International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

Suitability of Black Box Approaches for the
Reliability Assessment of Component-Based Software

Anjushi Verma, Tirthankar Gayen

Abstract—Although, reliability is an important attribute of
quality, especially for mission critical systems, yet, there does not
exist any versatile model even today for the reliability assessment of
component-based software. The existing Black Box models are found
to make various assumptions which may not always be realistic and
may be quite contrary to the actual behaviour of software. They focus
on observing the manner in which the system behaves without
considering the structure of the system, the components composing
the system, their interconnections, dependencies, usage frequencies,
etc. As a result, the entropy (uncertainty) in assessment using these
models is much high. Though, there are some models based on
operation profile yet sometimes it becomes extremely difficult to
obtain the exact operation profile concerned with a given operation.
This paper discusses the drawbacks, deficiencies and limitations of
Black Box approaches from the perspective of various authors and
finally proposes a conceptual model for the reliability assessment of
software.

Keywords—Black Box, faults, failure, software reliability.

[. INTRODUCTION

RRORS may cause fault and faults may cause the failure

of the system. Yet, it is not necessary that all errors may
cause faults and all faults may lead to failures. There may be
some errors which may not cause fault and some faults which
may never cause a failure (as shown in Fig. 1). Reliability may
be viewed a user-oriented factor [8]. If the user hardly
experiences failure, then the system is taken to be more
reliable than the system failing more often. According to some
dictionaries, a software usually corresponds to the routines,
programs, symbolic language, or data which control the
functioning and directs the operation of hardware. Since, it is
known that software cannot be touched, has no weight, no
material, or energy but when it is executed properly it
performs a specific task. Many books define software as a
group of programs which perform a specific task. The
program is usually defined as the set of instructions to perform
a specific task. Hence, software is considered to be an
abstract-ware. Hence, a software process is purely a logical
process. Therefore, predicting the reliability of software is
predicting the reliability of this abstract-ware. In accordance
with ANSI, software reliability corresponds to “the probability
of failure-free software operation for a specified period of
time in a specified environment.” [9], [10]. According to
Hoang Pham [45], [46], in software, failures in software are
caused by incorrect input data, incorrect logic or incorrect
statements (without considering the hardware or operating
environment dependencies) and in hardware, the failures are

A Verma is with the JNU, India (e-mail: avbinni56@rediffmail.com).

caused by environmental factors, design errors, misuse,
random failures and material deterioration.

¢ software error
o software fault
4 Te * software failure

#

Fig. 1 Software errors, faults and failures

II. ISSUES FROM THE LITERATURE

Various models like time between failure models, failure
count model, etc. focus on observing the way in which the
system behaves irrespective of the structure of the system.
These models treat the software as a black box without
considering the architecture, the components (composing the
system), their interconnections, their dependencies and their
usage frequencies. These block box models may not be
suitable to find out the set of all executable paths to estimate
the reliability since they do not consider the inner structure of
the system and hence may not be suitable for the reliability
estimation of large and complex component based software
systems. The failure data used in many of these black box
models are inconsistent with today's multitasking operating
environment with varying system loads. Therefore,
architecture based models which consider the behavior of the
system based upon the usage of various portions of the code,
relating the system or application reliability to the reliabilities
of individual components and system structure are needed.
Software reliability assessment is an action of estimating the
reliability of software. In accordance with [4], it can be
estimated by two ways as follows:

e  System level reliability: In it, the whole software system
is considered as a single unit and then reliability is
calculated. Here unit testing is used. But, it may not be
very suitable for component based system as it ignores the
compositional properties of components.

e Component level reliability: In it, the reliability of
individual component is calculated and then these
individual components’ reliability is used to calculate the
whole system reliability. Here, integration testing is used

767



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

and may be more suitable for component based software
systems.

