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Abstract—The effect of an axial electric field on the capillary
instability of a cylindrical interface in the presence of heat and mass
transfer has been investigated using viscous potential flow theory.
In viscous potential flow, the viscous term in Navier-Stokes equation
vanishes as vorticity is zero but viscosity is not zero. Viscosity enters
through normal stress balance in the viscous potential flow theory
and tangential stresses are not considered. A dispersion relation
that accounts for the growth of axisymmetric waves is derived and
stability is discussed theoretically as well as numerically. Stability
criterion is given by critical value of applied electric field as well
as critical wave number. Various graphs have been drawn to show
the effect of various physical parameters such as electric field, heat
transfer capillary number, conductivity ratio, permittivity ratio on the
stability of the system. It has been observed that the axial electric
field and heat and mass transfer both have stabilizing effect on the
stability of the system.

Keywords—Capillary instability, Viscous potential flow, Heat and
mass transfer, Axial electric field.

I. INTRODUCTION

Capillary instability arises when a fluid cylinder in an
infinite fluid collapses under the action of capillary forces due
to surface tension [16], [19]. The capillary instability occurs
in various situations such as film boiling, Breaking of liquid
jet and in many Chemical and Metallurgical processes. The
study of heat and mass transfer across the interface is very
important in many situations such as boiling heat transfer
in chemical engineering and in geophysical problems. The
general formulation of the interfacial flow problem of two
inviscid incompressible fluids with heat and mass transfer for
Rayleigh-Taylor and Kelvin-Helmholtz instabilities in plane
geometry was established by Hsieh [7], [8]. Hsieh [8] found
that when the vapour layer is hotter than the liquid layer, the
effect of heat and mass transfer tends to inhibit the growth
of instability. Nayak and Chakraborty [5] established the
formulation of Kelvin-Helmholtz instability of the cylindrical
interface between the liquid and vapour phases with heat and
mass transfer.
Viscous potential flow theory has played an important role in
studying various stability problems. In viscous potential flow,
we consider irrotational flow, so the viscous term i.e.μ∇2u
in the Navier-Stokes equation is identically zero when the
vorticity is zero but the viscous stresses are not zero, where
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μ denotes viscosity and u denotes velocity of fluid flow.
Tangential stresses are not considered in viscous potential
theory and viscosity enters through normal stress balance
[6]. Funada and Joseph [20] studied the viscous potential
flow analysis of capillary instability and observed that viscous
potential flow is better approximation of the exact solution
than the inviscid model. Funada and Joseph [21] extended
their work of capillary instability for viscoelastic fluids and
observed that the growth rates are larger for viscoelastic fluids
than for the equivalent Newtonian fluids.
Viscous potential flow analysis of Kelvin-Helmholtz instability
with heat and mass transfer in plane geometry has been carried
out by Asthana and Agrawal [17]. They observed that heat
and mass transfer has a strong stabilizing effect when the
lower fluid is highly viscous and a weak destabilizing effect
when the fluid’s viscosity is low. Kim et al. [10] investigated
the capillary instability problem of vapour liquid system in
an annular configuration with heat and mass transfer using
viscous potential flow for axisymmetric disturbances. They
observed that for irrotational motion of two viscous fluids,
heat and mass transfer phenomenon completely stabilizes the
interface against capillary effects.
As the electric field plays an important role in many practical
problems of chemical engineering and other related fields,
there is increasing interests in the study of electrohydro-
dynamic instability. The capillary instability with heat and
mass transfer in an electric field occurs in many practical
applications such as ink jet printers, paint spraying, fuel
atomization, and etc. An active enhancement of heat transfer
by electrohydrodynamics is used in industries including heat
exchange manufacturing and power generation. Elhefnawy et
al. [3] studied the nonlinear electrohydrodynamic stability of
a finitely conducting jet under an axial electric field and
observed that the uniform axial electric field has a stabiliz-
ing influence. Nonlinear streaming instability of cylindrical
structures in finitely conducting fluids under the influence of
a radial electric field has been studied by Elhefnawy et al. [4].
Elsayed et al. [11] have studied the effect of general electric
field on conducting liquid jets instabilities in the presence of
heat and mass transfer. They have observed that the heat and
mass transfer has no effect on the stability of the system in
the presence of axial electric field as well as radial electric
field. Stability of cylindrical conducting fluids with heat and
mass transfer in longitudinal periodic electric field has been
studied by Elsayed et al. [12]. Moatimid [9] investigated the
electrohydrodynamic stability of two inviscid fluids with heat
and mass transfer in cylindrical configuration. The two liquid
phases were enclosed between two cylindrical surfaces coaxial
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with the interface admitting heat and mass transfer. It was
observed that uniform electric field has stabilizing effect. It
was also found that the instability criterion is independent of
heat and mass transfer coefficient. Elhefnawy and Moatimid
[2] have studied the effect of an axial electric field on the
stability of cylindrical flows in the presence of mass and heat
transfer and absence of gravity. They observed that the electric
field has strong stabilizing influence for all short and long
wavelengths. Elcoot [1] has studied the nonlinear analysis of
capillary instability of viscous fluids in the presence of axial
electric field.
Recently, Asthana and Agrawal [18] have studied the vis-
cous potential flow analysis of electrohydrodynamic Kelvin-
Helmholtz instability at the plane interface and concluded that
the tangential electric field has stabilizing effect on the critical
value of relative velocity while relative velocity has destabi-
lizing effect on the critical value of electric field. Awasthi et
al. [14] have studied the effect of irrotational shearing stresses
on the capillary instability in the presence of heat and mass
transfer and found that irrotational shearing stresses stabilize
the system. Awasthi and Agrawal [13] has studied the viscous
contribution to the pressure for the potential flow analysis of
capillary instability with axial electric field and observed that
the axial electric field has stabilizing effect on the stability of
the system. Awasthi and Asthana [15] have studied the effect
of porous medium on the capillary instability when there is
heat and mass transfer across the interface and observed that
porous medium have stabilizing effect.
In the present article, viscous potential flow analysis of capil-
lary instability with heat and mass transfer in the presence of
an axial electric field has been carried out for axisymmetric
disturbances. Both the fluids are taken as incompressible,
viscous and conducting with different kinematic viscosities,
conductivities and permittivities, respectively, which have not
been considered earlier. The effect of gravity and free surface
charges at the interface is neglected. A dispersion relation
is derived and stability is discussed theoretically as well as
numerically. A critical value of the electric field as well
as the critical wave number is obtained. The effect of the
electric field and heat and mass transfer on growth rates is
studied. The effect of ratio of electrical conductivities and
ratio of permittivity of fluids on stability of the system is also
studied and shown graphically. Various neutral curves have
been drawn to show the effect of various physical parameters
such as electric field, heat transfer capillary number on the
stability of the system.

