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Abstract—This paper describes an effective solution to the task
of a remote monitoring of super-extended objects (oil and gas
pipeline, railways, national frontier). The suggested solution is based
on the principle of simultaneously monitoring of seismoacoustic and
optical/infrared physical fields. The principle of simultaneous
monitoring of those fields is not new but in contrast to the known
solutions the suggested approach allows to control super-extended
objects with very limited operational costs. So-called C-OTDR
(Coherent Optical Time Domain Reflectometer) systems are used to
monitor the seismoacoustic field. Far-CCTV systems are used to
monitor the optical/infrared field. A simultaneous data processing
provided by both systems allows effectively detecting and classifying
target activities, which appear in the monitored objects vicinity. The
results of practical usage had shown high effectiveness of the
suggested approach.

Keywords—Bimodal processing, C-OTDR monitoring system,
LPboost, SVM.

I. INTRODUCTION

HE problem of complex monitoring of the super-extended

objects has always represented a practical value. For
example, oil and gas pipelines, railways, national frontier are
examples of typical super-extended objects. Complex
monitoring provides solutions for the following tasks: 1)
telemetric status check of technological equipment on the
monitoring objects; 2) unauthorized activities detection (tie-in
to a pipeline, excavation in the monitoring object vicinity,
pedestrian activity on railways, etc.); 3) timely detection of
technogenic or natural disasters (oil leaks, train derails,
damage of railway tracks), which appear in the monitoring
objects vicinity. Solution of these problems is based on
detection of certain precursors that signal the emergence of
targeted events or processes. We will call those precursors a
"target events" (TE). Examples of TE: a seismoacoustic
vibration accompanying the oil spill from the pipe, a
seismoacoustic noise and other symptoms associated with
unauthorized attempts of tie-in to pipeline or excavation near
the railways, seismoacoustic signals associated with pedestrian
activity in vicinity of railways). Existing multimodal solutions
for monitoring of extended objects use networks of seismic
sensors for control of the seismic field. This approach is
becoming expensive if the object’s perimeter exceeds 10 km
with a system resolution of 10 m. A cost of such system will
be 4-5 times more expensive then cost of the C-OTDR-
system. This is due to a need to provide electrical power and
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radiocommunication for each sensor of the network. The
system described in this report is intended to provide a
complex monitoring based on concurrent observations of
seismoacoustic and optical/IR fields. In this case the TE’s are
detected and classified by both C-OTDR system (observation
of seismic field) and long-range surveillance system (Far
CCTV: observation of the optical/IR field). The combined
data analysis from these two systems will significantly
improve the monitoring reliability.

I1. BASIC IDEA OF THE BIMODAL MONITORING SYSTEM

In the last years, C-OTDR monitoring systems are
recognized as a most effective method for monitoring of the
super-extended objects. A principle of operation of these
systems is based on the infrared stream vibrosensitivity, which
was pumped inside of a fiber-optic cable by means of a
semiconductor laser. The fiber-optic cable has to be buried in
the monitoring object vicinity into depth ~ 50-100 sm. In fact,
this fiber is a supersensitive sensor ("distributed microphone")
measuring the seismic-acoustic field fluctuations. We will call
this fiber-optic cable the fiber-optic sensor (FOS). The
semiconductor laser generates an infrared energy with long
wave 1550nm in form of impulses with 10 ns duration at a
repetition frequency of 2000 kHz. The target information
about seismic-acoustic events which were appeared in the
FOS is contained inside the backscattered infrared energy
stream which has been reflected from the FOS
microimpurities. The local refraction coefficient of the FOS
dramatically changes under impact of the seismoacoustic
vibrations, which were generated by the TE. This change
cardinally influences the structure of the chaotic interference
backscattered radiation. This structure is called a speckle-
structure and it corresponds to a particular FOS part, which is
approximately 10-15m long (C-OTDR systems resolution).
Further, these FOS parts will be called “C-OTDR-channels”.
Thus a speckle-structure change means that the seismic-
acoustic emission source has appeared in a corresponding C-
OTDR-channel (near the corresponding FOS part). Simply
put, time-frequency structure of the speckle will match with
the time-frequency structure of the signal from the seismic
acoustic emission source. The analysis of the speckle structure
changes identifies types of the detected seismoacoustic events
(Fig. 1) and leads to a decision whether the detected event is a
noise or a TE? The place of TE emergence is determined with
accuracy of a virtual ellipsoid (10x15-50 m). The ellipsoid
size depends on the TE type (Fig. 2). This virtual ellipsoid we
will call a target virtual ellipsoid (TVE). One laser is able to
serve the FOS with length ~50 km. Here FOS is a
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conventional monomode fiber-optic cable of type SMF-28 (or
ITU-TG.652, ITU-TG.654, ITU-TG.655). FOS can be one or
several fiber-optic cores of a multicore fiberoptic cable, which
is already deployed near monitoring object and used for an
ordinary data transfer. In this case there is an obvious saving
of resources that would have been spent for the dedicated FOS
installation. However, C-OTDR systems lose their
effectiveness in places where soil has high seismic-acoustic
impedance (sand, gravel) or powerful natural noise sources
(underwater rivers, highways). These are high-risk places for
both C-OTDR and energetically autonomous Far CCTV
(FCCTV) systems used together. The FCCTV systems obtain
high quality pictures of the optic and infrared bands in
distances up to 4-4.5 km. The C-OTDR system is the primary
target designation source for the FCCTV system. C-OTDR
provides coordinates of the TVE and sizes of its axes and
FCCTYV focuses long-range surveillance cameras on the TVE

