Study on Leakage Current Waveforms of Porcelain Insulator due to Various Artificial Pollutants

Waluyo, Parouli M. Pakpahan, Suwarno, and Maman A. Djauhari

Abstract—This paper presents the experimental results of leakage current waveforms which appears on porcelain insulator surface due to existence of artificial pollutants. The tests have been done using the chemical compounds of NaCl, Na₂SiO₃, H₂SO₄, CaO, Na₂SO₄, KCl, Al₂SO₄, MgSO₄, FeCl₃, and TiO₂. The insulator surface was coated with those compounds and dried. Then, it was tested in the chamber where the high voltage was applied. Using correspondence analysis, the result indicated that the fundamental harmonic of leakage current was very close to the applied voltage and third harmonic leakage current was close to the yielded leakage current amplitude. The first harmonic power was correlated to first harmonic amplitude of leakage current, and third harmonic power was close to third harmonic one. The chemical compounds of H₂SO₄ and Na₂SiO₃ affected to the power factor of around 70%. Both are the most conductive, due to the power factor drastically increase among the chemical compounds.

Keywords—Chemical compound, harmonic, porcelain insulator, leakage current.

I. INTRODUCTION

OVERHEAD transmission or distribution lines are widely used in present power system to transmit electric power from generation stations to customer points. Their proper function depends to a large extent on the insulation system with the supporting structures [1]. The performance of outdoor insulators is affected by some parameters. One of these parameters is environmental contamination. To approach the real condition of pollutant effects on an insulator surface, it has been conducted leakage current measurement of outdoor insulator with the artificial pollutants experimentally. However, the compounds of pollutants theirselves were based on the elements from the coastal region site, i.e. Na, Mg, Al,

Manuscript received September 13, 2007. This work was supported in part by the Scholarship of Postgraduate Education of Indonesia Government and National Institute of Technology.

Waluyo is doctoral student at School of Electrical Engineering and Informatics, ITB and Lecturer of Itenas Bandung, Indonesia (e-mail: waluyo@students.itb.ac.id).

Parouli M. Pakpahan is Academic staff at School of Electrical Engineering and Informatics, ITB, Indonesia (e-mail: parouli@indosat.net.id).

Suwarno is academic staff at School of Electrical Engineering and Informatics, ITB, Indonesia and member of IEEE (e-mail: suwarno@ieee.org).

Maman A. Djauhari is Academic staff at Department of Mathematics, ITB, Indonesia (e-mail: maman@math.itb.ac.id).

Si, S, Cl, K, Ca, Ti and Fe [2]. For this moment, based on such elements, tests have been done using the compounds of Na₂SO₄, MgSO₄, Al₂SO₄, Na₂SiO₃, H₂SO₄, KCl, NaCl, CaO, TiO₂ and FeCl₃.

The objective of this research is to obtain the significance of correlation among parameters. The main parameters to be analyzed are leakage current amplitude related to its first, third, fifth and seventh harmonic amplitudes and powers. Also to determine which chemical compound(s) influence significantly to the leakage current using statistical correspondence and correlation analyses.

II. EXPERIMENTAL AND ANALYSIS METHODS

The chemical compounds were dissolved or emulsified in the fresh water, and sprayed on the porcelain insulator surface overlapped with one by one of compound emulsions. The porcelain insulator was dried under sun ray, and then put in the chamber, with the humidity and temperature were in room condition. It was subjected to high voltage, where the voltage and leakage current waves were recorded by a two-channel digital storage oscilloscope. The recorded data were transferred to pc for further analysis. The experimental setup schematic diagram is shown on Fig. 1.

Fig. 1 Schematic diagram of experimental setup

For analysis, it has been done using correspondence analysis with basic rule as follows [3]:

$$P = \frac{1}{n}K\tag{1}$$

where K is the row data matrix, and n is the sum of total components of K. V is the matrix of P divided by the sum of each column and U is the matrix of P, which is divided by the sum of each row. D_k is the matrix with the diagonal components; sum of each row of P and D_m is the matrix with the diagonal components; sum of each column of P. Their

non-diagonal components are zero. Furthermore, the analysis on Rk follows

$$T_1 = V D_m V^t \tag{2}$$

$$T_1 D_k^{-1} \vec{u}_k = \lambda_i \vec{u}_i, i = 1, 2, ..., q$$
 (3)

and

$$\vec{c}_i = V_t D_k^{-1} \vec{u}_i \tag{4}$$

and analysis on R^m will result in

$$S = U D_{\nu} U^{t} \tag{5}$$

$$SD_m^{-1} \vec{v}_i = \lambda_i \vec{v}_i, i=1,2,...,q$$
 (6)

$$\vec{d}_i = U_t D_m^{-1} \vec{v}_i \tag{7}$$

Analysis on both R_k and R_m simultaneously are:

$$d_{ij} = \sum_{l=1}^{m} \frac{1}{\sqrt{\lambda_i}} \frac{P_{jl}}{P_{j\bullet}} . c_{il} ; j = 1, 2,, k$$
 (8)

$$c_{ij} = \sum_{l=1}^{k} \frac{1}{\sqrt{\lambda_i}} \frac{P_{ij}}{P_{\bullet j}} . d_{il} ; j = 1, 2,, m$$
(9)