Littlewood [26], [27] expressed that certain kind of
assumptions which have been made seemed to be very naive,
like for example when the software failure rate or crash rate is
proportional to the remaining number of errors in the software.
He stated that he could not find the validity of this assumption
in the programs which he had seen. Since, one can easily
imagine a scenario in which a program with two bugs in little
exercised portions of code is considered to be more reliable
than a program containing only one and frequently
encountered bug. He queried the reason for which the failure
times of a program cannot be predicted exactly. If one knows
the way in which the program behaved for every conceivable
input, and could predict future inputs, then one can suppose
that it would be possible to predict the next failure epoch.
Unfortunately, one never has such a total knowledge. Most
authors are of the opinion that the failure process is random.
But, what are the sources of this randomness? In this case the
conceptual model of software which is most widely used is the
input-program-output model as shown in Fig. 2. According to
this model, some (random) mechanism selects points from the
input space to be processed by the program and produces
points of the output space. The program can thus be seen as a
mapping of I into O, that is p: [ O. One would observe
failures in the output whenever the program received input
from the subset I: this subset being encountered "randomly",
and thus the failures in the output space occurring randomly.
Thus, if one knows the properties of the program totally, it
might be reasonable to assume that the failure process would
be purely random, reflecting the fluctuations of the input data
stream. Usually, the reasoning at this point about this model
stops and inputs are seen as the only source of randomness. If
one imagines that two programming teams have been set
perform the same task, each to write a program for the same
specification. The resulting programs pl, p2 then operate in
identical environments (i.e. have the same input space, 1) and
their outputs are compared by a comparator (quality engineer,
customer, etc.). From the program specification the
comparator will define a single set of correct outputs along
with a single set of incorrect outputs (failures), Or, which is
taken together to form the total output set, O. Since the input
set is the same for both programs, the difference between them
is revealed as a difference between two mappings from I to O,
with the same subset Or defining failures in each case as
shown in Fig. 3. In other words, the two programs will differ
in the way they partition the input space into a region I,
which will produce failures, and its complement. Our
uncertainty about the programs, then, can be regarded as
uncertainty about the nature of Ir. If the program is changed,
in a bug-fixing attempt, the partitioning of I changes: say Ir
becoming I¢'. Although, the intention is to improve reliability
by removing sources of failure, this cannot be guaranteed.
Indeed, the bug fixing itself is a new source of uncertainty.

Input space, 1

{ Program, p

Output space, O

Fig. 2 Input-program-output model of Littlewood

Fig. 3 The model with two programs by Littlewood

Cheung [1], in 1980 introduced a model which measures
reliability of a service to users depends on the reliability of the
components for a user profile. The reliability value was
measured with respect to a user environment. Yet, sometimes
for a given operation, it becomes too difficult to get the exact
operation profile. In accordance with [2], although several
software reliability growth models exist like, Failure count
model, Time between failure model, etc. yet these models may
not be versatile enough with respect to various types of
systems because of their various assumptions. Many models
assume that there is equal contribution of all the faults (present
in the program) to reliability of software. This may not always
be true since different types of faults may have different
occurrence frequencies. Further, some models assume that
failures are independent, bugs can be eliminated in negligible
time and perfect debugging. Again, all these assumptions may
not always be realistic for various software systems.

In 1988, Weiss et al. [3] provided a model for obtaining the
probability value for logical correctness by using a-
discrepancy between the observed and expected output. Again,
there may be occurrences of operational failures caused by
operational errors (e.g. overflow, etc.) even when the program
is logically correct. But, this was not focused on and moreover
no methods were specified to select the test cases. In
accordance with [3], most of the time-dependent definitions
expresses that the reliability of a program is the probability

768



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

that a software error which causes a discrepancy from the
specified requirements, by more than specified tolerances, in a
specified environment, does not lead to a failure during a
specified exposure period [15]-[21]. Domain-based definitions
usually allow the “exposure period” be a run of the program
thereby, attempting to capture the idea that the reliability of a
program corresponds to the probability that an arbitrary run of
the program will produce the specified results [21], [22].
Time-dependent definitions provide a straight forward
approach to measuring reliability; the indexes most commonly
derived in such an approach include the mean time to failure,
number of remaining errors, and probability of failure in a
time interval [0, t]. Various models which use time as the unit
of exposure are distinguished by the different assumptions that
they make concerned with questions like the existence of
faults or the occurrence of failures. There has been
considerable debate as to which among the time-based models
is the most reasonable [23], [24]. From the history, one finds
that these models have been judged in part on statistical
analysis, empirical results, and ease of use.

