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 
Abstract—This paper describes an effective solution to the task 

of a remote monitoring of super-extended objects (oil and gas 
pipeline, railways, national frontier). The suggested solution is based 
on the principle of simultaneously monitoring of seismoacoustic and 
optical/infrared physical fields. The principle of simultaneous 
monitoring of those fields is not new but in contrast to the known 
solutions the suggested approach allows to control super-extended 
objects with very limited operational costs. So-called C-OTDR 
(Coherent Optical Time Domain Reflectometer) systems are used to 
monitor the seismoacoustic field. Far-CCTV systems are used to 
monitor the optical/infrared field. A simultaneous data processing 
provided by both systems allows effectively detecting and classifying 
target activities, which appear in the monitored objects vicinity. The 
results of practical usage had shown high effectiveness of the 
suggested approach. 
 

Keywords—Bimodal processing, C-OTDR monitoring system, 
LPboost, SVM.  

I. INTRODUCTION 

HE problem of complex monitoring of the super-extended 
objects has always represented a practical value. For 

example, oil and gas pipelines, railways, national frontier are 
examples of typical super-extended objects. Complex 
monitoring provides solutions for the following tasks: 1) 
telemetric status check of technological equipment on the 
monitoring objects; 2) unauthorized activities detection (tie-in 
to a pipeline, excavation in the monitoring object vicinity, 
pedestrian activity on railways, etc.); 3) timely detection of 
technogenic or natural disasters (oil leaks, train derails, 
damage of railway tracks), which appear in the monitoring 
objects vicinity. Solution of these problems is based on 
detection of certain precursors that signal the emergence of 
targeted events or processes. We will call those precursors a 
"target events" (TE). Examples of TE: a seismoacoustic 
vibration accompanying the oil spill from the pipe, a 
seismoacoustic noise and other symptoms associated with 
unauthorized attempts of tie-in to pipeline or excavation near 
the railways, seismoacoustic signals associated with pedestrian 
activity in vicinity of railways). Existing multimodal solutions 
for monitoring of extended objects use networks of seismic 
sensors for control of the seismic field. This approach is 
becoming expensive if the object’s perimeter exceeds 10 km 
with a system resolution of 10 m. A cost of such system will 
be 4-5 times more expensive then cost of the C-OTDR-
system. This is due to a need to provide electrical power and 
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radiocommunication for each sensor of the network. The 
system described in this report is intended to provide a 
complex monitoring based on concurrent observations of 
seismoacoustic and optical/IR fields. In this case the TE’s are 
detected and classified by both C-OTDR system (observation 
of seismic field) and long-range surveillance system (Far 
CCTV: observation of the optical/IR field). The combined 
data analysis from these two systems will significantly 
improve the monitoring reliability. 

II. BASIC IDEA OF THE BIMODAL MONITORING SYSTEM 

In the last years, C-OTDR monitoring systems are 
recognized as a most effective method for monitoring of the 
super-extended objects. A principle of operation of these 
systems is based on the infrared stream vibrosensitivity, which 
was pumped inside of a fiber-optic cable by means of a 
semiconductor laser. The fiber-optic cable has to be buried in 
the monitoring object vicinity into depth ~ 50-100 sm. In fact, 
this fiber is a supersensitive sensor ("distributed microphone") 
measuring the seismic-acoustic field fluctuations. We will call 
this fiber-optic cable the fiber-optic sensor (FOS). The 
semiconductor laser generates an infrared energy with long 
wave 1550nm in form of impulses with 10 ns duration at a 
repetition frequency of 2000 kHz. The target information 
about seismic-acoustic events which were appeared in the 
FOS is contained inside the backscattered infrared energy 
stream which has been reflected from the FOS 
microimpurities. The local refraction coefficient of the FOS 
dramatically changes under impact of the seismoacoustic 
vibrations, which were generated by the TE. This change 
cardinally influences the structure of the chaotic interference 
backscattered radiation. This structure is called a speckle-
structure and it corresponds to a particular FOS part, which is 
approximately 10-15m long (C-OTDR systems resolution). 
Further, these FOS parts will be called “C-OTDR-channels”. 
Thus a speckle-structure change means that the seismic-
acoustic emission source has appeared in a corresponding C-
OTDR-channel (near the corresponding FOS part). Simply 
put, time-frequency structure of the speckle will match with 
the time-frequency structure of the signal from the seismic 
acoustic emission source. The analysis of the speckle structure 
changes identifies types of the detected seismoacoustic events 
(Fig. 1) and leads to a decision whether the detected event is a 
noise or a TE? The place of TE emergence is determined with 
accuracy of a virtual ellipsoid (10x15-50 m). The ellipsoid 
size depends on the TE type (Fig. 2). This virtual ellipsoid we 
will call a target virtual ellipsoid (TVE). One laser is able to 
serve the FOS with length ~50 km. Here FOS is a 
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It must be also taken into account that the dynamic features 
lose their efficiency on super-long distances (more 500 m) 
because angular velocity of TE strives to zero with increasing 
distance from TE to the FCCTV system. During C-OTDR 
development process we found that tandem LFCC (Linear-
Frequency Spaced Filterbank Cepstrum Coefficients, [8])-
GMM (Gaussian mixture model, [9, 10]) is the most effective 
feature for the TE classification. Here LFCC's are defined for 
speckle-structures of particular C-OTDR channels. Thus 
LFCC-GMM-vectors with dimension 1024 were used as C-
OTDR features. 