It is also analyzed using correlation matrix base on covariance matrix to understand how much level of correlation among parameters base on these research with basic formulae as follows [4]-[5]

$$Cov(X,Y) = \frac{1}{n} \sum_{j=1}^{n} (x_j - \mu_x)(y_j - \mu_y)$$
 (10)

Thus, the components of correlation matrix as below.
$$\rho_{x,y} = \frac{Cov(X,Y)}{\sigma_x,\sigma_y}$$
 (11)

It was also used fast Fourier transform for analysis the leakage current waveforms [6]. Therefore the frequency spectra were obtained. These implementations used the **Danielson-Lanczos** method [7]. The FFT of the sampled data is:

$$V[k] = \sum_{n=0}^{N-1} w[n] x[n] \exp(-i2\pi F_k n), \ 0 \le n \le N-1$$
(12)

and the estimate of the power spectrum is:

$$P[k] = \frac{1}{\sum_{n=0}^{N-1} (w[n])^2} |V[k]|^2$$
 (13)

III. RESULT DATA AND ANALYSIS

Fig. 2 shows the applied voltage and leakage current waveforms of insulator due to 1 gr NaCl solution. It is shown that the leakage current waveform is not pure sinusoidal, i.e. on the peaks, this experiences deformed decrease. This phenomenon indicates that the wave has harmonics. The phase difference between the leakage current and applied voltage waves is 63.4 degree.

Fig. 2 The waveforms due to 1 gr NaCl solution

Fig. 3 The leakage current spectrum due to 1 gr NaCl

Thus, it was analyzed in some harmonic frequencies of leakage current waveform, as shown on Figure 3. The highest amplitude, of course, is the fundamental, followed by 5th harmonic, 25.55%, and 7th harmonic, 9.35%. This is also presented the power of harmonics, as shown on Figure 4. The highest is also the fundamental, and followed by 5th and 7th harmonics respectively, or 6.53% and 0.87% of the fundamental.

Fig. 4 Power of leakage current spectrum due to 1 gr NaCl solution

The second coating was 1 gr Na₂SiO₃. The leakage current waveform was still similar with previous one. It had 58.3 degree of phase difference to the applied voltage. The highest amplitude of harmonic frequency spectrum was the fundamental, and 5.77%, 19.96% and 6.10% of the fundamental for 3^{rd} , 5^{th} and 7^{th} harmonics respectively. The highest of harmonic power was 11.1 µW, and 3rd, 5th and 7th harmonics were 0.33%, 4.00% and 0.37% respectively.

Fig. 5 shows the applied voltage and leakage current waveforms of insulator due to 1 gr H₂SO₄ solution. The leakage current waveform is strictly different from previous

ones, only one peak on the wave. The phase difference is smaller than the formers, 34.6 degree. This is also shown that the leakage current amplitude is very high, for low applied voltage. For moment, these phenomena indicate that $\rm H_2SO_4$ solution is very conductive.

Fig. 5 The waveforms due to 1 gr H₂SO₄ addition

Fig. 6 shows the harmonic frequency spectrum of leakage current waveform. After the fundamental frequency, the second highest amplitude is 3rd harmonic, 11.12%, and followed by 5th, 7th and 9th, those are 8.09%, 3.64% and 1.06% of the fundamental respectively.

Fig. 6 The leakage current spectrum due to 1 gr H₂SO₄

Whereas Fig. 7 shows the power of harmonic frequency spectrum of leakage current waveform. On this condition, the fundamental power is 26.8, μ W, and the 3rd, 5th, and 7th harmonic powers are 1.24%, 0.65% and 0.13% of the fundamental.

Fig. 7 Leakage current power spectrum of 1 gr H_2SO_4

Whereas, on the addition of 1 gr CaO, the leakage current waveform were still similar with Na₂SiO₃ one. The leakage current wave had the phase difference of 62.6 degree. After

the fundamental frequency, the second highest amplitude was 5^{th} harmonic, 20.16%, and followed by 3^{rd} and 7^{th} , those were 6.41% and 4.63% of the fundamental respectively. On this condition, the fundamental power was 9.62 μ W, and the 3^{rd} , 5^{th} and 7^{th} harmonic powers were 0.41%, 4.06%, 0.21%, of the fundamental.

Fig. 8 The waveforms due to 1 gr Na₂SO₄ addition

Furthermore, Fig. 8 shows the applied voltage and leakage current waveforms of insulator due to addition of 1 gr Na_2SO_4 on previous coating. The leakage current waveform tends to similar to that of H_2SO_4 coating, rather than the others. The leakage current wave has 46.1 degree of phase difference. It is smaller rather than that of CaO_4 , and larger rather than that of H_2SO_4 .

Fig. 9 The leakage current spectrum of 1 gr Na₂SO₄

Fig. 9 shows the harmonic frequency spectrum of leakage current waveform. It is indicated that after the fundamental frequency, the second highest amplitude is 5^{th} harmonic, 9.64%, and followed by 7^{th} and 3^{rd} , those are 3.40% and 0.94% of the fundamental respectively.

Fig. 10 Power of leakage current spectrum due to 1 gr Na₂SO₄ addition

Fig. 10 shows the power of harmonic frequency spectrum of leakage current waveform due to 1 gr Na₂SO₄. On this condition, the fundamental power is 0.306 μ W, and the 3rd, 5th and 7th harmonic powers are 0.000319 μ W or 0.01%, 0.92% and 0.10% of the fundamental.