lannino et al. [25] proposed a set of criteria to judge
software reliability models, particularly the time-dependent
models, and recommended that these criteria be used to
compare and assess these models. For the two principal
domain-based models like Nelson model [22] and Brown and
Lipow’s model [23], the value of the reliability function does
not depend on time. The reliability function R, in these
models, remains constant, but the estimates of its value change
as more information becomes available. It is in contrast to the
time-based models, where the value of the reliability function
R (t) changes as more information becomes available. Yacoub
et al. [4] introduced a path based approach considering various
execution scenarios. It obtained the reliability of a component
based system using the reliability values of the components,
their interface and link reliabilities. But, there were no
guidelines for obtaining the reliability values of used
components. Gayen [5] analyzed the shortcomings in the
conventional failure rate based models and proposed a new
model for estimating minimum reliability of software. In the
useful life of a software, when there are no upgrades, various
authors have contradicting opinions. According to [5], if a
software is not modified, the reliability value should not
change with time. However, the reliability can change based
on the changes in operating environment. Error seeding can
be used to predict the number of residual errors in a system,
provided that the seeded errors match closely with the kind of
defects that actually exist. Although, it is difficult to predict
the different types of errors that might exist in software, yet to
some extent, the different categories of errors that may remain
can be estimated to a first approximation by analyzing the
historical data of similar software. But, this may not always
prove to be useful since there may be more than one errors
causing a failure.

For the reliability assessment of reliability of a modular
software system, [6] developed an adaptive framework using
path testing. A sensitivity analysis was carried out to find out
the important components. But, again they have used a black

box approach for obtaining the reliability values of individual
components with various assumptions which may not always
be realistic. Mirandola et al. [11] stressed that the reliability of
a software system depends not only on the reliability of the
individual components, their interactions, and their operating
environment but also on the way in which the system is used
(usage/operational profile). The impact of faults on reliability
differs based on the way in which the system is used, (i.e. how
often the faulty part of the system gets executed). When the
usage profiles are unknown, the analysis of various ways and
frequencies for executing the system is a big challenge for
reliability prediction.

Fouadben Nasr Omri [12] stressed that statistical usage-
based test cases are generated and commonly used for
assessing the reliability of a software. But in most of the cases
it is impracticable, as because to reach a target reliability value
even for a small software the number of test cases executions
required is too large [13], [14]. In accordance with [7], [28]
considerable amount of research effort in the past were
focused on modeling the reliability growth during the
debugging phase. These black-box models treat the software
as a monolithic whole, considering only its interactions with
external environment, without an attempt to model internal
structure. Usually, in these models no information other than
the failure data is used.

The common feature of black-box models is the stochastic
modeling of the failure process, assuming some parametric
model of cumulative number of failures over a finite time
interval or of the time between failures. Failure data obtained
while the application is tested are then used to estimate model
parameters or to calibrate the model. With the increasing
emphasis on reuse, many organizations develop and use
software as components which are parts of larger application.
Use of Black-box models in this case may be quite
inappropriate for modelling these component-based softwares.
Hence, there arises a need for a model for analyzing software
components and their interconnections. In this context, the
white-box approach may be useful since it aims to estimate
system reliability of the component based software by
considering the information of its architecture.

The following are some issues motivating the use of
architecture-based approaches for software systems:

i) Techniques are to be developed for the analysis of
reliability/performance issues concerned with applications
which are built from reusable and third party software
components.

il) The way in which component reliabilities/performance
and component interactions affect the system reliability/
performance are to be understood.

iii) Guidance is to be provided to the process of identifying
critical components and interfaces.

iv) The sensitivity of the reliability of the application to the
reliabilities of various components used along with their
interfaces are to be studied.

v) Techniques are to be developed for quantitative analysis
which one is able to apply throughout the life cycle of
software.

769



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

An exception to this may be considered in the case of
software written from scratch. Since, the modern software
engineering practice corresponds to making evolutions from
existing software; as a result, there is an enhancement to the
predictions performed for a product using field data with
respect to previous and similar software products. But, when
the architecture, in the absence of source code is only
available, then one can proceed to build a simulation model
for conducting studies similar to those designed for
investigating the impact of components on the system
reliability/performance for the specified architecture. The
managers may use this information for rethinking their
system’s architecture, so as to proceed for planning their
resource allocation. These projections and decisions might be
constantly updated with the availability of new testing data.
Considering the software architecture along with information
about the components along with their interactions,
calculations can be performed in what-if analysis. For
example, what—if a certain component was more or less
reliable? In what way would it affect system reliability?
Architecture-based approach may be used for allocating effort
to components which are critical from the reliability/
performance perspective as it permits an insight considering
the sensitivity of the entire system to each component.