As a result, in the bimodal monitoring system the following 
TE classification features (hereinafter j - index feature) were 
used: 

 
SIFT

 - SIFT (dimension - 128, codebook size 250); j=1; 

 
HOG

 HOG (dimension - 3780, codebook size 2000); j=2. 

 
LFCC GMM




LFCC-GMM (GMM 1024-vectors), j= 3.  

V. THE ALGORITHM OF TE CLASSIFICATION AND A METHOD 

OF SYSTEM TRAINING 

To provide functionality of the FCCTV / C-OTDR system 
in “mode B” the C-OTDR and FCCTV subsystems were 
trained together as three independent classifiers on the same 

labeled data. In this case 
SIFT

  ,
HOG

  and 
HOG

  features were 

used. To provide functionality FCCTV / C-OTDR system in 
the “mode A” only of C-OTDR subsystem data was used and 

only one classificator which uses the 
LFCC GMM




 feature. The 

training sample includes real patterns of the following classes: 
1) the pedestrian; 2) a group of pedestrians; 3) car; 4) truck; 5) 
hand earthworks; 6) earthworks produced by using excavation 
equipment. Thus number of target classes equals six; indexes 
of those classes form a set I. Each class is represented with N 
samples video and C-OTDR data. The video and C-OTDR 
data were obtained in two geographically separated points 
with a sampling size N=10. At the first point was the clay soil 
and the video was obtained in low visibility conditions (day, 
light wind with dust). At the second point the soil was sandy 
and the video was obtained in good visibility conditions (day, 

no wind, a thin mist). Let us denote 
Ix  – image from FCCTV 

subsystem; 
Sx – seismic field observations received from C-

OTDR subsystem;   , | 1, ...,
k

I

k
x y k N - training sample for 

FCCTV subsystem (
SIFT

  and 
HOG

 );   , | 1, ...,
k

S

k
x y k N - 

training sample for C-OTDR subsystem (
LFCC GMM




). Here and 

further, 
k

y  I .  

Following the conclusions of [14] as algorithm of TE 
classification in the "mode B" was used by so called 
multiclass ν-LPBoost [15], built as a linear convex hull of 
Lipschitz classifiers. This method steadily works even at a 
small training sample size [14]. As the Lipschitz classifiers 
have used conventional SVM (Support Vector Machine) [16].  

To solve the multiclass TE classification problem those 
SVM-classifiers were trained by well-known scheme one-
against-all (for according feature spaces). In FCCTV 
subsystem a SIFT and HOG feature spaces were used. Herein 
SVM classifier 

1, 1, 1, 1,
( | , ) ( )

i i i i
f b f    corresponds to the SIFT-

feature space and SVM classifier 
,2 ,2 ,2 ,2

( | , ) ( )
i i i i

f b f    

corresponds to the HOG-feature space. In C-OTDR subsystem 
was used SVM classifier 

,3 ,3 ,3 ,3
( | , ) ( )

i i i i
f b f   . Here i- index 

of target class, i  I ;  , ,
,

i j i j
b  - parameters of j-th SVM 

classifier. Those parameters are subject to setting up on a 
training stage. According to the concept one-against-all every 
class i is separated from the other classes by use the 
corresponding classifier 

, , ,
( | , )

i j i j i j
f b  in the relevant feature 

space. All these SVM-classifiers 
, , ,

( | , )
i j i j i j

f b  are built based 

on the product Bhattacharya kernels [17]. Optimization of the 
classifiers parameters  , ,

,
i j i j

b  was made by use of the usual 

cross-validation (CV) scheme [18]. A bimodal discriminant 
function of ν-LPBoost-classifier [15], has following simple 
form: 

 

 1 ,1 2 ,2 3 ,3
( ) arg max ( ) ( ) ( .I S I I S

i i i
i

F x x f x f x f x  


  
I

,  

 
The training phase comes down to an optimal choice of 

parameters 
j

 . This choice is performed by using standard 

optimization method (linear programming) according to the 
following scheme: 

 

, ,
1

1
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N

k
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Here   - slack variables,   - regularization constant, which 

is chosen using CV. In “mode A” is used only C-OTDR data. 
Because of in this case the classifier has the following form: 

 ,3
( ) arg max (S S

i
i

F x f x



I

, where 
,3

( )S

i
f x  is usual SVM-classifier 

in the space of feature 
LFCC GMM




. 