II. PROBLEM FORMULATION

A system of two incompressible and viscous fluids, sepa-
rated by a cylindrical interface, is considered in an annular
configuration as shown in Fig. 1. The undisturbed cylindrical
interface is taken at radius R. In the formulation the subscript
1 and 2 denote variables associated with the fluid inside
and outside the interface, respectively. In the undisturbed
state, viscous fluid of thickness h1, density ρ1, viscosity μ1,
electrical conductivity σ1 and permittivity ε1 occupies the
inner region R1 < r < R and viscous fluid of thickness

Fig. 1. Equilibrium configuration of the system.

h2, density ρ2, viscosity μ2, electrical conductivity σ2 and
permittivity ε2 occupies the outer region R < r < R2. The
bounding surfaces r = R1 and r = R2 are considered to
be rigid. The temperatures at r = R1, r = R and r = R2

are T1, T0 and T2, respectively. Both the fluids are assumed
to be incompressible and irrotational. A cylindrical system
of coordinates (r, θ, z) is assumed so that in the equilibrium
state z-axis is the axis of symmetry of the system. Small
axisymmetric disturbances are superimposed on the basic rest
state. After disturbance, the interface is given by

F (r, z, t) = r −R− η(z, t) = 0 (1)

where η is the perturbation in the radius of the interface
from the equilibrium value R, and for which the outward unit
normal vector is given by

n=
∇F
|∇F |=

⎧⎨
⎩1+

(
∂η

∂ z

)2
}−1/2 (

er − ∂η

∂ z
ez

)
(2)

where er and ez are unit vectors along the r and z directions,
respectively.
The velocity is expressed as the gradient of the potential func-
tion and the potential functions satisfy the Laplace equation
as a consequence of the incompressibility constraint. i.e.