Otherwise, the leakage current waveform due to KCl was not so significantly different from that CaO coating. The leakage current wave had 56.2 degree of phase difference from the applied voltage. It was larger than that of Na_2SO_4 or H_2SO_4 .

Whereas, the harmonic frequency spectrum of leakage current waveform indicated that after the fundamental frequency, the second highest amplitude was 5th harmonic, 21.54% and followed by 3rd and 7th, those were 5.24% and 4.60% of the fundamental respectively. On this condition, the fundamental power of harmonic frequency spectrum of leakage current waveform due to KCl was 8.47 μ W, and the 3rd, 5th and 7th harmonic powers were 0.28%, 4.64% and 0.21% of the fundamental.

Fig. 11 The waveforms due to 1 gr Al₂SO₄ addition

Fig. 11 shows the applied voltage and leakage current waveforms of insulator due to addition of 1 gr Al_2SO_4 on previous coating. The leakage current waveform is similar to that of NaCl or Na_2SiO_3 coating. The leakage current wave has considerable phase difference from the applied voltage, 44.6 degree, and smaller than that of KCl.

Fig. 12 The leakage current spectrum due to 1 gr Al₂SO₄ addition

Whereas, the harmonic frequency spectrum of leakage current waveform due to 1 gr Al_2SO_4 addition is shown on Fig. 12. After the fundamental frequency, the second highest amplitude is 5^{th} harmonic, 14.48% and followed by 3^{rd} and 7^{th} , those are 3.57% and 3.47% of the fundamental respectively.

Fig. 13 Power of leakage current spectrum due to 1 gr Al₂SO₄ addition

The power of harmonic frequency spectrum of leakage current waveform due to Al_2SO_4 is shown on Fig. 13 above. On this applied voltage, the fundamental power is 2.46 μ W, and the 3rd, 5th and 7th harmonic powers are 1.27%, 20.93% and 1.20% of the fundamental respectively.

Fig. 14 The waveforms due to 1 gr MgSO₄ addition

Fig. 14 shows the applied voltage and leakage current waveforms of insulator due to addition of 1 gr MgSO $_4$ on previous coating. The leakage current waveform is similar to Al_2SO_4 coating. The leakage current wave has considerable phase difference, 48.2 degree.

Fig. 15 The leakage current spectrum due to 1 gr MgSO $_4$ addition

The harmonic frequency spectrum of leakage current waveform due to 1 gr MgSO $_4$ addition is shown on Fig. 15. After the fundamental frequency, the second highest amplitude is 5th harmonic, 14.24% and followed by 7th and 3rd, those are 3.99% and 3.16% of the fundamental.

Fig. 16 Power of leakage current spectrum due to 1 gr MgSO₄ addition

Whereas the power of harmonic frequency spectrum of leakage current waveform due to MgSO₄ is shown on Fig. 16 above. On this applied voltage, the fundamental power is 2.18 μ W, and the 3rd, 5th and 7th harmonic powers are 1.00%, 20.28% and 1.59% of the fundamental.

The leakage current waveform due to 1 gr FeCl₃ is similar to MgSO₄ coating. The phase angle is also nearly same as 47.5 degree. Whereas the second highest amplitude of leakage current waveform is 5th harmonic, i.e. 13% and followed by 3rd and 7th, those are 4.38% and 3.35% of the fundamental amplitude respectively. The fundamental power of leakage current harmonic frequency spectrum due to FeCl₃ is 7.5 μ W, and the 3rd, 5th and 7th harmonic powers are 1.91%, 16.93% and 0.74% of the fundamental respectively.

The leakage current waveform due to 1 gr TiO_2 is similar to that of $FeCl_3$ coating. Its phase angle is also nearly same as that one, 47.5 degree. After the fundamental frequency, the second highest amplitude is 5^{th} harmonic, 13.84% and followed by 3^{rd} and 7^{th} , those are 5.91% and 3.59% of the fundamental amplitude respectively. Whereas the fundamental power of leakage current harmonic spectrum is 156 μ W, and the 3^{rd} , 5^{th} and 7^{th} harmonic powers are 0.35%, 1.92%, and 0.13% of the fundamental amplitude respectively. These harmonics are very small comparing to other ones.

Fig. 17 Correspondence analysis result of experimental data

Fig. 17 shows the scatter plot of correspondence analysis of experimental data. To make shorter of variable names, it is used capital letter. V_{max} , I_{max} , ϕ , $cos(\phi)$, 1^{st}_{max} , 3^{rd}_{max} , 5^{th}_{max} , 7^{th}_{max} , 1^{st}_{p} , 3^{rd}_{p} , 5^{th}_{p} , 7^{th}_{p} , NaCl, Na₂SiO₃, H₂SO₄, CaO, Na₂SO₄, KCl, Al₂SO₄, MgSO₄, FeCl₃, TiO₂ are signed by A, B, until V.

However, individuals or components using numeral indicate different quantities, i.e. on each condition; there are two values, small and large values.

From this scatter plot, it can be obtained some information of experimental data. It is shown components 1 until 12, except 3 and 4, are correlated closely to variable A up to J. This case is indicated that those plots close each other.

For closer view, amplitudes of applied voltages are close to leakage current, phase, power factor, harmonic amplitude and harmonic power. Thus, these quantities are influenced significantly by applied voltage magnitudes.