For calculating the system reliability from components
information or for stipulating system reliability and calculating
an allocated reliability of components, architecture-based
approach can be used. These approaches can show the scale as
well as the scope of effort which are needed to illustrate the
required levels of components reliabilities. Further, it can also
focus on the reasonableness of building a system to the desired
reliability levels based on the reuse of a specific collection of
components. Most of the work concerned with architecture-
based reliability assessment, usually assume that reliability
values of the components are available, and do not focus on
developing techniques for obtaining them. Again the use
software reliability growth models are not always possible in
order to estimate the individual component’s reliability, since
a difficulty may arise due to the scarcity of failure data.
Hence, predictions which are based on failure data are of little
interest to users unless sufficient data is available for it to be
statistically representative.

Considering the underlying assumptions of software
reliability growth models (like, random testing performed in
accordance with the operational profile where the
independence of successive testing runs may be seriously
violated in the unit testing phase) difficulties may arise. These
models may be used for making reliability assessment of
software considering the results of testing which is performed
during its validation phase. Usually in this phase, hardly any
changes are introduced in the software. In accordance with
this context, testing do not correspond to a development
activity concerned with discovering and fixing faults, but
rather it is considered to be an independent assessment of the
execution of software in its representative operational
environment. But, the problem is that the number of
executions required for estimating the levels of reliability

values commensurate with some reasonable expectations. For,
the probabilistic software reliability assessment for levels (as
required for safety-critical applications), like failure rate
10°h™" or 107 h™' failure probability per demand, it is
presently not reachable [29]. It is because to achieve a
reasonable statistical confidence concerned with the reliability
estimate random testing might require decades of testing.
Hence, a practical current limit which is generally agreed upon
is in the range of 1072 to 10™* h™! [30], for the assessment of
failure rate prior to operational use.

Several other techniques were also proposed for estimating
component’s reliability. Krishnamurthy and Mathur [31]
considered the technique of seeding faults into software. Voas
[32] determined the quality of COTS components by using a
black-box testing method with the system-level fault injection.
The fault-based techniques are considered to be only as
powerful as the range of fault classes these techniques
simulate [33]. But, it may not always be possible to capture
the various classes of faults present in the software. Gokhale et
al. [34] stressed that the software application as a whole is
taken into consideration and only its interactions with the
outside world are modelled (like a black box) in conventional
approaches for analyzing the performance/reliability of the
software applications.

[II. THE PROBLEM

A major drawback of these approaches is that they ignore
the internal structure of the application, and hence, the
performance/reliability of the various parts of the application
are not explicitly and individually captured [35], [36]. Even a
moderate-sized software application is likely to be developed
using a “divide and conquer” strategy and made up of several
interacting parts. With the advent of component technologies
and object-oriented programming people started realizing the
vision of assembling software applications from
systematically developed reusable software components [37].
As a result, a renewed interest was generated in “architecture-
based analysis” which aims to characterize the
performance/reliability behavior of software applications
based on the behavior of the ‘“components” and the
“architecture” of the application [7], [31], [38]-[44]. However,
many approaches assume that a fault/defect in software causes
a failure, without considering the aspect that there could be
more than one faults/defects leading to a failure. Even, there
could be some faults/defects which may not lead to a failure.

From the survey, it can be inferred that in many approaches
it is found that various assumptions are made in various black
box models, like failures are independent, perfect debugging
and failure can be corrected in a negligible time [8] etc. These
assumptions may not be very realistic and many of the
software do not behave in accordance with these assumptions.
Since component/system execution time depends on various
instance characteristics like input data, execution scenario,
loops (which may be indefinite) etc. and hence it varies with
various instances of execution of the program. Therefore, it
becomes very difficult to obtain the exact usage ratio for
component usage ratio. Dependencies among the components

770



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

have not been taken into consideration in many approaches.
Even if the reliability bounds, delivers the range of reliability
values irrespective of any operational profile, yet, sometimes
it becomes necessary for practitioners to use exact values for a
given operation (i.e. the reliability value when using a
particular operation profile, for a given operation). But again,
sometimes it becomes indeed a mammoth task in obtaining the
exact operation profile concerned with an operation.

IV.THE PROPOSED CONCEPTUAL MODEL

For the input taken from the input space I to generate the
output in the output space O, various execution paths in the
program module are followed, based on the input domain and
other instance characteristics (concerned with various
execution scenarios of the program module). It is basically a
modification of the model provided by Littlewood [26] with
the addition of various execution paths (which may depend on
the input data and other data generated by the program during
execution based on the instance characteristics) for various
execution scenarios of a program module as shown in Fig. 4.