∇2φj = 0 for (j = 1, 2) (3)

where ∇2 = ∂2

∂ r2 + 1
r

∂
∂ r + ∂2

∂ z2 .
The two fluids are subjected to an external electric field E0,
acting along z-axis i.e. E = E0ez .
It is assumed that the quasi-static approximation is valid for the
problem, hence the electric field can be derived from electric
scalar potential function ψ(r, z, t) such that

Ej = E0ez −∇ψj , (j = 1, 2) (4)

Gauss’s law requires that the electric potentials also satisfy
Laplace’s equation i.e.

∇2ψj = 0, (j = 1, 2) (5)
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The boundary conditions at the rigid cylindrical surfaces r =
R1 and r = R2 are given by

∂φj
∂ r

= 0 at r = Rj (j = 1, 2) (6)

∂ψj

∂ z
= 0 at r = Rj (j = 1, 2) (7)

It is assumed that phase-change takes place locally in such a
way the net phase-change rate at the interface is equal to zero.
The interfacial condition, which expresses the conservation of
mass across the interface, is given by the equation (Hsieh [8])

‖ρ
(
∂F

∂t
+∇φ · ∇F

)
‖ = 0 at r = R+ η (8)

where ‖X‖ represents the difference in a quantity across the
interface, it is defined as ‖X‖ = X1 −X2.
The tangential component of the electric field must be contin-
uous across the interface i.e.

‖Et‖ = 0 (9)

where Et(= |n×E|) is the tangential component of the
electric field.
There is discontinuity in the normal current across the in-
terface; charge accumulation within a material element is
balanced by conduction from bulk fluid on either side of
the surface. The boundary condition, corresponding to normal
component of the electric field, at the interface is given by

‖En‖ = 0 (10)

where En(= n · E) is the normal component of the electric
field.
The interfacial condition for energy transfer proposed by Hsieh
[8] can be expressed as

Lρ1

(
∂F

∂t
+∇φ1 · ∇F

)
= S (η) at r = R+ η (11)

where L is the latent heat released during phase transformation
and S(η) denotes the net heat flux from the interface. In
deriving equation (11), Hsieh [8] assumed that the amount
of latent heat released depends mainly on the instantaneous
position of the interface.
In the equilibrium state, the heat fluxes in
positive radial-direction in the fluid phases 1
and 2 are −K1 (T1 − T0)/R ln (R1/R) and
−K2 (T0 − T2)/R ln (R/R2) respectively where K1 and K2

denote the heat conductivities of the two fluids. The net heat
flux S(η) is expressed as (Nayak and Chakraborty [5])

S (η) =
K2 (T0 − T2)

(R+ η) [lnR2 − ln (R+ η)]

− K1 (T1 − T0)

(R+ η) [ln (R+ η)− lnR1]
(12)

Expanding S(η) about η = 0 as

S (η)=S (0) + ηS′ (0) +
1

2
η2S′′ (0) +

1

6
η3S′′′ (0) + ... (13)

Since S(0) = 0, from equation (12) we get

K2 (T0 − T2)

R ln (R2/R)
=
K1 (T1 − T0)

R ln (R/R1)
= G(say) (14)

Hence in the equilibrium state, heat fluxes across the inter-
faces are equal. The interfacial condition for conservation of
momentum is given by;

ρ1 (∇φ1 · ∇F )
(
∂F
∂t +∇φ1 · ∇F

)
= ρ2 (∇φ2 · ∇F )×(

∂F
∂t +∇φ2 · ∇F

)
+ (p2 − p1 + 2 [[μn · {(n · ∇)∇φ}]]

+ 1
2

[[
ε
(
E2

n − E2
t

)]]
+ T ∇ · n) |∇F |2

(15)
where p represents the pressure and T denotes the surface
tension. Surface tension has been assumed to be a constant,
neglecting its dependence on temperature. Pressure can be
obtained using Bernoulli’s equation.

III. LINEARIZED EQUATIONS

It has been observed that the asymmetric disturbances are
always stable for capillary instability. A long cylinder of liquid
is unstable to the axisymmetric disturbances with wavelengths
greater than 2πR, where R is the radius of the cylinder. Hence,
we considered only axisymmetric disturbances in this analysis.
Now, axisymmetric disturbances are imposed on the equations
(8), (9), (10), (11) and (15) and retaining the linear terms we
can get the following equations.