The amplitude of applied voltage is very correlated with first harmonic amplitude of leakage current. Thus, the first harmonic amplitude increases as the applied voltage to insulator under test rise very significantly. Besides that, it is also influenced by chemical compound of CaO.

From these data, the third harmonic amplitude of leakage current is very close to amplitude of yielded leakage current. Thus, such third harmonic amplitude is influenced by the leakage current amplitude significantly. On rather far from applied voltage amplitude or yielded leakage current, it is shown the fifth harmonic amplitude of leakage current. Therefore, it is rather correlated or influenced by applied voltage or yielded leakage current. The fifth harmonic amplitude of leakage current is also influenced by Na₂SiO₃ tightly. The latest is seventh harmonic amplitude that is very far from either applied voltage or yielded leakage current. On other word, it is not influenced by either applied voltage or leakage current significantly. However, it is correlated to chemical compounds of MgSO₄ and TiO₂ closely.

The fundamental or first harmonic power is very close to first harmonic amplitude of leakage current. Therefore, both quantities are influenced each other. The first harmonic amplitude rises make the first harmonic power increases, and vice versa.

The third harmonic power is very close to the yielded amplitude of leakage current and third harmonic amplitude of leakage current. Therefore, such three quantities are influenced each other. The yielded leakage current influences third harmonic amplitude and third harmonic power very significantly.

However, the fifth and seventh harmonic powers are very far from either fifth or seventh harmonic parameter. Therefore, both quantities can be said that they are influenced by those harmonic amplitudes slightly. On other hand, both harmonic powers are close to chemical compounds of NaCl, H_2SO_4 , Na_2SO_4 , Al_2SO_4 and fairly of FeCl₃. Thus, it is concluded that the fifth and seventh harmonic powers are influenced by those chemical compounds.

Table I shows correlation matrix that correlate among variables, those have been normalized, so that the correlation between its own self is unity as maximum. The columns from the left to the right, and the rows from the top to the bottom are V_{max} (maximum applied voltage), I_{max} (maximum leakage current), phi (phase angle), cos-phi (power factor), 1_{max}^{st} , 3_{max}^{rd} , 3_{max}^{th} , 7_{max}^{th} (maximum leakage current frequency

spectrum harmonics amplitudes 1st to 7th), 1stp, 3rdp, 5thp, 7thp, (maximum power of leakage current frequency spectrum 1st to 7th), NaCl, Na₂SiO₃, H₂SO₄, CaO, Na₂SO₄, KCl, Al₂SO₄, MgSO₄, FeCl₃ and TiO₂ (kind of chemical compounds for insulator surface coating).