Execution pat

Lo

Program Module

Fig. 4 The diagrammatic representation of the proposed conceptual
model

Some examples where data is generated and used by the
program based on the instance characteristics to follow
various execution paths are as follows:

e In computing where procedural generation is the method
of creating data algorithmically rather than manually. It is
commonly used in computer graphics for creating textures
in the context of video games it is also used for creating
various other kinds of content such as items, quests or
level geometry.

- Fractals, are examples of procedural generation, which
express this concept, around which a whole body of
mathematics  (fractal geometry has developed).
Commonplace procedural content includes textures and
meshes.

- Sound, which is often procedurally generated as well, has
applications in both speech synthesis as well as music.

It has been used to create several compositions in various
genres of electronic music by artists like Brian Eno who
popularized the term "generative music". Procedurally
generated elements which have appeared in earlier video
games is often used in film to rapidly create visually
interesting and accurate spaces. One application which is

known as "imperfect factory," is where artists can rapidly
generate a large number of similar objects. It is because of the
fact that, in real life, no two objects are ever exactly alike. For
example, an artist could model a product for a grocery store
shelf, and then create an imperfect factory which would
generate a large number of similar objects to populate the
shelf.

e It may also be used in intelligent software (concerned
with Robotics, Automation and Testing) where
Computational and Artificial Intelligence are used for
designing, modelling and simulating various scenarios
concerned with a process.

e In a multitasking operating system which uses signals to
report exceptional situations to an executing program.

Some signals report errors such as references to invalid
memory addresses, stack overflow, etc.; others report
asynchronous events, such as disconnection of a phone line,
etc. Some kinds of events make it inadvisable or impossible
for the program to proceed as usual, and the corresponding
signals normally abort the program. Hence, considering this
conceptual model, the problem gets confined to determining
the reliability of a program module/component by considering
various execution paths (which may depend on the input data
and other data generated by the program during execution,
based on the instance characteristics) for various execution
scenarios of a program module. The obtained reliability values

of various modules/components are to be combined using a

suitable methodology based on the dependencies of the

components for various execution scenarios to obtain the
reliability of the component based software. From, the study it
has been found that a system/subsystem (comprising of
software and hardware) may fail when

The software fails

when there is a fault in the software

- when there is a fault in the hardware or when hardware
fails

- when there is a change in hardware (incompatibility)

» The hardware fails

- when there is a fault in the software or when software
fails

- when there is a fault in the hardware

- when there is a change in software (incompatibility)

»  When both software and hardware fails together.

Considering these and several other issues (discussed
earlier), a suitable model needs to be developed for the
reliability assessment of a software system. Since, the testing
environment needs to capture the operating environment for
good results. Therefore, the reliability assessment starting
from the subsystem (considering the operating environment of
the subsystem) to the system may help us in obtaining good
results.

A. The Proposed View for a Software System

A software system can be broadly viewed as a system
which may comprise of Application Software components,
Operating System components and hardware components
having interdependencies among themselves. To obtain the

771



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

reliability value of each component and not the system as a
whole, each component needs to be tested in isolation (unit
testing). This may be accomplished by testing the component
in its ideal operating environment. It is because the intention is
to detect the failures which are caused by the faults present
only in this component and not contributed by the faults
present in other components of the system. In general, a
Software System may comprise of the Application Software
with the underlying Operating System (which may even
include hardware). Fig. 5 shows a common example of a 3-tier
architecture for a Software System.

In accordance with this architecture the Software System
may fail under the following conditions:
i)  When the Application Software fails considering the

Operating System and the Hardware to work properly

il) When the Operating System fails considering the
Application Software and the Hardware to work properly
When the Hardware fails considering the Application
Software and the Operating System to work properly
When both the Application Software and the Operating
System fails considering the Hardware to work properly
v) When both the Application Software and the Hardware
fails considering the Operating System to work properly
When both the Operating System and the Hardware fails
considering the Application Software to work properly

vii) When Application Software, Operating System and the
Hardware fails.

Besides the system also may also fail when there are
incompatibilities between
e the Application Software and Operating System
e the Operating System and Hardware
as is evident from the history of Ariane 5, developed under
European Space Agency. In June 4, 1996 Ariane 5 Flight 501
veered off its flight path, lost control and got exploded
resulting in a financial loss of the cargo and rocket of around
$500 million [8]. Although, much of the software that was
used for Ariane 5 was the same as in Ariane 4. In Ariane 4, it
was working perfectly fine but it resulted in a failure in Ariane
5. Table I, shows the various conditions under which this 3-
tier software system may fail.