VI. FCCTV / C-OTDR SYSTEM SPECIFICATIONS AND 

PECULIARITIES OF INSTALLATION 

The bimodal FCCTV / C-OTDR monitoring system is 
designed for installation in deserted places with potential 
electrical power supply and communications problems. 
Therefore, the system must be capable of fully autonomous 
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operation including power supply and connectivity with the 
monitoring control center. If FCCTV / C-OTDR monitoring 
system installation location is provided with electricity and 
has mobile communications then system is connected to the 
centralized sources of electricity and for communication uses 
either fiber optic channel which is laid along the monitoring 
object or a mobile internet 3G/4G. In this case the solution is 
cheaper. In case when it is necessary to equip the FCCTV / C-
OTDR system with an autonomous power supply (diesel-
generator, battery (up to 1600 A), solar panels (600 watts) or 
wind power (1000 W)) - the solution cost increases 
significantly.  

The system works in the intelligent energy saving mode. 
When it is impossible to use a fiber optic connection to a 
Control Center, the system is equipped with a radio-relay 
systems (range of 250-800 MHz, range up to 80 km, the data 
rate 48 Mbit / s). The quality of the video stream: 25 fps at a 
resolution of 704x576 pixels. An optic-block and C-OTDR 
processing units are arranged in special housings, which are 
situated at the FCCTV towers installation points. For electric 
supply of the C-OTDR and FCCTV is used one and the same 
power supply, Fig. 4. 

 

 

Fig. 4 Structural diagram of FCCTV / C-OTDR 

VII. PERFORMANCE CHARACTERISTICS OF THE BIMODAL 

FCCTV / C-OTDR SYSTEM 

Table I summarizes the results of natural experiments which 
to some extent characterize the quality of the operation of an 
algorithmic system core. In the experiment, the control unit of 
C-OTDR subsystem was located at a distance of 20 km from 
the place where TE's were implemented, i.e., seismic-acoustic 
environment was monitored at a distance of 20 km. FCCTV 
sensors were located 2000 and 3000 m from the TE 
implementation. Symbol α (2) denotes a value of I Type error 
(false reject), and symbol β (2) - a value of II Type error (false 
alarm) for "mode B". Accordingly, symbols α (1) and β (1) 
denote values of I and II errors types for "Mode A". The 
values α (1), β (1), α (2), β (2) were obtained experimentally 
for different types of TE. The data which presented in Table I 
demonstrates an acceptable accuracy of TE classification 
when using the bimodal FCCTV / C-OTDR system. 
Expectedly, in the mode "B", the accuracy of the system is 
significantly higher compared with the mode "A". It should be 

noted that the weak-energy-small-size TE, which occurring at 
great distances from the FCCTV-sensors are classified less 
effectively. For example: TE of type a "pedestrian" 

 
TABLE I 

PERFORMANCE CHARACTERISTICS 
Type of TE Distance from 

FCCTV 
-sensors (m) 

(2)  (2) (1)  (1)  

«hand digging soil» 2000 0.02 0.04 0.1 0.12 

3000 0.03 0.04 

«group of pedestrians» 2000 0.15 0.01 0.13 0.11 

3000 0.21 0.02 

"pedestrian" 2000 0.07 0.04 0.16 0.1 

3000 0.1 0.05 

«car» 2000 0.06 0.03 0.09 0.1 

3000 0.1 0.04 

«truck» 2000 0.07 0.01 0.07 0.08 

3000 0.23 0.02 

«digging soil by a 
heavy excavator» 

2000 0.02 0.01 0.06 0.09 

3000 0.11 0.01 

VIII. CONCLUSION 

Comprehensive monitoring of super-extended objects is 
becoming increasingly important task that requires using of 
modern methods to obtain and process relevant information. 
High efficiency of solving the monitoring problem by using a 
bimodal approach had been proven during pilot operation of 
the FCCTV / C-OTDR system. A bimodal system uses two 
types of physical fields - seismoacoustic and optical/IR, which 
reflected the current state of one and the same object. To 
obtain seismic-acoustic data the vibrosensitive properties of an 
infrared flux were used (the infrared flux had been injected 
into the fiber optic cable using a semiconductor laser). Fiber 
optic cable is laid near the monitoring object in depth of 50-
100 cm. Analysis of the backscattered IR flux allows 
identifying and locating threats with high accuracy. In general, 
control of the object state can only be based on the C-OTDR 
information. However, in those cases where the damage from 
possible threats is very significant, the effectiveness of using 
only C-OTDR-data may be insufficient and because of it an 
additional source of information is used. Such an additional 
source is the information obtained from the FCCTV-system. 
This system provides high-quality images at distance up to 4 - 
4.5 km away from the camera in optic/IR ranges. Performed 
tests and results of the pilot operation confirmed a high 
efficiency of the bimodal monitoring system.  
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