(Fig. 3).
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Fig. 2 The target virtual ellipsoid

Further follows a fully automatic procedure of express
analysis of obtained images and extraction of relevant image
features for classifications. For the next step the image and C-
OTDR features are processed together in order to classify a
detected TE within a bimodal classification system
framework. The parameters of the bimodal monitoring system
must be configured in a way that dramatically increases the
TE detection classification accuracy to achieve low values of
errors | and II types. Concluding, the bimodal-processing
ensures a significant error reduction of the TE detection and
classification.

III. THE PRINCIPLES OF THE TE DETECTION AND
CLASSIFICATION

The length of extended monitoring objects (oil and gas
pipelines, railways, sections of a state borders) is in the level
of hundreds or even thousands of kilometers. Some of these
objects are located in uninhabited areas with poorly developed
transport and telecommunications infrastructure. In this
regard, every call to the emergency services will incur
additional costs including fuel costs, staff time and
amortization. Therefore the operational response cost to each
case of a false alarm would be very expensive. In order to
reduce operational cost the monitoring system development
was based on a well-known Neyman-Pearson principle:
minimizing value of the type I errors with guaranteed upper
bound of type II errors. The system has designed to work in
two basic modes: “mode A” — monitoring object only by using
C-OTDR-system, “mode B” — monitoring object by using both
FCCTV and C-OTDR systems. In “mode A” the TE
detection/classification  tasks are solved by using
measurements of a seismoacoustic field in the FOS vicinity.
The C-OTDR system provides high TE detection reliability
but moderate classification accuracy. From one side the C-
OTDR system provides cost-effective monitoring solution of
super-extended objects. On another hand, FCCTV’s are
effective for local monitoring using a 3d-Scenes Analysis.
Accordingly the FCCTV needs a reliable target designation,
which contains information about TE area coordinates. In
“mode B” the FCCTV gets from the C-OTDR area
coordinates where a TE had been detected. In this case, the
bimodal-processing provides an efficient solution for both TE
detection and classification tasks.

Observation data of seismo-
acoustic field

Confidence region for
coordinates of target

‘,‘ Video surveillance data in the
visible and IR regions

Fig. 3 Using bimodal approach to get TVE

IV. TE CLASSIFICATION FEATURES IN A BIMODAL SYSTEM

In practice, TE leaves traces in both seismoacoustic and
optical (and IR) fields of the earth. FCCTV system design
took into account fact that shape and color features are more
efficient in contrast with dynamics features [1]. The
shape/color characteristics: Scale Invariant Feature Transform
(SIFT) [2], Color SIFT [3], [5], Histogram of Oriented
Gradient (HOG) [13], Shape Context (SC) [11], PCA-SIFT
[12], RGB-SIFT and HSV-SIFT [4]. The dynamics features:
Space-Time Interest Points (STIP) [6], Dense Trajectories [7].
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It must be also taken into account that the dynamic features
lose their efficiency on super-long distances (more 500 m)
because angular velocity of TE strives to zero with increasing
distance from TE to the FCCTV system. During C-OTDR
development process we found that tandem LFCC (Linear-
Frequency Spaced Filterbank Cepstrum Coefficients, [8])-
GMM (Gaussian mixture model, [9, 10]) is the most effective
feature for the TE classification. Here LFCC's are defined for
speckle-structures of particular C-OTDR channels. Thus
LFCC-GMM-vectors with dimension 1024 were used as C-
OTDR features.