Application Software

Operating System

Hardware

Fig. 5 A diagrammatic representation of the 3-tier architecture of a
Software System

TABLEI
VARIOUS CONDITIONS UNDER WHICH THE CONSIDERED 3-TIER SOFTWARE SYSTEM MAY FAIL

Application  Operating System Hardware Incompatibilities between Application  Incompatibilities between Operating ~ System
Software fails software fails fails  Software and Operating System software System software and hardware may fail
Yes No No - - Yes
No Yes No - - Yes
No No Yes - - Yes
Yes Yes No - - Yes
Yes No Yes - - Yes
No Yes Yes - - Yes
Yes Yes Yes - - Yes
No No No Yes No Yes
No No No No Yes Yes
No No No Yes Yes Yes
No No No No No No

“-” denotes irrespective of Yes/No

Tier - n

Tier - 4

Tier - 3

Tier -2

Tier - 1

Fig. 6 Diagrammatic representation of an n-tier System

The reliability values of this 3-tier software system can be
expressed as:

Relsys = P(Proper execution of the system comprising of Application
software, Operating System software and the hardware) = P(Proper
execution of Application Software | The subsystem comprising the

Operating System software and the hardware is ideal) * P(Proper
execution of the subsystem comprising of the Operating System
software and the hardware) * P(not encountering failure due to
incompatibilities between Application Software and Operating
System software)

P(Proper execution of the subsystem comprising the Operating
System software and the hardware) = P(Proper execution of
Operating System Software | The subsystem comprising only
hardware is ideal) * P(Proper execution of the subsystem comprising
only hardware) * P(not encountering failure due to incompatibilities
between Operating System software and hardware)



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

P(Proper execution of the subsystem comprising only
hardware) is the reliability value of the hardware component
where P(x) corresponds to the probability of ‘x’, P(xy)
corresponds to the conditional probability of ‘x’ when ‘y’
takes place. On generalizing this for an n-tier system (as
shown in Fig. 6), the following formula can be used for
obtaining the reliability value of an n-tier system.

Relsys = P(Proper execution of the system/subsystem from tier -1 to
tier - n)
= P(Proper execution of the tier - n component | The
subsystem from tier - 1 to tier — (n-1) is ideal) *P(Proper
execution of the subsystem from tier - 1 to tier — (n-1)) *
P(not encountering failure due to incompatibilities between
tier — n and tier — (n-1) components)

e

P(Proper execution of the subsystem from tier - 1 to tier —
(n-1)) can be obtained by replacing n by n-1 in (1).

Hence, the reliability values of the other subsystems can be
obtained by substituting suitable values for n in (1).

P(Proper execution of tier -1 component) is the reliability
value of the tier-1 component.

Reliability values of each component used may be obtained
(and not the system as a whole), by testing each component in
isolation (unit testing). (This may be accomplished by testing
the component in its ideal operating environment) in
accordance with a suitable structural analysis based reliability
assessment approach.

V. CONCLUSION

Although there are various software reliability models
existing today, yet there is no suitable model which can be
used for reliability assessment of software. Many of the
models are black box models, which make certain assumptions
like failures are independent, perfect debugging and failure
can be corrected in a negligible time [8] etc. These
assumptions may not be very realistic as many of the
softwares do not behave in accordance with these
assumptions. Since component/system execution time depends
on various instance characteristics like input data, execution
scenario, loops (which may be indefinite) etc. and hence it
varies with various instances of execution of the program.
Therefore, it becomes very difficult to obtain the exact usage
ratio for component usage ratio. Dependencies among the
components has not been taken into consideration in many
approaches. The reliability bounds, although provides us the
range of reliabilities values irrespective of any operational
profile, yet for practitioners, it becomes sometimes necessary
to use the exact reliability values for a specified operation (i.e.
using a specific operation profile concerned with the given
operation). Again, sometimes it becomes difficult to obtain the
exact operation profile for a given operation. Various models
like failure count model, time between failure models etc. only
focus on observing the way in which the system behaves
irrespective of the structure of the system. They treat the
software as a black box and do not consider its structure and

architecture of the system i.e. they do not consider about the
components  (composing the system), and their
interconnections. These models are not suitable to find out the
set of all execution paths for estimating reliability because
they do not consider the internal details of the system.