‖ρ
(
∂φ

∂ r
− ∂η

∂ t

)
‖ = 0 (16)

‖∂ψ
∂ z

‖ = 0 (17)

‖σ
(
∂ψ

∂ r
+ E0

∂η

∂ z

)
‖ = 0 (18)

[
ρ1

(
∂φ1
∂ r

− ∂η

∂ t

)]
= αη (19)

‖ρ∂φ
∂ t

+ E0ε
∂ψ

∂ z
+ 2μ

∂2ψ

∂ r2
‖ = T

(
η

R2
+
∂2η

∂ z2

)
(20)

where equation (19) is obtained using equations (12)-(14) with
equation (11) and

α =
G

LR

ln(R2/R1)

ln(R/R1) ln(R2/R)

Now the normal mode technique is used to find the solution
of the governing equations. Let

η = A ei (k z−ω t) + c. c. (21)

where A represents the amplitude of the surface wave, k
denotes the real wave number, ω is the growth rate and c.c.
refers the complex conjugate of the preceding term.
On solving equations (3) and (5) with the help of boundary
conditions we get

φj =

(
− α

ρj
+ i ω

) (
I0(k r)K

′
0(k Rj)− I ′0(k Rj)K0(k r)

Dj(k)

)

Ae i (k z−ω t) + c. c., (j = 1, 2) (22)
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ψ 1 =
i k (σ2 − σ1)E0 g2(k)

σ1g2(k)G1(k)− σ2g1(k)G2(k)

[I0(k r)K0(k R 1)− I0(k R1)K0(k r)] Ae
i (k z−ω t)+c. c.

(23)

ψ 2 =
i k (σ2 − σ1)E0 g1(k)

σ1g2(k)G1(k)− σ2g1(k)G2(k)

[I0(k r)K0(k R 2)− I0(k R 2)K0(k r)] Ae
i (k z−ω t)+c. c.

(24)
where

Dj(k) = I ′0(k Rj)K
′
0(k R) − I ′0(k R)K

′
0(k Rj),

gj(k) = I0(k Rj)K0(k R)− I0(k R)K0(k Rj),
Gj(k) = I ′0(k R)K0(k Rj)− I0(k Rj)K

′
0(k R), (j = 1, 2)

and symbols I0 and K0 are modified Bessel functions of first
and second kind respectively and prime on modified Bessel
functions denotes the differentiation with respect to r when
r = R,R1 or R2.

IV. DISPERSION RELATION

Substituting the values of η, φ1, φ2, ψ1 and ψ2 in equation
(20) we get the dispersion relation

D (ω, k) = a0ω
2 + i a1ω − a2 = 0 (25)

where
a0 =

ρ1M1(k)

D1(k)
− ρ2M2(k)

D2(k)

a1 = α

(
M1(k)

D1(k)
− M2(k)

D2(k)

)
+

2μ1N1(k)

D1(k)
− 2μ2N2(k)

D2(k)

a2 = 2αμ1

ρ1

N1(k)
D1(k)

− 2αμ2

ρ2

N2(k)
D2(k)

+ T
R2 (k

2R2 − 1)

− k2E2
0g1(k)g2(k)(ε1−ε2)(σ1−σ2)

σ1g2(k)G1(k)−σ2g1(k)G2(k)
,

Mj = I ′0(k Rj)K0(k R)− I0(k R)K
′
0(k Rj),

Nj = I ′0(k Rj)K
′′
0 (k R)− I ′′0 (k R)K

′
0(k Rj).

After using the transformation ω = i ω0, the dispersion
relation is obtained in growth rate ω0

a0ω
2
0 + a1ω0 + a2 = 0 (26)

Neutral curves are obtained by putting ω0(k). Equation (26)
reduces to a2 = 0, which in turn implies that

2αμ2

ρ2

N2(kc)

D2(kc)
− 2αμ1

ρ1

N1(kc)

D1(kc)
− T

R2
(k2cR

2 − 1)

=
k2c (E0)

2
cg1(kc)g2(kc)(ε1 − ε2)(σ1 − σ2)