As a result, in the bimodal monitoring system the following
TE classification features (hereinafter j - index feature) were
used:

e ¢ -SIFT (dimension - 128, codebook size 250); j=1;
* ¢, HOG (dimension - 3780, codebook size 2000); j=2.
LFCC-GMM (GMM 1024-vectors), j= 3.

gDLFCCfGMM

V. THE ALGORITHM OF TE CLASSIFICATION AND A METHOD
OF SYSTEM TRAINING

To provide functionality of the FCCTV / C-OTDR system
in “mode B” the C-OTDR and FCCTV subsystems were
trained together as three independent classifiers on the same

labeled data. In this case ¢, ,9,., and @, features were

used. To provide functionality FCCTV / C-OTDR system in
the “mode A” only of C-OTDR subsystem data was used and

only one classificator which uses the ¢ ., feature. The

training sample includes real patterns of the following classes:
1) the pedestrian; 2) a group of pedestrians; 3) car; 4) truck; 5)
hand earthworks; 6) earthworks produced by using excavation
equipment. Thus number of target classes equals six; indexes
of those classes form a set |. Each class is represented with N
samples video and C-OTDR data. The video and C-OTDR
data were obtained in two geographically separated points
with a sampling size N=10. At the first point was the clay soil
and the video was obtained in low visibility conditions (day,
light wind with dust). At the second point the soil was sandy
and the video was obtained in good visibility conditions (day,

no wind, a thin mist). Let us denote X' — image from FCCTV
subsystem; x* — seismic field observations received from C-
OTDR subsystem; {(x' Y, )| k=1,.., N} - training sample for

FCCTV subsystem (@, and ¢, ); {(ij yk) lk=1,.., N} -
training sample for C-OTDR subsystem (¢, .. .., )- Here and

further, y, el.

Following the conclusions of [14] as algorithm of TE
classification in the "mode B" was used by so called
multiclass v-LPBoost [15], built as a linear convex hull of
Lipschitz classifiers. This method steadily works even at a
small training sample size [14]. As the Lipschitz classifiers
have used conventional SVM (Support Vector Machine) [16].

To solve the multiclass TE classification problem those
SVM-classifiers were trained by well-known scheme one-
against-all (for according feature spaces). In FCCTV
subsystem a SIFT and HOG feature spaces were used. Herein
SVM classifier f (-|e,,.b,)=f () corresponds to the SIFT-

fi‘Z(. ‘ ai.:’bi.z) = fi.z )
corresponds to the HOG-feature space. In C-OTDR subsystem
was used SVM classifier f (-|a,,,b )= f (). Here i- index

feature space and SVM classifier

of target class, iel; (a,,.b,) - parameters of j-th SVM

classifier. Those parameters are subject to setting up on a
training stage. According to the concept one-against-all every
class i is separated from the other classes by use the
corresponding classifier f (-|a,,,b ) in the relevant feature

ij?

space. All these SVM-classifiers f (la,.b,) are built based

on the product Bhattacharya kernels [17]. Optimization of the
classifiers parameters (a.‘,,b._,) was made by use of the usual

cross-validation (CV) scheme [18]. A bimodal discriminant
function of v-LPBoost-classifier [15], has following simple
form:

F(x',x%) = argmax(ﬂI COEYAMCOEY AMCS )
The training phase comes down to an optimal choice of
parameters { ﬂA} . This choice is performed by using standard

optimization method (linear programming) according to the

following scheme:
min| —p +— ,
Bép p vN o “

under the condition:

AVAMCO Ry ANNCORY AMNCOIE
argmax (4,f, (X )+ B,1, (<) + B () +& 2 p,

¥, %Y,

k=1..N, D 8, =14,20,j=1.3.