Thus, these black box models may not be suitable for
estimating the reliability of large or complex component based
system. The entropy (the degree uncertainty) is much higher
for black box models as compared to white box models. This
paper will help the practitioners, developers, quality assurers
and testers for reviewing the issues concerned with black box
Software Reliability assessment in order to obtain a suitable
model for the reliability assessment of their software.

ACKNOWLEDGMENT

The authors would like to thank the staffs for their support
behind this work.

REFERENCES

[1] R. C. Cheung. “A user-oriented software reliability model”, IEEE
Transactions on Software Engineering,vol.6, pp.118-125,1980.

[2] A. L. Goel. “An analysis of competing software reliability models”,
IEEE Transactions on Software Engineering, vol.6, pp.501-502,1980.

[3] S N. Weiss and E.J Weyuker “An Extended Domain-Based Model of
Software Reliability””, IEEE Transactions on Software Engineering, vol.
14, pp.1512-1524,1988.

[4] S. Yacoub, B. Cukic, H. H Ammar, “A scenario-based reliability
analysis approach for component-based software”, IEEE Transactions
on Reliability, vol.53, pp. 22-31,2004.

[5] T. Gayen. “Analysis and proposition of error based model to predict the
minimum reliability of software”, International Conference on
Education Technology and Computer, Singapore, pp.40-44, 2009.

[6] C.J.Hsuand C. Y. Huang. “An adaptive reliability analysis using path
testing for complex component-based software systems”, IEEE
Transactions on Reliability, vol. 60, pp.158-170, 2011.

[71 G. Popstojanova, K. S. Trivedi, “Architecture-based approach to
reliability assessment of software systems”, Performance Evaluation,
vol. 45, pp.179-204, 2001.

[8] S. Garnaik, T. Gayen., S. Mishra S, "Reliability Enhancement of
Software by Minimizing the Overflow Errors", International Journal of
Systems Assurance Engineering and Management, Springer, Vol. 5, No.
4, pp. 724-730, 2014.

[91 Michael R. Lyu Handbook of Software Reliability Engineering.
McGraw-Hill publishing, 1995, ISBN 0-07-039400-8

[10] ANSI/IEEE, "Standard Glossary of Software Engineering Terminology",
STD-729-1991, ANSI/IEEE, 1991

[11] R. Mirandola, P. Potena, E. Riccobene, P. Scandurra, “A reliability
model for Service Component Architectures”, Vol. 89, pp. 109-127,
2014.

[12] Fouad ben Nasr Omri, Ralf Reussner, “Towards Reliability Estimation
of Large Systems-of-Systems with the Palladio Component Model”,
Trusted Cloud Computing, Springer, 2014.

[13] Whittaker, J. A., Poore, J.H., “Markov analysis of software
specifications. ACM  Transactions on Software Engineering
Methodology”, Vol. 2, Issue 1, 93—-106, 1993.

[14] Poore, J., Mills, H., Mutchler, D, “Planning and certifying software
system reliability”, IEEE Software,Vol. 10, Issue 1, pp.88-99, 1993.

[15] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of
software quality,” in Proceedings of Second International Conference on
Software Engineering, San Francisco, CA, Oct. 1976, pp. 592-605.

[16] A.L. Goel, “A guidebook for software reliability assessment,”” Syracuse
Univ., Syracuse, NY, Tech. Rep. No. 83-11, Apr. 1983.

[17] H. Hecht, “Mini-tutorial on software reliability,” in Proc. IEEE
COMPSACS80, Chicago, IL, pp. 383-385, 1980

nd
[18] IEEE Standard Dictionary of Electrical and Electronic Terms.2 ed.,
New York: IEEE Press, 1977.

773



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

B1]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

W. H. MacWilliams, “Reliability of large real-time control software
systems,” in Rec. 1973 IEEE Symp. Computer Software Reliability, New
York, pp. 1-6, 1973.

M. L. Shooman, Sofrware Engineering. New York: McGraw-Hill, 1983.
T. A. Thayer, M. Lipow, and E. C. Nelson, Software Reliability (TRW
Ser. Software Technol. 2). New York: North-Holland, 1978.

J. R. Brown and M. Lipow, “Testing for software reliability,” in
Proceedings of International Conference on Reliable Software, Los
Angeles, CA, pp.5 18-527, 1975.