σ2g1(k)G2(k)− σ1g2(k)G1(k)
(27)

where kc is the critical wave number. For E0 = 0, equa-
tion (26) is reduced to dispersion relation as obtained by
Kim et al. [10]. In equation (26) putting α = 0 we get
the dispersion relation as obtained by Elcoot [1] for his
linear theory. Choosing μ1 = 0, μ2 = 0, α = 0, R1 →
0, R2 → ∞ and E0 = 0, the dispersion relation (26)
reduces to form ω2

0 = T (1−x2)
R3

[
xI1(x)K1(x)

ρ1I0(x)K1(x)+ρ2I1(x)K0(x)

]
,

using the results I ′0(x) = I1(x), K
′
0(x) = −K1(x), x =

kR, lim
R1→0

K ′
0(kR1) → ∞, lim

R2→∞
I ′0(kR2) → ∞. Here the

condition for stability is x > 1 which is well known Rayleigh
criteria for a cylindrical jet.

V. DIMENSIONLESS FORM OF THE DISPERSION
RELATION

Introducing dimensionless variables

r̂ = r/H, ẑ = z/H, η̂ = η/H, t̂ = t/τ, ω̂0 = ω0τ,

k̂ = kH, ĥ = h1/H, R̂ = R̂1 + ĥ, Ê2 =
ε2E

2
0H

T ,

where the length scale H and time scale τ are defined as
H = R2 −R1, τ =

√
ρ2H3

/
T .

Also
ρ = ρ1

ρ2
, μ = μ1

μ2
, κ = υ1

υ2
, υ1 = μ1

ρ1
, υ2 = μ2

ρ2
, σ = σ1

σ2
, ε = ε1

ε2
,

Oh =

√
ρ2TH

μ2
, Ca = α

ρ2/τ
,

where Oh is the Ohnesorge number, Ca is the heat transfer
capillary number, ĥ is the inner fluid fraction and κ is the
kinematic viscosity ratio.
Eliminating the ′∧′ on the dimensionless variables for brevity,
the dimensionless form of equation (26) is[(

ρM1(k)
D1(k)

− M2(k)
D2(k)

)]
ω2
0 +

[
Ca

(
M1(k)
D1(k)

− M2(k)
D2(k)

)
+ 2

Oh

(
μN1(k)

D1(k)
− N2(k)

D2(k)

)]
ω0 +

[
2Ca
Oh

(
κN1(k)
D1(k)

− N2(k)
D2(k)

)
+ 1

R2 (k
2R2 − 1) + k2E2g1(k)g2(k)(ε−1)(σ−1)

g1(k)G2(k)−σg2(k)G1(k)

]
= 0

(28)
The expression for neutral curves becomes

2Ca

(
N2(kc)

D2(kc)
− κ

N1(kc)

D1(kc)

)
1

Oh
− 1

R2
(k2cR

2 − 1)

=
k2cE

2
c g1(kc)g2(kc)(ε− 1)(σ − 1)

g1(kc)G2(kc)− σg2(kc)G1(kc)
(29)

Applying Routh Hurwitz criterion, it is concluded that the
system is stable for E ≥ Ec and unstable for E < Ec.
From equation (28) we can get the value of maximum growth
rate (ω0)m and corresponding wave number km and the critical
wave number kc can be obtained using equation (29).

VI. RESULTS AND DISCUSSIONS

Following parametric values have been considered for the
system of interest containing vapour in the inner region and
liquid in the outer region.

ρ1 = 0.0012gm/cm3, ρ2 = 1.0gm/cm3, μ1 = 0.00018poise,

μ2 = 0.01poise, T = 60.0dyne/cm.

The diameters of the inner and outer cylinders are taken as
1 cm and 2 cm, respectively. The conductivity ratio σ and
permittivity ratio ε are taken as 0.2 and 0.01, respectively for
numerical calculations, otherwise mentioned. At the interface,
phase change is taking place. Neutral curves divide the plane
into a stable region denoted by S (above the curve) and
an unstable region denoted by U (below the curve). In the
following the effect of various physical parameters on the
onset of instability is interpreted through various Figures and
Tables.