j=1

Here & - slack variables, v - regularization constant, which
is chosen using CV. In “mode A” is used only C-OTDR data.
Because of in this case the classifier has the following form:
F(x*)=arg max( fm(xS ), where f,(<%) is usual SVM-classifier

iel

in the space of feature ¢ . . -

VI. FCCTV/C-OTDR SYSTEM SPECIFICATIONS AND
PECULIARITIES OF INSTALLATION

The bimodal FCCTV / C-OTDR monitoring system is
designed for installation in deserted places with potential
electrical power supply and communications problems.
Therefore, the system must be capable of fully autonomous
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operation including power supply and connectivity with the
monitoring control center. If FCCTV / C-OTDR monitoring
system installation location is provided with electricity and
has mobile communications then system is connected to the
centralized sources of electricity and for communication uses
either fiber optic channel which is laid along the monitoring
object or a mobile internet 3G/4G. In this case the solution is
cheaper. In case when it is necessary to equip the FCCTV / C-
OTDR system with an autonomous power supply (diesel-
generator, battery (up to 1600 A), solar panels (600 watts) or
wind power (1000 W)) - the solution cost increases
significantly.

The system works in the intelligent energy saving mode.
When it is impossible to use a fiber optic connection to a
Control Center, the system is equipped with a radio-relay
systems (range of 250-800 MHz, range up to 80 km, the data
rate 48 Mbit / s). The quality of the video stream: 25 fps at a
resolution of 704x576 pixels. An optic-block and C-OTDR
processing units are arranged in special housings, which are
situated at the FCCTV towers installation points. For electric
supply of the C-OTDR and FCCTYV is used one and the same
power supply, Fig. 4.

FCCTV

Security Management Center

Fig. 4 Structural diagram of FCCTV / C-OTDR

VII. PERFORMANCE CHARACTERISTICS OF THE BIMODAL
FCCTV /C-OTDR SYSTEM

Table I summarizes the results of natural experiments which
to some extent characterize the quality of the operation of an
algorithmic system core. In the experiment, the control unit of
C-OTDR subsystem was located at a distance of 20 km from
the place where TE's were implemented, i.e., seismic-acoustic
environment was monitored at a distance of 20 km. FCCTV
sensors were located 2000 and 3000 m from the TE
implementation. Symbol a (2) denotes a value of I Type error
(false reject), and symbol B (2) - a value of II Type error (false
alarm) for "mode B". Accordingly, symbols o (1) and B (1)
denote values of I and II errors types for "Mode A". The
values a (1), B (1), a (2), B (2) were obtained experimentally
for different types of TE. The data which presented in Table I
demonstrates an acceptable accuracy of TE classification
when using the bimodal FCCTV / C-OTDR system.
Expectedly, in the mode "B", the accuracy of the system is
significantly higher compared with the mode "A". It should be

noted that the weak-energy-small-size TE, which occurring at
great distances from the FCCTV-sensors are classified less
effectively. For example: TE of type a "pedestrian"

TABLEI
PERFORMANCE CHARACTERISTICS

Type of TE Distance from a2 pR2) al) L)
FCCTV
-sensors (m)
«hand digging soil» 2000 0.02  0.04 0.1 0.12
3000 0.03  0.04
«group of pedestrians» 2000 0.15 0.01 0.13  0.11
3000 021  0.02
"pedestrian" 2000 0.07 0.04 0.16 0.1
3000 0.1 0.05
«car» 2000 0.06 0.03 0.09 0.1
3000 0.1 0.04
«truck» 2000 0.07 001 0.07 0.08
3000 023  0.02
«digging soil by a 2000 0.02 001 0.06 0.09
heavy excavator» 3000 0.11  0.01

VIII.CONCLUSION

Comprehensive monitoring of super-extended objects is
becoming increasingly important task that requires using of
modern methods to obtain and process relevant information.
High efficiency of solving the monitoring problem by using a
bimodal approach had been proven during pilot operation of
the FCCTV / C-OTDR system. A bimodal system uses two
types of physical fields - seismoacoustic and optical/IR, which
reflected the current state of one and the same object. To
obtain seismic-acoustic data the vibrosensitive properties of an
infrared flux were used (the infrared flux had been injected
into the fiber optic cable using a semiconductor laser). Fiber
optic cable is laid near the monitoring object in depth of 50-
100 cm. Analysis of the backscattered IR flux allows
identifying and locating threats with high accuracy. In general,
control of the object state can only be based on the C-OTDR
information. However, in those cases where the damage from
possible threats is very significant, the effectiveness of using
only C-OTDR-data may be insufficient and because of it an
additional source of information is used. Such an additional
source is the information obtained from the FCCTV-system.
This system provides high-quality images at distance up to 4 -
4.5 km away from the camera in optic/IR ranges. Performed
tests and results of the pilot operation confirmed a high
efficiency of the bimodal monitoring system.
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