A. L Goel, “A summary of the discussion on ‘An analysis of competing
software reliability models™ IEEE Transactions Software Engineering,
Vol. SE-6, pp. 501-502, Sept. 1980.

G. J. Schick and R. W. Wolverton, “An analysis of competing software
reliability models,” IEEE Transactions on Software Engineering, vol.
SE-4, pp.104-120, Mar. 1978.

A. lannino, I. D. Musa, K. Okumoto, and B. Littlewood. “Criteriafor
software reliability model comparisons,” IEEE Tranactions Software
Engineering, vol. SE-IO, pp. 687-691, Nov. 1984.

Bev Littlewood, “How to Measure Software Reliability and How Not
To”, IEEE Transactions on Reliability, Vol.R-28, Issue 2, pp. 103 — 110,
1979.

Bev Littlewood, “Theories of Software Reliability: How Good Are They
and How Can They Be Improved”, IEEE Transactions on Software
Engineering, Vol. SE-6, no. 5, 1980.

G.Popstojanova, K S Trivedi, “Architecture-based approaches to
software reliability prediction”, Computers & Mathematics with
Applications, Elsevier, Vol. 46, Issue 7, pp. 10231036, 2003.

R. W. Butler, G. B. Finelli, The infeasibility of quantifying the reliability
of life-critical real-time software, IEEE Transactions on Software
Engineering Vol.19 Issuel, pp. 3-12, 1993.

J. C. Laprie, Dependability of computer systems: concepts, limits,
improvements, in: Proceedings of the Sixth International Symposium on
Software Reliability Engineering (ISSRE’95), pp. 2—11, 1995.

S. Krishnamurthy, A.P. Mathur, On the estimation of reliability of a
software system using reliabilities of its components, in: Proceedings of
the Eighth International Symposium on Software Reliability Engineering
(ISSRE’97), pp. 146-155, 1997

J. M. Voas, Certifying off-the-shelf software components, IEEE
Computer, Vol. 31, Issue 6, pp. 5359, 1998.

J. M. Voas, C. C. Michael, K. W. Miller, confidently assessing a zero
probability of software failure, High Integrity Systems, Vol. 1, Issue 3,
pp. 269-275, 1995

Swapna S. Gokhale, W. Eric Wong, J. R. Horgan, Kishor S. Trivedi,
“An analytical approach to architecture-based software performance and
reliability prediction”, Performance Evaluation Journal, Elsevier, Vol.
58, Issue 4, pp. 391 — 412, 2004.

D. Hamlet. “Are we testing for true reliability?”. IEEE Software,
13(4):21-27, 1992.

J. R. Horgan and A. P. Mathur, "Handbook of Software Reliability
Engineering", M. R. Lyu, Editor, chapter “Software Testing and
Reliability”, McGraw-Hill, NewYork, NY, pp. 531-566, 1996.

D. L. Parnas, P. C. Clements, and D. M. Weiss. “The modular structure
of complex systems”. IEEE Transactions on Software Engineering, SE-
11(3):259-266,1985.

W.W. Everett. “Software component reliability analysis”. proc. of
Application Specific Software Engineering and Technology, Dallas, TX,
March 1999.

S. Gokhale, M. R. Lyu, and K. S. Trivedi. “Reliability simulation of
component-based software systems”. In Proc. of Ninth Intl. Symposium
on Software Reliability Engineering (ISSRE 98), pages 192-201,
Paderborn, Germany, 1998.

S. Gokhale and K. S. Trivedi. “Structure—based software reliability
prediction”. In Proc.of Fifth Intl. Conference on Advanced Computing
(ADCOMP 97), pages 447-452, India, 1997

D. Hamlet, D. Woit, and D. Mason. “Theory of software reliability
based on components”, In Proc. of Intl. Conference on Software
Engineering, pages 361-370, Toronto, Canada, 2001.

J. Ledoux and G. Rubino. “A counting model for software reliability
analysis”. IASTED Journal on Simulation, 1997.

J. Ledoux and G. Rubino. “Simple formulas for counting processes in
reliability models”, Theory of Applied Probability, 1997.

W. Wang, Y. Wu, and M. H. Chen. “An architecture-based software
reliability model”, In Proc. of Pacific Rim Dependability Symposium,
Hong Kong, December 1999.

Hoang Pham, “System Software Reliability”, Springer, 2005.

[46] Hoang Pham, “Software Reliability”, Springer, 2000.

774