In Fig. 2, the neutral curves for the critical wave number
kc versus vapor fraction h have been drawn for various
values of heat transfer capillary number Ca when there is
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Fig. 2. The neutral curve kc vs h for different values of Ca when E = 0.
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Fig. 3. The neutral curve kc vs h for different values of Ca when E = 5.
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Fig. 4. The neutral curve kc vs h for different values of E when Ca = 0.3.

no electric field i.e. E = 0. It has been observed that as Ca
increases, the stable region (upper region) grows. Therefore,
Ca has a stabilizing effect on the stability of the system.
The effect of heat and mass transfer on the stability of the
system can be explained in terms of local evaporation and
condensation at the interface. At a perturbed interface, crests

0 1 2 3 4 5 66
10
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10
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10
−1

10
0
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k
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h = 0.8

h = 0.9

h = 0.99

S

U

Fig. 5. The neutral curve kc vs Ca for different values of h when E = 5.

are warmer because they are closer to the hotter boundary on
the vapour side, thus local evaporation takes place, whereas
troughs are cooler and thus condensation takes place. The
liquid is protruding to a hotter region and the evaporation
will diminish the growth of disturbance waves. Fig. 3 shows
the neutral curves for the critical wave number kc versus
vapor fraction h for various values of heat transfer capillary
number Ca when electric field intensity E = 5. The heat
and mass transfer phenomenon has stabilizing effect on the
stability of the system even in the presence of electric field
and this effect is enhanced in the presence of an electric field.
For a fixed value of vapour thickness h, on increasing Ca,
the critical wave number kc decreases and finally vanishes at
threshold Ca.
The neutral curves for critical wave number kc versus vapor
fraction h for various values of electric field intensity E at
heat transfer capillary number Ca = 0.3 have been shown
in Fig. 4. It has been observed that for a fixed value of h
and Ca, the critical wave number kc decreases on increasing
electric field intensity E. Therefore, it is concluded that E has
stabilizing effect. The variation of the critical wave number
for the different values of vapour fraction is illustrated in
Fig. 5. As vapour thickness increases, at the crests more
evaporation will take place. This additional evaporation will
increase the amplitude of the disturbance waves and the
system becomes destabilized as observed from Fig. 5.

In Tables I and II, maximum growth rates (ω0)m,
corresponding wave numbers km and critical wave numbers
kc as a function of heat transfer capillary number Ca have
been shown for different values of vapour fraction h at
various values of electric field intensity E. It is observed that
the maximum growth rates decrease on increasing Ca and
growth rates vanish at certain Ca, known as threshold Ca.
This threshold Ca remains same as the electric field increases
at some fixed value of h.

In Fig. 6, the neutral curves for the electric field intensity
E versus wave number k have been plotted for various values
of heat transfer capillary number Ca when vapor thickness
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Fig. 6. The neutral curve Ec vs kc for different values of Ca when h = 0.01.
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Fig. 7. The neutral curve Ec vs kc for different values of κ for Ca = 0.1
at h = 0.01.

TABLE I
MAXIMUM GROWTH RATE (ω0)m , CORRESPONDING WAVE

NUMBER km AND CRITICAL WAVE NUMBER kc FOR
DIFFERENT VALUE OF E AT h = 0.01.

E = 0 E = 5

Ca (ω0)m km kc (ω0)m km kc

0.00 0.5019 0.6707 0.9901 0.3759 0.4940 0.7145
0.02 0.0897 0.6586 0.9333 0.0477 0.4739 0.6734
0.04 0.0355 0.6185 0.8729 0.0185 0.4458 0.6297
0.06 0.0175 0.5703 0.8080 0.0091 0.4137 0.5827
0.08 0.0091 0.5221 0.7374 0.0047 0.3775 0.5317
0.10 0.0047 0.4659 0.6592 0.0024 0.3373 0.4753
0.12 0.0022 0.4016 0.5705 0.0011 0.2892 0.4112
0.14 0.0008 0.3293 0.4651 0.0004 0.2369 0.3352
0.16 0.0002 0.2329 0.3275 0.0001 0.1687 0.2360
0.18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

h = 0.01. A critical value of the electric field has been
obtained. If the electric field is less than this critical value,
the system is unstable otherwise it is stable. It has been
observed that the stable region increases on increasing the
heat transfer coefficient Ca and hence it is concluded that Ca
has stabilizing effect on the critical electric field. Variation

TABLE II
MAXIMUM GROWTH RATE (ω0)m , CORRESPONDING WAVE

NUMBER km AND CRITICAL WAVE NUMBER kc FOR
DIFFERENT VALUE OF E AT h = 0.1.