TABLE I
CORRELATION MATRIX AMONG THE PARAMETERS

	CORRELATION MATRIX AMONG THE PARAMETERS										
	\mathbf{V}_{\max}	\mathbf{I}_{max}	phi	Cos(phi)	$l_{\max}^{\prime\prime}$	3^{rd}_{max}	5 ^{rb} max	7 ⁶ max	1_p^{st}	3_P^{rd}	5 p
V_{max}	1	.69	22	.25	.67	.54	.83	.79	.47	.30	.58
Imax	.69	1	42	.40	.99	.92	.96	.96	.93	.83	.92
phi	22	42	1	99	42	43	33	35	32	37	27
Cos(phi)	.25	.40	99	1	.39	.38	.33	.34	.29	.32	.26
1 _{max}	.67	.99	42	.39	1	.92	.95	.95	.93	.84	.92
3mx	.54	.92	43	.38	.92	.52	.84	.88	.86	.95	.82
5m 5m	.83	.96	33	.33	.95	.84	1	.97	.87	.73	.91
7 max	.79	.96	35	.34	.95	.88	.97	.57	.85	.76	.88
								-	1		.98
1 st	.47	.93	32	.29	.93	.86	.87	.85	-	.89	
3_p^{rd}	.30	.83	37	.32	.84	.95	.73	.76	.89	1	.83
5 th	.58	.92	27	.26	.92	.82	.91	.88	.98	.83	1
7#	.56	.90	28	.27	.90	.85	.89	.90	.95	.88	.97
NaCl	03	.13	43	.41	.13	.07	.07	.10	.12	.10	.09
Na ₂ SiO ₃	06	.20	68	.70	.20	.14	.09	.06	.18	.16	.12
H ₂ SO ₄	09	.22	71	.70	.22	.16	.09	.05	.21	.20	.14
CaO	.04	.13	59	.61	.13	02	.10	03	.20	.02	.19
Na ₂ SO ₄	02	.17	58	.57	.18	0	.11	.01	.25	.07	.22
KC1	.14	.30	42	.43	.31	.13	.26	.15	.33	.15	.32
Al ₂ SO ₄	.11	.37	43	.43	.38	.19	.29	.23	.41	.22	.37
MgSO ₄	.09	.40	31	.31	.41	.26	.32	.28	.46	.30	.42
FeCl ₃	.07	.47	26	.26	.48	.38	.39	.35	.57	.43	.53
TiO	.05	.42	16	.16	.43	.41	.38	.36	.57	.53	.57
	79		Na ₂ SiO ₃	H ₂ SO ₄	CaO	Na ₂ SO ₄	KCI	Al ₂ SO ₄		FeCl ₃	TiO
\mathbf{V}_{\max}	.56	03	06	H ₂ SO ₄ 09	.04	02	KCI .14	Al ₂ SO ₄	.09	FeCl ₃	0.5
Imax	.56 .90	03 .13	06 .20	H ₂ SO ₄ 09 .22	.04 .13	02 .17	.14 .30	Al ₂ SO ₄ .11 .37	.09 .40	FeCl ₃ .07 .47	0.5 .42
I _{max} phi	.56 .90 28	03 .13 43	06 .20 68	H ₂ SO ₄ 092271	.04 .13 59	02 .17 58	.14 .30 42	Al ₂ SO ₄ .11 .37 43	.09 .40 31	FeCl ₃ .07 .47 26	0.5 .42 16
I _{nox} phi Cos(phi)	.56 .90 28	03 .13 43	06 .20 68 .70	H ₂ SO ₄ 09 .2271 .70	.04 .13 59 .61	02 .17 58 .57	.14 .30 42 .43	Al ₂ SO ₄ .11 .37 43	.09 .40 31	FeCl ₃ .07 .47 26 .26	0.5 .42 •.16 .16
I _{max} phi Cos(phi) 1 ^{nt} _{max}	.56 .90 28 .27	03 .13 43 .41	06 .20 68 .70	H ₂ SO ₄ 09 .2271 .70 .22	.04 .13 •.59 .61 .13	02 .17 58 .57	.14 .30 42 .43	Al ₂ SO ₄ .11 .37 43 .43	.09 .40 •.31 .31	FeCl ₃ .07 .47 26 .26	0.5 .42 •.16 .16
I _{max} phi Cos(phi) 1 st max 3 rd max	.56 .90 28 .27 .90	03 .13 43 .41 .13	06 .20 68 .70 .20	H ₂ SO ₄ 09 .2271 .70 .22 .16	.04 .13 •.59 .61 .13	.02 .17 .58 .57 .18	.14 .30 42 .43 .31	Al ₂ SO ₄ .11 .37 .43 .43 .38	.09 .40 .31 .31 .41	FeCl ₃ .07 .47 ·.26 .26 .48	0.5 .42 ·.16 .16 .43
Imax phi Cos(phi) 1mx 3mx 5mmx	.56 .90 28 .27	03 .13 43 .41	06 .20 68 .70	H ₂ SO ₄ 09 .2271 .70 .22	.04 .13 •.59 .61 .13	02 .17 58 .57	.14 .30 42 .43	Al ₂ SO ₄ .11 .37 43 .43	.09 .40 •.31 .31	FeCl ₃ .07 .47 26 .26	0.5 .42 •.16 .16
Imax phi Cos(phi) 1mx 3max 5max 5max 7max	.56 .90 28 .27 .90	03 .13 43 .41 .13	06 .20 68 .70 .20	H ₂ SO ₄ 09 .2271 .70 .22 .16	.04 .13 •.59 .61 .13	.02 .17 .58 .57 .18	.14 .30 42 .43 .31	Al ₂ SO ₄ .11 .37 .43 .43 .38	.09 .40 .31 .31 .41	FeCl ₃ .07 .47 ·.26 .26 .48	0.5 .42 ·.16 .16 .43
Imax phi Cos(phi) 1mx 3mx 5mmx	.56 .90 28 .27 .90 .85	03 .13 43 .41 .13 .07	06 .20 68 .70 .20 .14	H ₂ SO ₄ 09 .2271 .70 .22 .16	.04 .13 •.59 .61 .13 •.02	02 .17 58 .57 .18 0	KCI .14 .30 42 .43 .31 .13	Al ₂ SO ₄ .11 .37 43 .43 .38 .19	.09 .40 .31 .31 .41 .26	FeCl ₃ .07 .47 26 .26 .48 .38	0.5 .42 •.16 .16 .43 .41
Imax phi Cos(phi) 1mx 3max 5max 5max 7max	.56 .90 28 .27 .90 .85 .89	.03 .13 .43 .41 .13 .07 .07	.06 .20 .68 .70 .20 .14 .09	H ₂ SO ₄ 0922717022160905	.04 .13 •.59 .61 .13 •.02 .10	.02 .17 .58 .57 .18 0 .11	.14 .30 .42 .43 .31 .13 .26	Al ₂ SO ₄ .11 .37 43 .43 .38 .19 .29	.09 .40 .31 .31 .41 .26 .32	FeCl ₃ .07 .47 ·.26 .26 .48 .38 .39	0.5 .42 •.16 .16 .43 .41 .38
