4.2990 2.8971

TABLE II
RESULTS ON DATA OBTAINED FROM THE UCI REPOSITORY AVERAGED ACROSS 10 RUNS, USING SVM CLASSIFIER (LIBSVM PACKAGE)

Dataset Divisions PCA FLDA ULDA OLDA NPE LPP PSOFLDA
Train 17.0161 18.8889 29.3435 18.5354 13.9899 18.5354 18.0808

German Validate 31.4285 26.4356 30.0495 26.6832 28.4159 26.6832 19.5049
Test 31.1200 26.6833 29.7333 26.7834 27.9000 26.7834 26.1667
Train 19.2647 2.2059 0.8823 8.2353 35.2941 8.2353 5.2941

Ionosphere Validate 25.1388 18.7500 23.1944 21.9444 36.1111 21.9444 8.0555
Test 24.7393 17.8672 20.8530 21.6587 35.7820 21.6587 14.7867
Train 27.1338 15.7795 48.0157 15.7008 3.2283 15.7952 15.9055

Splice Validate 30.2808 23.4009 48.1747 23.3697 21.0764 23.3229 16.7082
Test 30.4545 23.0668 48.0093 23.2288 20.6844 23.2236 18.8140
Train 3.0745 2.2187 4.1680 2.2662 2.2504 2.2662 1.2520

Thyrode Validate 3.2965 2.6498 4.5110 2.7760 3.0757 2.7760 1.4195
Test 3.3403 2.8292 4.5416 2.8977 3.0611 2.8977 2.1443
Train 19.6791 20.9625 13.7967 13.7967 13.7433 21.8716 14.4919

Vowel Validate 43.8756 41.4354 38.4210 38.4210 37.9904 42.0574 22.3923
Test 40.8922 39.4275 35.3030 35.3030 35.0336 39.8148 29.7474
Train 4.3363 2.3009 3.9823 3.7168 12.8319 3.7168 0.9735

WDBC Validate 7.8261 6.0000 8.4348 7.7391 12.0000 7.7391 1.3044
Test 7.6246 5.4252 8.5044 7.6833 12.9912 7.6833 3.8123

TABLE III
CLASSIFICATION RESULTS ACHIEVED BY DIFFERENT METHODS

Feature Divisions PSOFLDA FLDA ULDA OLDA PCA
TDAR Validate 95.02 92.25 92.38 92.38 83.51
TDAR Test 93.68 91.67 91.79 91.79 81.93
WT Validate 96.26 93.28 93.35 93.35 89.90
WT Test 94.60 92.32 92.44 92.44 88.21

use of the classification accuracy as a judgment criterion on
the weight values moved the projection matrix closer toward
the optimal projection matrix than all other techniques. Also
the PSOFLDA assigns lower fuzzy membership values to the
outlier points, thus reducing their effect. Another issue to
be mentioned here is that with all of the feature projection
techniques, the WT features achieved higher accuracies than
that achieved using the simple TDAR features. But from
computational cost point of view the performance of the
system with the TDAR features is still highly accepted.

In order to provide a rigorous validation or comparison with

existing techniques for dimensionality reduction, the confusion
matrix for all the subjects was also computed for the different
feature sets. A plot of the diagonal values of the confusion
matrices (class wise classification accuracy) validation and
testing sets are presented in Fig. 3 . All the results indicate
that there were more significant enhancements when applying
the PSOFLDA method than that of the other techniques.

Finally, we also provide the statistical significance test
results for the proposed PSOFLDA against all other method.
A two-way-analysis of variance (ANOVA) test was carried
out with the significance level set to 0.05 and the test results
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Fig. 2. Classification accuracies using different feature sets averaged across 30 subjects with different dimensionality reduction techniques (a) Using the
TDAR validation set and (b) Using the TDAR testing set (c) Using the WT validation set and (d) Using the WT testing set

shown in Table.IV. These results proves the significance of the
achieved classification results with PSOFLDA in comparison
to the available methods on different feature sets.

V. CONCLUSION

In this paper, a novel feature projection technique based on
a mixture of fuzzy logic and Fisher’s LDA was developed.
Unlike the typical variations to LDA, The new technqiue
assigned higher importance to good features compared with
others. The importance was based on a weighting scheme
that was optimized with PSO technqiue. This in turn caused
the PSOFLDA’s projection matrix to be closer to the optimal.
The proposed PSOFLDA technique was fairly compared with
other techniques like FLDA, ULDA, OLDA, and PCA proving
to present better results on real MES datasets. This in turn
proves the ability of the proposed technique in enhancing the
performance of the multifunction myoelectric hand control
system.
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