E = 0 E = 5

Ca (ω0)m km kc (ω0)m km kc

0.0 0.4306 0.6225 0.9901 0.1756 0.2450 0.3509
0.2 0.0557 0.5984 0.8485 0.0085 0.2329 0.3274
0.4 0.0206 0.5502 0.7834 0.0031 0.2129 0.3021
0.6 0.0095 0.5020 0.7124 0.0014 0.1928 0.2747
0.8 0.0045 0.4458 0.6335 0.0007 0.1727 0.2442
1.0 0.0019 0.3815 0.5435 0.0003 0.1486 0.2094
1.2 0.0007 0.3092 0.4354 0.0001 0.1205 0.1677
1.4 0.0001 0.2048 0.2895 0.00001 0.0803 0.1115
1.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Fig. 8. The neutral curve Ec vs kc for different values of σ for Ca = 0.1
at h = 0.01.
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Fig. 9. The neutral curve Ec vs kc for different values of ε for Ca = 0.1
at h = 0.01.

of neutral curves for electric field for different values of
kinematic viscosity ratio of two fluids κ have been shown
in Fig. 7 for Ca = 0.1 and h = 0.01. It is concluded that
the critical wave number kc decreases with increasing κ .
It is also found that for every E, the threshold κ remains
same for some fixed value of Ca and h. As the kinematic
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Fig. 10. The neutral curve Ec vs kc for different values of Oh for Ca = 0.1
at h = 0.01.

10
−1

10
0

0

0.13

0.26

0.39

0.52

k

ω
0

Ca=0.000
Ca=0.005
Ca=0.010
Ca=0.050
Ca=0.100

Fig. 11. The growth rate ω0 vs k for E = 0 for different values of Ca at
h = 0.01.

viscosity ratio κ increases, the viscosity of the inside fluid
increases and hence κ has stabilizing effect on the stability
of the system.
Variation of neutral curves for electric field for different
values of the conductivity ratio σ have been shown in Fig. 8
for Ca = 0.1 and h = 0.1. The stable region decreases as σ
increases and hence it is concluded that σ has destabilizing
effect on the critical electric field. The variation of critical
electric field for various values of the permittivity ratio ε
for Ca = 0.1 and h = 0.1 have been shown in Fig. 9. It is
observed that ε has destabilizing effect on the critical value
of electric field.
The evolution of the neutral curves for electric field intensity
E versus wave number k for different values of Ohnesorge
number has been shown in Fig. 10. It has been observed that
Ohnesorge number has destabilizing effect on the stability
of the system. Through increasing Ohnesorge number, the
viscosity of the outside fluid will decrease and less resistance
to the fluid flow will take place. Therefore, the flow will
become unstable.

In Figs. 11 and 12, the growth rate values have been
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Fig. 12. The growth rate ω0 vs k for E = 5 for different values of Ca at
h = 0.01.

compared for the electric field intensity E = 0 and 5,
for different values of heat transfer capillary number Ca at
h = 0.01. It is observed that on increasing Ca the growth
rates decrease and growth rates in the presence of an electric
field decrease faster than the growth rates in the absence of
an electric field. It shows that heat and mass transfer has
stabilizing effect on the stability of the system and this effect
is enhanced in the presence of an electric field.

VII. CONCLUSION

Viscous potential flow analysis of capillary instability with
heat and mass transfer in the presence of an axial electric
field has been carried out. The dispersion relation is obtained
which is a quadratic equation in growth rate. The stability
condition is obtained by applying Routh-Hurwitz criterion for
stability. A critical value of electric field as well as critical
wave number is obtained. The system is unstable when the
electric field is less than the critical value of electric field,
otherwise it is stable. It is observed that the heat and mass
transfer has stabilizing effect on the stability of the system
and this effect is enhanced in the presence of an electric field.
The heat and mass transfer completely stabilizes the interface
against capillary effects even in the presence of an electric
field. It is also observed that the axial electric field increases
the stability of the system with or without heat and mass
transfer. It is found that the ratio of electric conductivity has
destabilizing effect on growth rate. The same nature of result
is obtained for the effect of ratio of permittivity on growth
rates. The heat and mass transfer, for inviscid fluids, has no
effect on the stability of the system, while it has stabilizing
effect on the stability for viscous fluids.
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