phi Cos(phi) 1 st max 5 ^{sh} 7 ^{sh} max 1 st 1 st	.56 .90 .28 .27 .90 .85 .89	.03 .13 .43 .41 .13 .07 .07	.06 .20 .68 .70 .20 .14 .09	H ₂ SO ₄ 0922717022160905	.04 .13 .59 .61 .13 .02 .10	.02 .17 .58 .57 .18 0 .11	.14 .30 .42 .43 .31 .13 .26 .15	Al ₂ SO ₄ .11 .37 .43 .43 .38 .19 .29 .23	.09 .40 .31 .31 .41 .26 .32 .28	FeCl ₃ .07 .47 .26 .26 .48 .38 .39 .35	0.5 .42 •.16 .16 .43 .41 .38 .36
Phi Cos(phi) 1 mss 3 mss 5 mss 7 mss 1 ft 3 fp 5 fp 7 ft 7 ft	.56 .90 28 .27 .90 .85 .89 .90	.03 .13 .43 .41 .13 .07 .07 .10	06 .20 68 .70 .20 .14 .09 .06	H ₂ SO ₄ 09 .2271 .70 .22 .16 .09 .05 .21	.04 .13 .59 .61 .13 .02 .10 .03	.02 .17 .58 .57 .18 0 .11 .01	.14 .30 .42 .43 .31 .13 .26 .15	Al ₂ SO ₄ .11 .3743 .43 .38 .19 .29 .23 .41	.09 .40 .31 .31 .41 .26 .32 .28 .46	FeCl ₃ .07 .47 .26 .26 .48 .38 .39 .35	0.5 .42 .16 .16 .43 .41 .38 .36
I man phi Cos(phi) 1 mss 3 ms 5 ms 7 mss 1 P P 3 pp 5 pp 5 pp 5 pp 5 pp 5 pp 5 pp	.56 .90 .28 .27 .90 .85 .89 .90	.03 .13 .43 .41 .13 .07 .07 .10 .12	06 .20 68 .70 .20 .14 .09 .06 .18	H ₂ SO ₄ 0922717022160905212014	.04 .13 .59 .61 .13 .02 .10 .03 .20	.02 .17 .58 .57 .18 0 .11 .01 .25	.14 .30 .42 .43 .31 .13 .26 .15 .33	Al ₂ SO ₄ .11 .37 .43 .43 .38 .19 .29 .23 .41 .22	.09 .40 .31 .31 .41 .26 .32 .28 .46	FeCl ₃ .07 .47 .26 .26 .48 .38 .39 .35 .57	0.5 .42 16 .16 .43 .41 .38 .36 .57
Phi Cos(phi) 1 mss 3 mss 5 mss 7 mss 1 ft 3 fp 5 fp 7 ft 7 ft	.56 .90 .28 .27 .90 .85 .89 .90 .95 .88	.03 .13 .43 .41 .13 .07 .07 .10 .12 .10	06 20 68 70 20 14 09 06 18 16 12	H ₂ SO ₄ 092271702216090521201407	.04 .13 .59 .61 .13 .02 .10 .03 .20 .02	.02 .17 .58 .57 .18 0 .11 .01 .25 .07	.14 .30 .42 .43 .31 .13 .26 .15 .33 .15	Al ₂ SO ₄ .11 .37 .43 .43 .38 .19 .29 .23 .41 .22 .37	.09 .40 .31 .31 .41 .26 .32 .28 .46 .30	FeCl ₃ .07 .47 .26 .26 .48 .38 .39 .35 .57 .43 .53 .45	0.5 .42 .16 .16 .43 .41 .38 .36 .57
Lann phi Cos(phi) 1 max 3 max 5 max 7 max 7 p 3 p 7 p NaCl Na ₂ SiO ₂ H ₃ SO ₄	.56 .90 28 .27 .90 .85 .89 .90 .95 .88	03 .13 43 .41 .13 .07 .10 .12 .10 .09	.06 .20 .68 .70 .20 .14 .09 .06 .18 .16 .12	H ₂ SO ₄ 09227170221609052120140752	.04 .13 .59 .61 .13 .02 .10 .03 .20 .02 .19	.02 .17 .58 .57 .18 0 .11 .01 .25 .07 .22	KCI .14 .30 .42 .43 .31 .13 .26 .15 .33 .15 .32 .21	Al ₂ SO ₄ .11 .37 .43 .43 .38 .19 .29 .23 .41 .22 .37 .29 .24	.09 .40 .31 .31 .41 .26 .32 .28 .46 .30 .42	FeCl ₃ .07 .47 .26 .26 .48 .38 .39 .35 .57 .43 .53 .45 .15	0.5 .42 .16 .16 .43 .41 .38 .36 .57 .53
Image phi Cos(phi) 1st Here 3re 3re 5st Here 7st Here 3re 7st Here 5p 5p 7st P NaCI Na2SiO ₂	.56 .90 28 .27 .90 .85 .89 .90 .95 .88 .97 1	03 .13 43 .41 .13 .07 .10 .12 .10 .09 .10	.06 .20 .68 .70 .20 .14 .09 .06 .18 .16 .12 .07	H ₂ SO ₄ 09 .2271 .70 .22 .16 .09 .05 .21 .20 .14 .07 .52 .77	.04 .13 .59 .61 .13 .02 .10 .03 .20 .02 .19 .06	.02 .17 .58 .57 .18 0 .11 .01 .25 .07 .22 .11	KCI .14 .30 .42 .43 .31 .13 .26 .15 .33 .15 .32 .21	Al ₂ SO ₄ .11 .37 .43 .43 .38 .19 .29 .23 .41 .22 .37 .29 .24 .36	.09 .40 .31 .31 .41 .26 .32 .28 .46 .30 .42 .36	FeCl ₃ .07 .47 .26 .26 .48 .39 .35 .57 .43 .53 .45 .15 .22	0.5 .42 .16 .16 .43 .41 .38 .36 .57 .53 .57
Lann phi Cos(phi) 1max 1max 3max 5max 7max 1pf 3pf 5ph 7ph NaCl Na ₂ SiO ₂ H ₂ SO ₄ CaO Na ₂ SO ₄	.56 .90 28 .27 .90 .85 .89 .90 .95 .88 .97 1 .10	.03 .13 .43 .41 .13 .07 .07 .10 .12 .10 .09 .10 .10 .52	.06 .20 .68 .70 .20 .14 .09 .06 .18 .16 .12 .07	H ₂ SO ₄ 09 .22 .71 .70 .22 .16 .09 .05 .21 .20 .14 .07 .52 .77 1	.04 .13 .59 .61 .13 .02 .10 .03 .20 .02 .19 .06 .42 .62	.02 .17 .58 .57 .18 0 .11 .01 .25 .07 .22 .11 .35 .52	KCI .14 .30 .42 .43 .31 .13 .26 .15 .33 .15 .32 .21 .29 .43	Al ₂ SO ₄ .11 .37 .43 .43 .38 .19 .29 .23 .41 .22 .37 .29 .24 .36 .46	.09 .40 .31 .31 .41 .26 .32 .28 .46 .30 .42 .36 .19 .29	FeCI ₃ .07 .47 .26 .26 .48 .38 .39 .35 .57 .43 .53 .45 .15 .22	0.5 .42 .16 .16 .43 .41 .38 .36 .57 .53 .57 .57
Inem phi Cos(phi) 1st	.56 .90 28 .27 .90 .85 .89 .90 .95 .88 .97 1 .10 .07 .07	.03 .13 .43 .41 .13 .07 .07 .10 .12 .10 .09 .10	.06 .20 .68 .70 .20 .14 .09 .06 .18 .16 .12 .07 .67 1 .77 .62	H ₂ SO ₄ 092271702216090521201407527781	.04 .13 .59 .61 .13 .02 .10 .03 .20 .02 .19 .06 .42 .62 .81	.02 .17 .58 .57 .18 0 .11 .01 .25 .07 .22 .11 .35 .52 .67	KCI .14 .30 .42 .43 .31 .13 .26 .15 .33 .15 .32 .21 .29 .43 .56 .69	Al ₂ SO ₄ .11 .37 .43 .43 .38 .19 .29 .23 .41 .22 .37 .29 .24 .36 .46 .57	.09 .40 .31 .41 .26 .32 .28 .46 .30 .42 .36 .19 .29 .38 .46	FeCI, .072626483839355743534515222936	0.5 .42 .16 .16 .43 .41 .38 .36 .57 .57 .57 .57
Lann phi Cos(phi) 1max 1max 3max 5max 7max 1pf 3pf 5ph 7ph NaCl Na ₂ SiO ₂ H ₂ SO ₄ CaO Na ₂ SO ₄	.56 .90 .28 .27 .90 .85 .89 .90 .95 .88 .97 1 .10 .07 .07	.03 .13 .43 .41 .13 .07 .07 .10 .12 .10 .09 .10 .10 .52 .42 .35	.06 .20 .68 .70 .20 .14 .09 .06 .18 .16 .12 .07 .67 1 .77 .62 .52	H ₂ SO ₄ 09 .22 .71 .70 .22 .16 .09 .05 .21 .20 .14 .07 .52 .77 1 .81 .67	.04 .13 .59 .61 .13 .02 .10 .03 .20 .02 .19 .06 .42 .62 .81 1	.02 .17 .58 .57 .18 0 .11 .01 .25 .07 .22 .11 .35 .52 .67	KCI .14 .30 .42 .43 .31 .13 .26 .15 .33 .15 .32 .21 .29 .43 .56 .69	Al ₂ SO ₄ .11 .37 .43 .43 .38 .19 .29 .23 .41 .22 .37 .29 .24 .36 .46 .57 .69	.09 .40 .31 .41 .26 .32 .28 .46 .30 .42 .36 .19 .29 .38	FeCI ₃ .07 .47 .26 .26 .48 .38 .39 .35 .57 .43 .53 .45 .15 .22 .29 .36 .43	0.5 .42 .16 .16 .43 .41 .38 .36 .57 .53 .57 .57 .10 .15 .19
Inem phi Cos(phi) 1st	.56 .90 .28 .27 .90 .85 .89 .90 .95 .88 .97 1 .10 .07 .07	03 .13 .443 .41 .13 .07 .07 .10 .12 .10 .09 .10 .1 .67 .52 .42 .35 .29	.06 .20 .68 .70 .20 .14 .09 .06 .18 .16 .12 .07 .67 .1 .77 .62 .52 .43	H ₂ SO ₄ 09227170221609052120140752771816756	.04 .13 .59 .61 .13 .02 .10 .03 .20 .02 .19 .06 .42 .62 .81 1	.02 .17 .58 .57 .18 0 .11 .01 .25 .07 .22 .11 .35 .52 .67 .83	KCI .14 .30 .42 .43 .31 .13 .26 .15 .33 .15 .32 .21 .29 .43 .56 .69 .83	Al ₂ SO ₄ .11 .37 .43 .43 .38 .19 .29 .23 .41 .22 .37 .29 .24 .36 .46 .57 .69 .83	.09 .40 .31 .31 .41 .26 .32 .28 .46 .30 .42 .36 .19 .29 .38 .46 .56	FeCI, .07 .47 .26 .26 .48 .39 .35 .57 .43 .53 .45 .15 .22 .29 .36	0.5 .42 .16 .16 .43 .41 .38 .36 .57 .53 .57 .57 .10 .15 .19 .24 .29
Lases phi Cos(phi) 1st separate 3rd ress 7st separate 1.re 3rd ress 7st separate 1.re 7st separate 1.re 7st separate 1.re 8st separate 1.re 9st separate 1.re 1.re 1.re 1.re 1.re 1.re 1.re 1.r	.56 .90 .28 .27 .90 .85 .89 .90 .95 .88 .97 1 .10 .07 .07 .06 .11 .21	.03 .13 .43 .41 .13 .07 .10 .12 .10 .09 .10 .1 .67 .52 .42 .35 .29	.06 .20 .20 .14 .09 .06 .18 .16 .12 .07 .67 .1 .7 .62 .52 .43 .36	H ₂ SO ₄ 0922717022160905212014075277516767	.04 .13 .59 .61 .13 .02 .10 .03 .20 .02 .19 .06 .42 .62 .81 1	.02 .17 .58 .57 .18 0 .11 .01 .25 .07 .22 .11 .35 .52 .67 .83 1	KCI .14 .30 .42 .43 .31 .13 .26 .15 .33 .15 .32 .21 .29 .43 .56 .69 .83	Al ₂ SO ₄ .11 .37 .43 .43 .43 .29 .23 .41 .22 .37 .29 .24 .36 .57 .69 .83	.09 .40 .31 .31 .41 .26 .32 .28 .46 .30 .42 .36 .19 .29 .38 .46 .56	FeCI, .07 .47 .26 .26 .48 .38 .39 .35 .57 .43 .53 .45 .15 .22 .29 .36 .43 .52 .62	0.5 .42 .16 .43 .41 .38 .36 .57 .57 .57 .10 .15 .19 .24 .29

From correlation matrix above, it is shown that the different parameters those yield values 0.9 and above are maximum amplitude of leakage current with maximum first, third, fifth and seventh harmonics, and maximum power of leakage current of first, fifth and seventh. This means the maximum amplitude of leakage current influences very significantly to those parameters. Those parameters rise as the leakage current increase very considerably. However, power of third harmonics is influenced by 83% of leakage current. It is significant. Whereas, the chemical compounds of H₂SO₄ and Na₂SiO₃ are affected to the power factor of 70%. This is significantly enough. Base on this correlation matrix, among these chemical compounds, both are the most conductive, because the power factor drastically increase. It means the conductivity increase more rapidly, rather than those due to other chemical compounds. Otherwise, applied voltage amplitude contributes only 69%, to the amplitude of leakage current. In other word, although the leakage current is almost influenced by the applied voltage, there are any other parameters for affecting the leakage current, i.e. in this

experiment is artificial pollution. The correlation components of other parameters are so small, so that their influential levels are not so significant.

III. CONCLUSION

Base on the data and analyses, it can be concluded that the fundamental harmonic leakage current amplitude is significantly influenced by the applied voltage. The leakage current amplitude influences the parameters with maximum first, third, fifth and seventh harmonics, and maximum power of leakage current of first, fifth and seventh very considerably. The second one is for maximum power of third harmonic leakage current.

Whereas, the chemical compounds of H₂SO₄ and Na₂SiO₃ affected to the power factor around 70%. This is significantly enough. Among these chemical compounds, both are the most conductive, because the power factors drastically increase.

ACKNOWLEDGMENT

Authors herewith respectfully offer thanks to National Institute of Technology and Directorate of Higher Education Republic of Indonesia for financial support.

REFERENCES

- M.A.R. Manjula Fernando, supervised by Gubanski, 'Performance for Non-ceramic Insulators in Tropical Environments', PhD Dissertation, Department of Electric Power Engineering, Chalmers University of Technology, Goteborg-Sweden 1999.
- [2] Wallace L. Vosloo, supervised by Holthhausen, 'A Comparison of the Performance of High-Voltage Insulator Materials in a Severely Polluted Coastal Environment', PhD Dissertation, Department of Electrical and Electronic Engineering, University of Stellenbosch, South Africa, March. 2002.
- [3] Aryfianto, supervised by Djauhari, M.A., 'Correspondence Analysis', Bachelor Thesis, Department of Mathemathics, Bandung Institute of Technology, Bandung, Indonesia 2005.
- [4] Anderson, T.W., 'An Introduction to Multivariate Statistical Analysis', Second Edition, John Wiley & Sons 1984, pp.18,489.
- [5] Whittaker, J., 'Graphical Models in Applied Multivariate Statistics', John Wiley & Sons 1996, pp.17,48-51.
- [6] Suwarno, 'Leakage Current Waveforms of Outdoor Polymeric Insulators and Possibility of Application for Diagnostics of Insulator Conditions', Journal of Electrical Engineering & Technology, The Korean Institute of Electrical Engineering, Vol.1, No.1, 2006 pp.114-119.
- [7] OriginLab Co., Origin V75 User's Manual, OriginLab Corporation, MA,USA. 2003.

Waluyo, presently pursues doctoral program at STEI-ITB, Indonesia. His bachelor and master degrees were from the same institution. He is also academic staff at National Institute of Technology, Bandung.

Parouli M. Pakpahan, is associate professor at STEI-ITB, Indonesia. His bachelor was from ITB, and his *Diplome* and doctorate were from Ecole Centrale de Lyon, France.

Suwarno, is associate professor at STEI-ITB, Indonesia. His bachelor and master degree were from ITB, and his Doctorate was from Nagoya University, Ianan

Maman A. Djauhari, is full professor at Dept. of Mathemathics, ITB, Indonesia. His bachelor was from ITB, and his Master and Doctorate were from Universite de Montpellier, France.